Bee Pollen as Functional Food: Insights into Its Composition and Therapeutic Properties
Abstract
:1. Introduction
2. Methodology
3. Bee Pollen: From Flowers to the Hive
4. Chemical Composition
4.1. Main Compound
4.1.1. Water
4.1.2. Protein Content
4.1.3. Amino Acids
4.1.4. Carbohydrates
- Sugar
- Dietary fibers
4.1.5. Lipid and Fat Content
4.2. Micronutrients
4.2.1. Minerals
4.2.2. Vitamins
- water-soluble vitamins
- Fat-soluble vitamins
4.2.3. Carotenoids
4.3. Pollen Probiotics
4.4. Phenolic Profile and In Vitro Antioxidant Potential of Bee Pollen
4.4.1. Volatile Compounds of Bee Pollen
4.4.2. Phenolic Profile of Bee Pollen
Country | Floral Origin | Techniques | Phenolic Compounds Name | References |
---|---|---|---|---|
Turkey | ND | HPLC-PDA detector | gallic acid, 3,4-hydroxybenzoic acid, (+)-catechin1,2-dihydroxy-benzene, syringic acid, caffeic acid, rutin trihydrate, p-coumaric acid, trans-ferulic acid, apigenin 7 glucoside, resveratrol, quercetin, trans-cinnamic acid, naringenin, kaempferol, isorhamnetin | [131] |
Turkey | Castanea spp. | HPLC-DAD | rosmarinic acid, vitexin, hyperoside, pinocembrin, trans-chalcone, apigenin, protocatechuic acid, galangin | [133] |
Portugal | Monofloral: Rubus spp., Cystisus spp., Quercus spp., Prunus spp., Leontondon spp., Cistus spp., and Trifolium spp. Heterofloral: Castanea sativa and Echium spp. and ii) Erica spp., and Eucalyptus spp. | UHPLC-DAD-ESI-MS | coumaroyl quinic acid, myricetin-O-rutinoside, luteolin-O-dihexoside, quercetin-O-dihexoside, myricetin-O-hexoside, myricetin-O-(malonyl)rutinoside, isorhamnetin-O-dihexoside, quercetin-O-hexosyl-pentoside, quercetin-O-rutinoside isomer 1, quercetin-O-rutinoside isomer 2, luteolin-di-O-hexosyl-rhamosíde, quercetin-O-(malonyl)rutinoside, isorhamnetin-O-rutinoside, hydroxybenzoyl myricetin, quercetin-O-(malonyl)hexoside, quercetin derivative, quercetin-O-rhamnoside, isorhamnetin-O-(malonyl)hexoside isomer 1, luteolin-O-(malonyl)hexoside, myricetin, isorhamnetin-O-(malonyl)hexoside isomer 2, myricetin-O-dihydroferuloyl protocatechuic acid, myricetin-O-acetyl hydroxybenzoyl protocatechuic acid-isomer 1, myricetin-O-acetyl hydroxybenzoyl protocatechuic acid isomer 2, quercetin-O-acetyl hydroxybenzoyl protocatechuic acid isomer 1, myricetin-O-acetyl hydroxybenzoyl hydroxybenzoic acid isomer 2, quercetin-O-acetyl hydroxybenzoyl hydroxybenzoic acid isomer 1, quercetin-O-acetyl hydroxybenzoyl hydroxybenzoic acid isomer 2, O-dihydroxy benzoyl acetyl malonyl coumaric acid flavonoid derivative | [103] |
China | Rosa rugosa | UPLC-ESI-QTOF-MS/MS | isorhamnetin 3-O-diglucoside, sorhamnetin-3-O-coumaroyl glucoside, isorhamnetin-3-O-6-O-acetyl-β-D-glucopyranosy, kaempferol-3-O-neohesperidoside, N′,N″,N‴-Tricaffeoyl spermidine, N′,N″,N‴-Dicaffeoyl p-coumaroyl spermidine, N′,N″,N‴-Di-p-coumaroyl caffeoyl spermidine, N′,N″,N‴-Tri-p-coumaroyl spermidine | [134] |
Chile | Brassica rapa and Eschscholzia californica | HAPLC-DAD | syringic acid, coumaric acid, sinapic acid, ferulic acid, cinnamic acid, abscisic acid, catechin, myricetin, quercetin, apigenin, kaempferol, naringenin, rhamnetin | [135] |
Brazil | Eucalyptus marginata; Corymbia calophylla | HPLC | gallic acid, 4-hydroxyphenylacetic acid, rutin, resveratrol, myricetin, quercetin-3-O-glucopyranoside, kaempferol-3-O-glucoside, kaempferol-3-O-rutinoside, naringenin, quercetin, phloretine, kaempferol | [136] |
Morocco | Coriandrum sativum | HPLC/DAD/ESI-MSn | myricetin-3-O-rutinoside, quercetin-diglucoside, quercetin-3-O-rutinoside, kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, isorhamnetin-O-pentosylhexoside, kaempferol-diglucuronide, isorhamnetin-3-O-glucoside, quercetin-3-O-rhamnoside, ellagic acid, N1-p-coumaroyl-N5, N10-dicaffeoylspermidinea, N1, N10-di-p-coumaroyl-N5-caffeoylspermidine, luteolin, quercetin-3-methyl-ether, N1, N5-di-p-coumaroyl-N10-caffeoylspermidine, N1, N5, N10-tri-pcoumaroylspermidine, N1, N5, N10-tri-pcoumaroylspermidine, N1, N5, N10-tri-pcoumaroylspermidine, N1, N5, N10-tri-pcoumaroylspermidine | [138] |
Romania | Hedera, Helianthus, Cistus, Cornus, Brassica, Gledistia, Hedysarum, Trifolium, Castanea, lamium, Magnolia, Fraxinus, Papaver, Crataegus, Prunus, Rubus, and Cordiandrum | HPLC-DAD | gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, chlorogenic acid, p-coumaric acid, rosmarinic acid, myricetin, luteolin, quercetin, kaempferol | [139] |
Italy | Cistus ladanifer, Echium, Achillea, Quercus ilex, Rubus, Pinaceae, Filipendula, Trifolium incarnatum, Trifolium pratense, Trifolium repens, Prunus, Pyrus, Malus, and Oxalis | UHPLC-ESI-QTOF-MS | cyanidin 3-O-xyloside/arabinoside, delphinidin 3-O-(60 ’-p-coumaroyl-glucoside), petunidin 3-O-arabinoside, pelargonidin 3-O-glucoside, delphinidin 3-O-glucoside, delphinidin 3-O-glucosyl-glucoside, delphinidin 3-O-rutinoside, cyanidin 3-O-sophoroside, naringin 60-malonate, naringin 40-O-glucoside, naringenin 7-O-glucoside, apigenin 7-O-(60′-malonyl-apiosyl-glucoside), tetramethylscutellarein, luteolin 7-O-glucuronide, apigenin 6-C-glucoside, kaempferol 3-O-glucuronide, quercetin 3-O-rutinoside, kamepferol 3,7-O-diglucoside, quercetin 3-O-galactoside 7-O-rhamnoside, quercetin 3-O-rhamnosyl-galactoside, kaempferol 3-O-sophoroside, 3,7-Dimethylquercetin, dihydroquercetin, formononetin, genistin, gallic acid ethyl ester, syringic acid, caffeic acid 4-O-glucoside, caffeoyl glucose, feruloyl glucose, caffeic acid, sesamol, hydroxytyrosol 4-O-glucoside, curcumin, and carnosic acid | [140] |
Colombia | Cistus ladanifer; Echium Achillea; Taraxacum; Carduus; Cirsium; Vicia; Quercus ilex; Rubus; Pinaceae; Filipendula; Trifolium incarnatum, Trifolium pratense; Trifolium repens; Prunus, Pyrus; Malus and Oxalis | UHPLC-DAD | Caffeic acid, ferulic acid, S-N1,5,10-tri-ferulic acid isorhamnetin, kaempferol, luteolin, myricetin, p-coumaric acid, SP-N1,5,10,14-tetra-p-coumaric acid, pinobanskin, quercetin, spermidine, spermine, 4-methyl gallic acid, apigenin, amentoflavone, N1-caffeoyl-N5,10-di-p-coumaroyl-spermidine, and N1,10-di-pcoumaroyl-N5-caffeoyl-spermidine. | [44] |
4.4.3. In Vitro Antioxidant Activity of Bee Pollen
5. Therapeutic Properties of Bee Pollen against Oxidative Stress-Related Diseases
5.1. Antioxidative Properties
5.2. Antidiabetic and Anti-Hyperglycemic Properties
5.3. Hepatoprotective Properties
5.4. Nephroprotective Properties
5.5. Anti-Inflammatory Properties
Molecules | Dosage, Route, and Exposure Duration | Pharmacological Properties | Involved Mechanisms | References |
---|---|---|---|---|
Caffeic acid | 6 mg/kg/day, orally for 45 days. | Anti-oxidative properties | ↑Non-enzymic antioxidants, ↓lipid peroxidation, and ↓TBARS level. | [177] |
Cinnamic acid | 20 mg/kg/day, i.p for 40 days. | ↓lipid peroxidation, ↓ROS production ↑GSH, ↑SOD, and ↑CAT levels. | [178] | |
Ferulic acid | 25 mg/kg/day, orally for 10 days. | ↓lipid peroxidation, ↓ROS levels, and ↓N-acetyl-β-glucosminidase activity. | [210] | |
Ellagic acid | 10 and 30 mg/kg/day for 30 days. | Enhances the concentration of enzymatic antioxidant levels (SOD, CAT, and GPx), and ↓ MDA, ↓TNF-α, and ↓IL-1β. | [211] | |
Quercetin | 50 mg/kg/day, i.p for 21 days. | Increases GSH level, SOD, GR, G, P, and CAT activity, and decreases the expression of TNFα, IL-1β, and IL-6. | [180] | |
Kaempferol | 100 mg/ kg/day, i.p for 6 weeks. | Inhibits the activity of ASK1/MAPK signaling pathways (JNK1/2 and p38). | [212] | |
Galangin | 8 mg/kg/day, i.p for 45 days. | ↓lipid peroxidation, ↑enzymatic and non-enzymatic antioxidants. | [213] | |
Chrysin | 30 mg/kg/day, orally, for 14 days. | ↑GSH, ↓TBARS, ↓XO, and ↓NADPH levels | [214] | |
Protocatechuic acid | 100 mg/kg/day, i.p for 7 days. | Prevents lipid peroxidation and the formation of NO, and enhances antioxidant enzymes. | [215] | |
Apigenin | 0.625, 1.25, and 2.5 mg/mL. | ↓oxidative stress, GSH level ↑SOD activity, ↓IL-6, and ↓NF-κB levels. | [216] | |
Luteolin | 100 and 200 mg/kg/ day, orally for 28 days. | ↓MDA, ↑GSH, ↑SOD ↑GPX ↑Nrf2, and ↑HO-1 Expressions. | [181] | |
Rutin | 50 and 100 mg/kg/day, orally for 20 days. | ↑Production of antioxidant enzymes, ↓serum toxicity markers, and downregulation of (COX, 2p38-, MAPK, i-NOS, and NF-κB). | [179] | |
Naringenin | 50 mg/kg/day, orally for 8 weeks. | Minimizes oxidative stress and enhances CAT, SOD GSH, and GPx levels. | [217] | |
Pinocembrin | 10 mg/kg/day, orally for 7 days. | Decreases oxidative stress, and apoptotic and inflammatory markers. | [182] | |
Caffeic acid | 100 mg/kg/day, orally for 4 weeks. | Antidiabetic and anti-hyperglycemic properties | IL-6, ↓ IL-1β, ↓ TNF-α, ↓ MCP-1, ↓HbA1c, ↓ UGA, ↓ sorbitol, ↓ fructose, and ↑AMPKα2. | [218] |
Ferulic acid | 10 mg/kg/day, orally for 15 days. | Down-regulation of NF- κB pathway. | [219] | |
Cinnamic acid | 50 mg/kg/day, orally for 5 weeks. | ↑insulin secretion, ↑hepatic glycolysis, ↑adiponectin secretion ↑glucose uptake, ↑pancreatic β-cell functionality, and ↓protein glycation. | [186] | |
Ellagic acid | 250 mg/kg/day, orally for 28 days. | ↑ insulin secretion, ↑β-cell number, ↑plasma total antioxidants, and ↑glucose intolerance. | [220] | |
Quercetin | 10 and 30 mg/kg/day, i.p for 14 days. | ↑GLUTs, ↑IR-P, ↑GLUT4, ↑Glucose uptake, ↑pancreatic cell-β generation, ↑glucokinase activity, ↓α-glucosidase activity. | [221] | |
Kaempferol | 50 mg/kg/day, orally for 12 weeks. 200 mg/kg/day, orally for 14 days. | ↓hepatic glucose production, ↑hexokinase activity, ↓hepatic pyruvate carboxylase activity, and gluconeogenesis. ↑GLP-1 and insulin release, ↑ cAMP, and Ca2+ intracellular levels. | [188,222] | |
Galangin | 4, 8, and 16 mg/kg/day, orally for 45 days. | Inhibition of DPP-4, ↓oxidative stress, and ↑antioxidant status. | [213] | |
Chrysin | 40 mg/kg/day, orally for 16 weeks. | Inhibition of the TNF-α pathway, ↓secretion of pro-inflammatory cytokines, and ↓glucose and lipid peroxidation levels. | [223] | |
Protocatechuic acid | 50 and 100 mg/kg/day, orally for 7 days. | ↑insulin sensitivity, ↓insulin resistance, ↓gluconeogenesis, and ↑glucose uptake. | [224] | |
Apigenin | 1.5 mg/kg/day, i.p for 28 days. | Enhances GLUT4 translocation. | [225] | |
Luteolin | 10 mg/kg/day, orally for 24 weeks. | Reduces oxidative stress and inhibits the STAT3 pathway. | [226] | |
Rutin | 90 mg/kg/day, orally for 10 weeks. | Inhibition of polyol pathway, oxidative stress, and lipid peroxidation. | [187] | |
Naringenin | 50 and 100 mg/kg/day, orally for 6 weeks. | Improvement of glucose and lipid metabolism, and ↓insulin resistance. | [227] | |
Pinocembrin | 50 mg/ kg/day, orally for 10 days. | ↓ NF-κB and TNF-α levels. | [228] | |
Resveratrol | 12 mg/kg/day, orally for 1 5 days. | Down-regulation of NF- κB pathway. | [219] | |
Caffeic acid | 100 mg/kg/day, orally for 4 days. | Hepato-protective properties | Downregulation of CYP2E1 and the protection of DNA against oxidative damage. | [193] |
Cinnamic acid | 20 mg/kg/day, orally for 10 days. | ↓NF-kB and ↓iNOS activities. | [229] | |
Ellagic acid | 5 and 10 mg/kg/day, orally for 10 days | Up-Regulation of Nrf2 and HO-1 expression and inhibition of NF-κB signaling pathway. | [194] | |
Quercetin | 20, 40, and 80 mg/kg/day, orally for 7 days. | Modulation of the expression of nuclear orphan receptors (CAR, PXR) and cytochrome P450 enzymes (CYP1A2, CYP2E1, CYP2D22, CYP3A11). | [230] | |
Kaempferol | 20 mg/kg, twice a day, orally for 28 days. | ↓CYP2E1 activity and ↓ROS production. | [231] | |
Galangin | 15, 3,0, and 60 mg/kg/day, orally for 15 days. | Activation of Nrf2 and HO-1 signaling pathway. | [232] | |
Chrysin | 25 or 50 mg/kg, orally for 6 days. | Decreases the expression of COX-2, iNOS. | [233] | |
Ferulic acid | 25, 50, and 100 mg/kg/day, orally for 7 days. | ↓ the expression TNF-α and IL-1β, upregulation of p-JNK, p-p38 MAPK, and Bcl-2. | [191] | |
Protocatechuic acid | 25 and 50 mg/kg/day, i.p for 7 days. | ↓ oxidant species ↑antioxidant enzymes | [192] | |
Apigenin | 10 mg/kg/day, orally for 3 weeks. | Enhances antioxidant defense mechanisms and decreases lipid peroxidation. | [234] | |
Luteolin | 100 mg/kg/day, i.p for 7 days. | Modulation of Nrf2/HO-1 pathway and ↓oxidative stress. | [235] | |
Rutin | 20 mg/kg/day, orally for 15 days. | ↑Antioxidant profile and regulation of Na+/K+ ATPase activity. | [236] | |
Naringenin | 50 mg/kg/day, orally for 10 days. | ↑the enzymatic and non-enzymatic antioxidant levels, ↓NO, TNF-α, and IL-6 levels. | [190] | |
Pinocembrin | 50 and 75 mg/kg/day, i.p for 10 days. | Modulation of Nrf2/HO-1 and NQO1 pathways. | [199] | |
Resveratrol | 50 and 100 mg/kg/day, orally for 28 days | Modulation of SIRT1 and p53 pathways. | [237] | |
Caffeic acid | 100 mg/kg/day, orally for 14 days. | Nephroprotective properties | Enhances the antioxidant defense system and reduces lipid peroxidation. | [238] |
Ferulic acid | 50 mg/kg/day, orally for 8 weeks. | Modulation of AGEs, MAPKs (p38 and JNK), and NF-κB pathways, and ↓oxidative stress. | [197] | |
Cinnamic acid | 50 mg/kg /day, orally for 7 days. | antioxidant expression GSH levels, SOD, CAT, and GPx activities. | [239] | |
Ellagic acid | 10 mg/kg/day, orally for 30 days. | Stimulates the expression of SIRT1, ↓P53 protein level, ↓ROS production, and ↑enzymatic and non-enzymatic antioxidant system. | [198] | |
Quercetin | 10 mg/kg/day, i.p for 10 weeks. | ↑antioxidant expression and ↓lipid peroxidation. | [240] | |
Kaempferol | 100 mg/kg/day, orally for 28 days. | Inhibits RhoA/Rho Kinase mediated inflammatory pathway. | [241] | |
Chrysin | 30 and 100 mg/kg, ip for 26 days. | ↑iNOS and PKC Levels, and ↓AGEs and RAGE. | [242] | |
Protocatechuic acid | 25 and 50 mg/kg/day, i.p for 7 days. | ↓ oxidant species ↑antioxidant enzymes. | [192] | |
Apigenin | 3 mg/kg/day, i.p for 7 days. | Reduces COXI and COXII, MDA levels and increases GSH level. | [195] | |
Luteolin | 10 and 20 mg/kg/day, orally for 4 weeks. | Inhibition of RIP140/NF-κB pathway. | [243] | |
Rutin | 100 mg/kg/day, orally for 14 days. | Suppresses NF-κB activation and TGF-β1/Smad3 signaling. | [244] | |
Naringenin | 100 mg/kg/day, orally for 45 days. | ↓ oxidative stress and lipid peroxidation levels. | [196] | |
Pinocembrin | 50 and 75 mg/kg/day, i.p for 10 days. | Modulation of Nrf2/HO-1 and NQO1 pathways. | [199] | |
Resveratrol | 20 mg/kg/day, orally for 40 weeks. | Modulation of the NF-κB signaling pathway. | [245] | |
Caffeic acid | 50 mg/kg/day, orally for 21 days. | Anti-inflammatory properties | inhibition of NO, prostaglandin E2, and NF-κB signaling pathways. | [201] |
Ferulic acid | 100 mg/kg/day, orally for 6 weeks. | Inhibition of NADPH oxidase and NF-κB pathway. | [202] | |
Cinnamic acid | 60 mg/kg/day, orally for 21 days. | Down-regulation of the NLRP3, NF- κB, and ASK1/MAPK signaling pathways. | [203] | |
Ellagic acid | 1, 3, 10, and 30 mg/kg, i.p for 5 h. | Suppression of NF-κB pathway and NO, TNF-α, IL-6, COX-2 activity, and PGE2. | [246] | |
Quercetin | 1 mg/kg/day, orally for 15 days. | Down-regulation of the NF-κB pathway. | [208] | |
Kaempferol | 2 and 4 mg/kg/day for 10 days. | Decreases the synthesis of IL-1β, TNF-α, IL-18, and IL-6. | [209] | |
Galangin | 50 mg/kg per day, orally for 4 days. | Inhibits the expression of iNOS, COX-2, and pro-inflammatory cytokines. | [205] | |
Chrysin | 40 mg/kg/day, orally for 16 weeks. | inhibition of NO, prostaglandin E2, and NF-κB signaling pathways. | [206] | |
Protocatechuic acid | 20 mg/kg/day, orally for 8 weeks. | ↓IL-1β, ↓IL-6, and ↓TNF-α synthesis pathways. | [247] | |
Apigenin | 20 and 40 mg/kg/day, orally for 28 days. | ↓TNF-α and IL-6 production. | [248] | |
Luteolin | 100 mg/kg, i.p for 6 h. | ↑HO-1 expression, ↑IL-10, ↓TNF-α, and ↓IL-6 levels. | [249] | |
Rutin | 30 mg/kg/day, orally for 14 days. | Inhibition of p38-MAPK pathway. | [250] | |
Naringenin | 5, 10, and 20 mg/kg/day, for 16 days. | Up-regulation of Nrf-2/HO-1pathway and ↓NF-kB mRNA expression. | [251] | |
Pinocembrin | 50 mg/kg/day, i.p for 24 days. | Down-regulation of NF-kB pathway. | [252] | |
Resveratrol | 10 or 50 mg/kg/day, orally for 28 days. | Inhibition of COX-1 and COX-2 activities | [207] |
5.6. Other Beneficial Effects of Bee Pollen
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knox, R.B. The Pollen Grain. In Embryology of Angiosperms; Johri, B.M., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 197–271. ISBN 978-3-642-69302-1. [Google Scholar]
- Campos, M.G.R.; Bogdanov, S.; de Almeida-Muradian, L.B.; Szczesna, T.; Mancebo, Y.; Frigerio, C.; Ferreira, F. Pollen Composition and Standardisation of Analytical Methods. J. Apic. Res. 2008, 47, 154–161. [Google Scholar] [CrossRef]
- De-Melo, A.A.M.; de Almeida-Muradian, L.B. Chemical Composition of Bee Pollen. In Bee Products-Chemical and Biological Properties; Alvarez-Suarez, J.M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 221–259. ISBN 978-3-319-59688-4. [Google Scholar]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and Bee Bread as New Health-Oriented Products: A Review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Asmae, E.G.; Nawal, E.M.; Bakour, M.; Lyoussi, B. Moroccan Monofloral Bee Pollen: Botanical Origin, Physicochemical Characterization, and Antioxidant Activities. J. Food Qual. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Ahmed, O.M.; Hozayen, W.G.; Ahmed, M.A. Ameliorative Effects of Bee Pollen and Date Palm Pollen on the Glycemic State and Male Sexual Dysfunctions in Streptozotocin-Induced Diabetic Wistar Rats. Biomed. Pharm. 2018, 97, 9–18. [Google Scholar] [CrossRef]
- Maruyama, H.; Sakamoto, T.; Araki, Y.; Hara, H. Anti-Inflammatory Effect of Bee Pollen Ethanol Extract from Cistus Sp. of Spanish on Carrageenan-Induced Rat Hind Paw Edema. BMC Complement. Altern. Med. 2010, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Kaškonienė, V.; Adaškevičiūtė, V.; Kaškonas, P.; Mickienė, R.; Maruška, A. Antimicrobial and Antioxidant Activities of Natural and Fermented Bee Pollen. Food Biosci. 2020, 34, 100532. [Google Scholar] [CrossRef]
- Wang, B.; Diao, Q.; Zhang, Z.; Liu, Y.; Gao, Q.; Zhou, Y.; Li, S. Antitumor Activity of Bee Pollen Polysaccharides from Rosa Rugosa. Mol. Med. Rep. 2013, 7, 1555–1558. [Google Scholar] [CrossRef] [Green Version]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Roy, R.; Schmitt, A.J.; Thomas, J.B.; Carter, C.J. Nectar Biology: From Molecules to Ecosystems. Plant Sci. 2017, 262, 148–164. [Google Scholar] [CrossRef]
- Wodehouse, R.P. Pollen Grains. In Their Structure, Identification and Significance in Science and Medicine, 1st ed.; McGraw-Hill Book Company: New York, NY, USA, 1935. [Google Scholar]
- Dolezal, A.G.; Toth, A.L. Feedbacks between Nutrition and Disease in Honey Bee Health. Curr. Opin. Insect Sci. 2018, 26, 114–119. [Google Scholar] [CrossRef]
- Nepi, M.; Grasso, D.A.; Mancuso, S. Nectar in Plant–Insect Mutualistic Relationships: From Food Reward to Partner Manipulation. Front. Plant Sci. 2018, 9, 1063. [Google Scholar] [CrossRef]
- Glover, B.J. Pollinator Attraction: The Importance of Looking Good and Smelling Nice. Curr. Biol. 2011, 21, R307–R309. [Google Scholar] [CrossRef] [Green Version]
- Garbuzov, M.; Ratnieks, F.L.W. Quantifying Variation among Garden Plants in Attractiveness to Bees and Other Flower-Visiting Insects. Funct. Ecol. 2014, 28, 364–374. [Google Scholar] [CrossRef]
- Page, R.E.; Scheiner, R.; Erber, J.; Amdam, G.V. The Development and Evolution of Division of Labor and Foraging Specialization in a Social Insect (Apis Mellifera L.). Curr. Top. Dev. Biol. 2006, 74, 253–286. [Google Scholar] [CrossRef] [Green Version]
- Abou-Shaara, H.F. The Foraging Behaviour of Honey Bees, Apis Mellifera: A Review. Vet. Med. 2014, 59, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Vance, J.T.; Williams, J.B.; Elekonich, M.M.; Roberts, S.P. The Effects of Age and Behavioral Development on Honey Bee (Apis Mellifera) Flight Performance. J. Exp. Biol. 2009, 212, 2604–2611. [Google Scholar] [CrossRef] [Green Version]
- Seeley, T.D. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies; Harvard University Press: Cambridge, MA, USA; London, UK, 1995. [Google Scholar]
- Thorp, R.W. The Collection of Pollen by Bees. In Pollen and Pollination; Dafni, A., Hesse, M., Pacini, E., Eds.; Springer: Vienna, Austria, 2000; pp. 211–223. ISBN 978-3-7091-6306-1. [Google Scholar]
- Nicolson, S.W.; Da Silva Das Neves, S.; Human, H.; Pirk, C.W.W. Digestibility and Nutritional Value of Fresh and Stored Pollen for Honey Bees ( Apis Mellifera Scutellata ). J. Insect Physiol. 2018, 107, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Dozuotų, B.D.T.I.J.; Kūrimas, F. Investigation of Bee Bread and Development of Its Dosage Forms. Proteins 2014, 24, 20.30–21.70. [Google Scholar]
- Radev, Z. Water Content of Honey Bee Collected Pollen from 50 Plants from Bulgaria. Mod. Concepts Dev. Agron. 2018, 3, 314–316. [Google Scholar] [CrossRef] [Green Version]
- Mauriello, G.; De Prisco, A.; Di Prisco, G.; La Storia, A.; Caprio, E. Microbial Characterization of Bee Pollen from the Vesuvius Area Collected by Using Three Different Traps. PLoS ONE 2017, 12, e0183208. [Google Scholar] [CrossRef] [Green Version]
- Kaèániová, M.; Fikselová, M.; Hašèík, P.; Kòazovická, V.; Nô, J.; Fatrcová-Šrámková, K. Changes in microflora of bee pollen treated with uv light and freezing during storage. Ecol. Chem. Eng. A 2010, 17, 89–94. [Google Scholar]
- Mekki, I. Microbial Contamination of Bee Pollen and Impact of Preservation Methods; Univérsité libre de Tunis: Tunis, Tunisia, 2019. [Google Scholar]
- Campos, M.G.R.; Frigerio, C.; Lopes, J.; Bogdanov, S. What Is the Future of Bee-Pollen? J. ApiProd. ApiMed. Sci. 2010, 2, 131–144. [Google Scholar] [CrossRef]
- Percie du Sert, P. Les pollens apicoles. Phytothérapie 2009, 7, 75–82. [Google Scholar] [CrossRef]
- Bogdanov, S. Quality and Standards of Pollen and Beeswax. APIACTA 2004, 38, 334–341. [Google Scholar]
- Martins, M.C.T.; Morgano, M.A.; Vicente, E.; Baggio, S.R.; Rodriguez-Amaya, D.B. Physicochemical composition of bee pollen from eleven brazilian states. J. Apic. Sci. 2011, 55, 11. [Google Scholar]
- De Melo, I.L.P.; de Almeida-Muradian, L.B. Comparison of Methodologies for Moisture Determination on Dried Bee Pollen Samples. Food Sci. Technol. 2011, 31, 194–197. [Google Scholar] [CrossRef] [Green Version]
- Coronel, B.B.; Grasso, D.; Pereira, S.C.; Fernández, G. Caracterización bromatológica del polen apícola argentino. Ciencia Docencia y Tecnología 2004, 38, 145–181. [Google Scholar]
- Vanderplanck, M.; Leroy, B.; Wathelet, B.; Wattiez, R.; Michez, D. Standardized Protocol to Evaluate Pollen Polypeptides as Bee Food Source. Apidologie 2014, 45, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Frias, B.E.D.; Barbosa, C.D.; Lourenço, A.P. Pollen Nutrition in Honey Bees (Apis Mellifera): Impact on Adult Health. Apidologie 2016, 47, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Komosinska-Vassev, K.; Olczyk, P.; Kaźmierczak, J.; Mencner, L.; Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evid. -Based Complement. Altern. Med. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Negrão, A.F.; Orsi, R.O. Harvesting Season and Botanical Origin Interferes in Production and Nutritional Composition of Bee Pollen. An. Acad. Bras. Ciênc. 2018, 90, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Hendriksma, H.P.; Pachow, C.D.; Nieh, J.C. Effects of Essential Amino Acid Supplementation to Promote Honey Bee Gland and Muscle Development in Cages and Colonies. J. Insect Physiol. 2019, 117, 103906. [Google Scholar] [CrossRef] [Green Version]
- Pizzorno, J.E.; Murray, M.T. Textbook of Natural Medicine–E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2020; ISBN 978-0-323-52380-6. [Google Scholar]
- Kaur, R.; Nagpal, A.K.; Katnoria, J.K. Amino Acids Composition of Pollen Grains of Some Medicinally Important Plant Species. J. Chem. Pharm. Res. 2015, 7, 122–127. [Google Scholar]
- Da Silva, G.R.; da Natividade, T.B.; Camara, C.A.; da Silva, E.M.S.; dos Santos, F.d.A.R.; Silva, T.M.S. Identification of Sugar, Amino Acids and Minerals from the Pollen of Jandaíra Stingless Bees (Melipona Subnitida). Food Nutr. Sci. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Canale, A.; Benelli, G.; Castagna, A.; Sgherri, C.; Poli, P.; Serra, A.; Mele, M.; Ranieri, A.; Signorini, F.; Bientinesi, M.; et al. Microwave-Assisted Drying for the Conservation of Honeybee Pollen. Materials 2016, 9, 363. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Suarez, J.M. Bee Products-Chemical and Biological Properties; Springer: New York, NY, USA, 2017; ISBN 978-3-319-59689-1. [Google Scholar]
- Gardana, C.; Del Bo’, C.; Quicazán, M.C.; Corrrea, A.R.; Simonetti, P. Nutrients, Phytochemicals and Botanical Origin of Commercial Bee Pollen from Different Geographical Areas. J. Food Compos. Anal. 2018, 73, 29–38. [Google Scholar] [CrossRef]
- Lilek, N.; Gonzales, A.P.; Boži, J.; Borovšak, A.K.; Bertoncelj, J. Chemical Composition and Content of Free Tryptophan in Slovenian Bee Pollen. J. Food Nutr. Res. 2015, 54, 11. [Google Scholar]
- Yang, K.; Wu, D.; Ye, X.; Liu, D.; Chen, J.; Sun, P. Characterization of Chemical Composition of Bee Pollen in China. J. Agric. Food Chem. 2013, 61, 708–718. [Google Scholar] [CrossRef]
- Taha, E.-K.A.; Al-Kahtani, S.; Taha, R. Protein Content and Amino Acids Composition of Bee-Pollens from Major Floral Sources in Al-Ahsa, Eastern Saudi Arabia. Saudi J. Biol. Sci. 2017. [Google Scholar] [CrossRef]
- Isik, A.; Ozdemir, M.; Doymaz, I.; Isik, A.; Ozdemir, M.; Doymaz, I. Effect of Hot Air Drying on Quality Characteristics and Physicochemical Properties of Bee Pollen. Food Sci. Technol. 2019, 39, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Bertoncelj, J.; Polak, T.; Pucihar, T.; Lilek, N.; Borovšak, A.K.; Korošec, M. Carbohydrate Composition of Slovenian Bee Pollens. Int. J. Food Sci. Technol. 2018, 53, 1880–1888. [Google Scholar] [CrossRef]
- Anjos, O.; Paula, V.; Delgado, T.; Estevinho, L. Influence of the Storage Conditions on the Quality of Bee Pollen. Zemdirb. Agric. 2019, 106, 87–94. [Google Scholar] [CrossRef]
- Wu, W.; Wang, K.; Qiao, J.; Dong, J.; Li, Z.; Zhang, H. Improving Nutrient Release of Wall-Disrupted Bee Pollen with a Combination of Ultrasonication and High Shear Technique. J. Sci. Food Agric. 2019, 99, 564–575. [Google Scholar] [CrossRef]
- Ares, A.M.; Valverde, S.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Extraction and Determination of Bioactive Compounds from Bee Pollen. J. Pharm. Biomed. Anal. 2018, 147, 110–124. [Google Scholar] [CrossRef]
- de Arruda, V.A.S.; Vieria dos Santos, A.; Figueiredo Sampaio, D.; da Silva Araújo, E.; de Castro Peixoto, A.L.; Estevinho, M.L.F.; Bicudo de Almeida-Muradian, L. Microbiological Quality and Physicochemical Characterization of Brazilian Bee Pollen. J. Apic. Res. 2017, 56, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Bárbara, M.S.; Machado, C.S.; Sodré, G.D.S.; Dias, L.G.; Estevinho, L.M.; De Carvalho, C.A.L. Microbiological Assessment, Nutritional Characterization and Phenolic Compounds of Bee Pollen from Mellipona Mandacaia Smith, 1983. Molecules 2015, 20, 12525–12544. [Google Scholar] [CrossRef] [Green Version]
- Kalaycıoğlu, Z.; Kaygusuz, H.; Döker, S.; Kolaylı, S.; Erim, F.B. Characterization of Turkish Honeybee Pollens by Principal Component Analysis Based on Their Individual Organic Acids, Sugars, Minerals, and Antioxidant Activities. LWT 2017, 84, 402–408. [Google Scholar] [CrossRef]
- Sattler, J.A.G.; de Melo, I.L.P.; Granato, D.; Araújo, E.; da Silva de Freitas, A.; Barth, O.M.; Sattler, A.; de Almeida-Muradian, L.B. Impact of Origin on Bioactive Compounds and Nutritional Composition of Bee Pollen from Southern Brazil: A Screening Study. Food Res. Int. 2015, 77, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Szczęsna, T. Study on the Sugar Composition of Honeybee-Collected Pollen. Available online: http://agro.icm.edu.pl/agro/element/bwmeta1.element.dl-catalog-2bfe8051-7503-4faa-b7c0-552c257dd9a3 (accessed on 19 October 2020).
- Liolios, V.; Tananaki, C.; Dimou, M.; Kanelis, D.; Rodopoulou, M.-A.; Thrasyvoulou, A. Exploring the Sugar Profile of Unifloral Bee Pollen Using High Performance Liquid Chromatography. J. Food Nutr. Res. 2018, 57, 11. [Google Scholar]
- Belina-Aldemita, M.D.; Opper, C.; Schreiner, M.; D’Amico, S. Nutritional Composition of Pot-Pollen Produced by Stingless Bees (Tetragonula Biroi Friese) from the Philippines. J. Food Compos. Anal. 2019, 82, 103215. [Google Scholar] [CrossRef]
- Omar, W.A.W.; Yahaya, N.; Ghaffar, Z.A.; Fadzilah, N.H. GC-MS Analysis of Chemical Constituents in Ethanolic Bee Pollen Extracts from Three Species of Malaysian Stingless Bee. J. Apic. Sci. 2018, 62, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.O.; Komarek, A.R. Dietary Fibre Basics: Health, Nutrition, Analysis, and Applications. Food Qual. Saf. 2017, 1, 47–59. [Google Scholar] [CrossRef]
- Trowell, H.; Burkitt, D.; Heaton, K. Dietary Fibre, Fibre-Depleted Foods and Disease; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J.; et al. Gut Bacteria Selectively Promoted by Dietary Fibers Alleviate Type 2 Diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Bishehsari, F.; Engen, P.A.; Preite, N.Z.; Tuncil, Y.E.; Naqib, A.; Shaikh, M.; Rossi, M.; Wilber, S.; Green, S.J.; Hamaker, B.R.; et al. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes 2018, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Dayib, M.; Larson, J.; Slavin, J. Dietary Fibers Reduce Obesity-Related Disorders: Mechanisms of Action. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 445–450. [Google Scholar] [CrossRef]
- McRae, M.P. Dietary Fiber Is Beneficial for the Prevention of Cardiovascular Disease: An Umbrella Review of Meta-Analyses. J. Chiropr. Med. 2017, 16, 289–299. [Google Scholar] [CrossRef]
- Pituch-Zdanowska, A.; Banaszkiewicz, A.; Albrecht, P. The Role of Dietary Fibre in Inflammatory Bowel Disease. Prz. Gastroenterol. 2015, 10, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Merenkova, S.P.; Zinina, O.V.; Stuart, M.; Okuskhanova, E.K.; Androsova, N.V. Effects of dietary fiber on human health: A review. Human. Sport. Med. 2020, 20, 106–113. [Google Scholar] [CrossRef]
- Fuenmayor, B.C.; Zuluaga, D.C.; Díaz, M.C.; de Quicazán, C.M.; Cosio, M.; Mannino, S. Evaluation of the Physicochemical and Functional Properties of Colombian Bee Pollen. Revista MVZ Córdoba 2014, 19, 4003–4014. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [Green Version]
- La Guardia, M.; Giammanco, S.; Di Majo, D.; Tabacchi, C.; Tripoli, E.; Giammanco, M. Omega 3 Fatty Acids: Biological Activity and Effects on Human Health. Panminerva. Med. 2005, 47, 245–257. [Google Scholar]
- Thakur, M.; Nanda, V. Composition and Functionality of Bee Pollen: A Review. Trends Food Sci. Technol. 2020, 98, 82–106. [Google Scholar] [CrossRef]
- Li, Q.; Liang, X.; Zhao, L.; Zhang, Z.; Xue, X.; Wang, K.; Wu, L. UPLC-Q-Exactive Orbitrap/MS-Based Lipidomics Approach To Characterize Lipid Extracts from Bee Pollen and Their in Vitro Anti-Inflammatory Properties. J. Agric. Food Chem. 2017, 65, 6848–6860. [Google Scholar] [CrossRef]
- AL-Kahtani, S.N. Fatty Acids and B Vitamins Contents in Honey Bee Collected Pollen in Relation to Botanical Origin. Sci. J. King Faisal Univ. 2017, 18, 41–48. [Google Scholar]
- Conte, G.; Benelli, G.; Serra, A.; Signorini, F.; Bientinesi, M.; Nicolella, C.; Mele, M.; Canale, A. Lipid Characterization of Chestnut and Willow Honeybee-Collected Pollen: Impact of Freeze-Drying and Microwave-Assisted Drying. J. Food Compos. Anal. 2017, 55, 12–19. [Google Scholar] [CrossRef]
- Dong, J.; Yang, Y.; Wang, X.; Zhang, H. Fatty Acid Profiles of 20 Species of Monofloral Bee Pollen from China. J. Apic. Res. 2015, 54, 503–511. [Google Scholar] [CrossRef]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The Epidemiology of Global Micronutrient Deficiencies. ANM 2015, 66, 22–33. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020. In Transforming Food Systems for Affordable Healthy Diets; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Gernand, A.D.; Schulze, K.J.; Stewart, C.P.; West, K.P.; Christian, P. Micronutrient Deficiencies in Pregnancy Worldwide: Health Effects and Prevention. Nat. Rev. Endocrinol. 2016, 12, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Kangalgil, M.; Sahinler, A.; Kırkbir, I.B.; Ozcelik, A.O. Associations of Maternal Characteristics and Dietary Factors with Anemia and Iron-Deficiency in Pregnancy. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 102137. [Google Scholar] [CrossRef]
- Khayat, S.; Fanaei, H.; Ghanbarzehi, A. Minerals in Pregnancy and Lactation: A Review Article. J. Clin. Diagn. Res. 2017, 11, QE01–QE05. [Google Scholar] [CrossRef]
- Looman, M.; Schoenaker, D.A.J.M.; Soedamah-Muthu, S.S.; Mishra, G.D.; Geelen, A.; Feskens, E.J.M. Pre-Pregnancy Dietary Micronutrient Adequacy Is Associated with Lower Risk of Developing Gestational Diabetes in Australian Women. Nutr. Res. 2019, 62, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Reyes, R. Micronutrient Deficiencies and the Thyroid in Pregnancy. Placenta 2017, 51, 102. [Google Scholar] [CrossRef]
- Ibrahim, M.K.; Zambruni, M.; Melby, C.L.; Melby, P.C. Impact of Childhood Malnutrition on Host Defense and Infection. Clin. Microbiol. Rev. 2017, 30, 919–971. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, H.; Roser, M. Micronutrient Deficiency. Our World in Data, August 2017. [Google Scholar]
- Tan, M.; Yang, T.; Zhu, J.; Li, Q.; Lai, X.; Li, Y.; Tang, T.; Chen, J.; Li, T. Maternal Folic Acid and Micronutrient Supplementation Is Associated with Vitamin Levels and Symptoms in Children with Autism Spectrum Disorders. Reprod. Toxicol. 2020, 91, 109–115. [Google Scholar] [CrossRef]
- Gorji, A.; Khaleghi Ghadiri, M. Potential Roles of Micronutrient Deficiency and Immune System Dysfunction in the Coronavirus Disease 2019 (COVID-19) Pandemic. Nutrition 2021, 82, 111047. [Google Scholar] [CrossRef]
- Hoffman, R. Micronutrient Deficiencies in the Elderly–Could Ready Meals Be Part of the Solution? J. Nutr. Sci. 2017, 6, e2. [Google Scholar] [CrossRef] [Green Version]
- Song, E.K.; Moser, D.K.; Kang, S.-M.; Lennie, T.A. Association of Depressive Symptoms and Micronutrient Deficiency With Cardiac Event–Free Survival in Patients With Heart Failure. J. Card. Fail. 2015, 21, 945–951. [Google Scholar] [CrossRef]
- Wang, M.X.; Koh, J.; Pang, J. Association between Micronutrient Deficiency and Acute Respiratory Infections in Healthy Adults: A Systematic Review of Observational Studies. Nutr. J. 2019, 18, 80. [Google Scholar] [CrossRef] [Green Version]
- Shankar, A.H. 140-Mineral Deficiencies. In Hunter’s Tropical Medicine and Emerging Infectious Disease, 9th ed.; Magill, A.J., Hill, D.R., Solomon, T., Ryan, E.T., Eds.; W.B. Saunders: London, UK, 2013; pp. 1003–1010. ISBN 978-1-4160-4390-4. [Google Scholar]
- Bogdanov, S. Pollen: Nutrition, Functional Properties, Health. Bee Prod. Sci. 2012, 20–350. [Google Scholar]
- Li, Q.-Q.; Wang, K.; Marcucci, M.C.; Sawaya, A.C.H.F.; Hu, L.; Xue, X.-F.; Wu, L.-M.; Hu, F.-L. Nutrient-Rich Bee Pollen: A Treasure Trove of Active Natural Metabolites. J. Funct. Foods 2018, 49, 472–484. [Google Scholar] [CrossRef]
- Adaškevičiūtė, V.; Kaškonienė, V.; Kaškonas, P.; Barčauskaitė, K.; Maruška, A. Comparison of Physicochemical Properties of Bee Pollen with Other Bee Products. Biomolecules 2019, 9, 819. [Google Scholar] [CrossRef] [Green Version]
- Altunatmaz, S.S.; Tarhan, D.; Aksu, F.; Barutçu, U.B.; Or, M.E. Mineral Element and Heavy Metal (Cadmium, Lead and Arsenic) Levels of Bee Pollen in Turkey. Food Sci. Technol. 2017, 37, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Sattler, J.A.G.; De-Melo, A.A.M.; Nascimento, K.S.D.; Melo, I.L.P.D.; Mancini-Filho, J.; Sattler, A.; Almeida-Muradian, L.B.D. Essential Minerals and Inorganic Contaminants (Barium, Cadmium, Lithium, Lead and Vanadium) in Dried Bee Pollen Produced in Rio Grande Do Sul State, Brazil. Food Sci. Technol. 2016, 36, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Mellidou, I.; Georgiadou, E.C.; Kaloudas, D.; Kalaitzis, P.; Fotopoulos, V.; Kanellis, A.K. Chapter 17-Vitamins. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 359–383. ISBN 978-0-12-813278-4. [Google Scholar]
- Ravisankar, P.; Reddy, A.A.; Nagalakshmi, B.; Sai, O.; Kumar, B.V.; Anvith, P.S. The Comprehensive Review on Fat Soluble Vitamins. IOSR J. Pharm. 2015, 5, 12–28. [Google Scholar]
- Yoshii, K.; Hosomi, K.; Sawane, K.; Kunisawa, J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front. Nutr. 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Farag, S.; El-Rayes, T. Effect of Bee-Pollen Supplementation on Performance, Carcass Traits and Blood Parameters of Broiler Chickens. Asian J. Anim. Vet. Adv. 2016, 11, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Ecem Bayram, N. Vitamin, Mineral, Polyphenol, Amino Acid Profile of Bee Pollen from Rhododendron Ponticum (Source of “Mad Honey”): Nutritional and Palynological Approach. Food Meas. 2021, 15, 2659–2666. [Google Scholar] [CrossRef]
- Estevinho, L.M.; Dias, T.; Anjos, O. Influence of the Storage Conditions (Frozen vs. Dried) in Health-Related Lipid Indexes and Antioxidants of Bee Pollen. Eur. J. Lipid Sci. Technol. 2019, 121, 1800393. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, D.; Gabriele, M.; Summa, M.; Colosimo, R.; Leonardi, D.; Domenici, V.; Pucci, L. Antioxidant, Nutraceutical Properties, and Fluorescence Spectral Profiles of Bee Pollen Samples from Different Botanical Origins. Antioxidants 2020, 9, 1001. [Google Scholar] [CrossRef]
- de Arruda, V.A.S.; Pereira, A.A.S.; de Freitas, A.S.; Barth, O.M.; de Almeida-Muradian, L.B. Dried Bee Pollen: B Complex Vitamins, Physicochemical and Botanical Composition. J. Food Compos. Anal. 2013, 29, 100–105. [Google Scholar] [CrossRef]
- de Melo, I.L.P.; de Almeida-Muradian, L.B. Stability of Antioxidants Vitamins in Bee Pollen Samples. Quím. Nova 2010, 33, 514–518. [Google Scholar] [CrossRef]
- De-Melo, A.A.M.; Estevinho, M.L.M.F.; Sattler, J.A.G.; Souza, B.R.; da Freitas, A.S.; Barth, O.M.; Almeida-Muradian, L.B. Effect of Processing Conditions on Characteristics of Dehydrated Bee-Pollen and Correlation between Quality Parameters. LWT-Food Sci. Technol. 2016, 65, 808–815. [Google Scholar] [CrossRef] [Green Version]
- Chawla, J.; Kvarnberg, D. Chapter 59-Hydrosoluble Vitamins. In Handbook of Clinical Neurology; Biller, J., Ferro, J.M., Eds.; Neurologic Aspects of Systemic Disease Part II; Elsevier: Amsterdam, The Netherlands, 2014; Volume 120, pp. 891–914. [Google Scholar]
- Aylanc, V.; Falcão, S.I.; Ertosun, S.; Vilas-Boas, M. From the Hive to the Table: Nutrition Value, Digestibility and Bioavailability of the Dietary Phytochemicals Present in the Bee Pollen and Bee Bread. Trends Food Sci. Technol. 2021, 109, 464–481. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elashal, M.H.; Yosri, N.; Du, M.; Musharraf, S.G.; Nahar, L.; Sarker, S.D.; Guo, Z.; Cao, W.; Zou, X.; et al. Bee Pollen: Current Status and Therapeutic Potential. Nutrients 2021, 13, 1876. [Google Scholar] [CrossRef]
- Oliveira, K.C.L.S.; Moriya, M.; Azedo, R.A.B.; de Almeida-Muradian, L.B.; Teixeira, E.W.; Alves, M.L.T.M.F.; Moreti, A.C. de C.C. Relationship between Botanical Origin and Antioxidants Vitamins of Bee-Collected Pollen. Quím. Nova 2009, 32, 1099–1102. [Google Scholar] [CrossRef]
- Campos, M.G.; Cunha, A.; Markham, K.R. Bee-Pollen: Composition, Properties, and Applications. In Bee Products; Mizrahi, A., Lensky, Y., Eds.; Springer: Boston, MA, USA, 1997; pp. 93–100. ISBN 978-1-4757-9373-4. [Google Scholar]
- Kaškonienė, V.; Ruočkuvienė, G.; Kaškonas, P.; Akuneca, I.; Maruška, A. Chemometric Analysis of Bee Pollen Based on Volatile and Phenolic Compound Compositions and Antioxidant Properties. Food Anal. Methods 2015, 8, 1150–1163. [Google Scholar] [CrossRef]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, Pharmacology and Treatment. Br. J. Pharmacol. 2017, 174, 1290–1324. [Google Scholar] [CrossRef] [Green Version]
- Karabagias, I.K.; Karabagias, V.K.; Karabournioti, S.; Badeka, A.V. Aroma Identification of Greek Bee Pollen Using HS-SPME/GC–MS. Eur. Food Res. Technol. 2021, 247, 1781–1789. [Google Scholar] [CrossRef]
- Belhadj, H.; Harzallah, D.; Bouamra, D.; Khennouf, S.; Dahamna, S.; Ghadbane, M. Phenotypic and Genotypic Characterization of Some Lactic Acid Bacteria Isolated from Bee Pollen: A Preliminary Study. Biosci. Microbiota Food Health 2014, 33, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Friedle, C.; D’Alvise, P.; Schweikert, K.; Wallner, K.; Hasselmann, M. Changes of Microorganism Composition in Fresh and Stored Bee Pollen from Southern Germany. Environ. Sci. Pollut. Res. 2021, 28, 47251–47261. [Google Scholar] [CrossRef]
- Gilliam, M. microbiology of pollen and bee BREAD: The yeasts. Apidologie 1979, 10, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Tajabadi, N.; Mardan, M.; Saari, N.; Mustafa, S.; Bahreini, R.; Manap, M.Y.A. Identification of Lactobacillus Plantarum, Lactobacillus Pentosus and Lactobacillus Fermentum from Honey Stomach of Honeybee. Braz. J. Microbiol. 2013, 44, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Belhadj, H.; Harzallah, D.; Khennouf, S.; Dahamna, S.; Bouharati, S.; Baghiani, A. Isolation, identification and antimicrobial activity of lactic acid bacteria from algerian honeybee collected pollen. Acta Hortic. 2010, 51–58. [Google Scholar] [CrossRef]
- Vásquez, A.; Olofsson, T.C. The Lactic Acid Bacteria Involved in the Production of Bee Pollen and Bee Bread. J. Apic. Res. 2009, 48, 189–195. [Google Scholar] [CrossRef]
- Belhamra, Z.; Harzallah, D.; Naili, O.; Belhadj, H. Probiotic Potential of Lactobacillus Strains Isolated from Fresh Bee Pollen. Pharm. Lett. 2016, 8, 357–365. [Google Scholar]
- Filannino, P.; Di Cagno, R.; Addante, R.; Pontonio, E.; Gobbetti, M. Metabolism of Fructophilic Lactic Acid Bacteria Isolated from the Apis Mellifera L. Bee Gut: Phenolic Acids as External Electron Acceptors. Appl. Environ. Microbiol. 2016, 82, 6899–6911. [Google Scholar] [CrossRef] [Green Version]
- George Kerry, R.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.-S.; Das, G. Benefaction of Probiotics for Human Health: A Review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Goldin, B.R.; Gorbach, S.L. Clinical Indications for Probiotics: An Overview. Clin. Infect. Dis. 2008, 46, S96–S100. [Google Scholar] [CrossRef] [Green Version]
- Petrof, E.O. Probiotics and Gastrointestinal Disease: Clinical Evidence and Basic Science. Anti-Inflamm. Anti-Allergy Agents Med. Chem. (Former. Curr. Med. Chem. -Anti-Inflamm. Anti-Allergy Agents) 2009, 8, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Sun, X.; Li, J.; Li, Z.; Hu, Q.; Li, L.; Hao, X.; Song, M.; Li, C. Using Probiotics for Type 2 Diabetes Mellitus Intervention: Advances, Questions, and Potential. Crit. Rev. Food Sci. Nutr. 2020, 60, 670–683. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Kaškonas, P.; Maruška, A. Volatile Compounds Composition and Antioxidant Activity of Bee Pollen Collected in Lithuania. Chem. Pap. 2015, 69, 291–299. [Google Scholar] [CrossRef]
- Klatt, B.K.; Burmeister, C.; Westphal, C.; Tscharntke, T.; von Fragstein, M. Flower Volatiles, Crop Varieties and Bee Responses. PLoS ONE 2013, 8, e72724. [Google Scholar] [CrossRef]
- Starowicz, M.; Hanus, P.; Lamparski, G.; Sawicki, T. Characterizing the Volatile and Sensory Profiles, and Sugar Content of Beeswax, Beebread, Bee Pollen, and Honey. Molecules 2021, 26, 3410. [Google Scholar] [CrossRef]
- Özcan, M.M.; Aljuhaimi, F.; Babiker, E.E.; Uslu, N.; Ceylan, D.A.; Ghafoor, K.; Özcan, M.M.; Dursun, N.; Ahmed, I.M.; Jamiu, F.G.; et al. Determination of Antioxidant Activity, Phenolic Compound, Mineral Contents and Fatty Acid Compositions of Bee Pollen Grains Collected from Different Locations. J. Apic. Sci. 2019, 63, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Rzepecka-Stojko, A.; Stojko, J.; Kurek-Górecka, A.; Górecki, M.; Kabała-Dzik, A.; Kubina, R.; Moździerz, A.; Buszman, E. Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity. Molecules 2015, 20, 21732–21749. [Google Scholar] [CrossRef] [Green Version]
- Şahin, S.; Karkar, B. The Antioxidant Properties of the Chestnut Bee Pollen Extract and Its Preventive Action against Oxidatively Induced Damage in DNA Bases. J. Food Biochem. 2019, 43, e12888. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Zhou, Q.; Wang, L.; Huang, W.; Wang, R. Effect of Ultrasonic and Ball-milling Treatment on Cell Wall, Nutrients, and Antioxidant Capacity of Rose (Rosa Rugosa) Bee Pollen, and Identification of Bioactive Components. J. Sci. Food Agric. 2019, 99, 5350–5357. [Google Scholar] [CrossRef]
- Bridi, R.; Atala, E.; Pizarro, P.N.; Montenegro, G. Honeybee Pollen Load: Phenolic Composition and Antimicrobial Activity and Antioxidant Capacity. J. Nat. Prod. 2019, 82, 559–565. [Google Scholar] [CrossRef]
- Santa Bárbara, M.F.; Moreira, M.M.; Machado, C.S.; Chambó, E.D.; Pascoal, A.; de Carvalho, C.A.L.; da Silva Sodré, G.; Delerue-Matos, C.; Estevinho, L.M. Storage Methods, Phenolic Composition, and Bioactive Properties of Apis Mellifera and Trigona Spinipes Pollen. J. Apic. Res. 2021, 60, 99–107. [Google Scholar] [CrossRef]
- Ares, A.M.; Soto, M.E.; Nozal, M.J.; Bernal, J.L.; Higes, M.; Bernal, J. Determination of Resveratrol and Piceid Isomers in Bee Pollen by Liquid Chromatography Coupled to Electrospray Ionization-Mass Spectrometry. Food Anal. Methods 2015, 8, 1565–1575. [Google Scholar] [CrossRef]
- El Ghouizi, A.; El Menyiy, N.; Falcão, S.I.; Vilas-Boas, M.; Lyoussi, B. Chemical Composition, Antioxidant Activity, and Diuretic Effect of Moroccan Fresh Bee Pollen in Rats. Vet World 2020, 13, 1251–1261. [Google Scholar] [CrossRef]
- Oroian, M.; Ursachi, F.; Dranca, F. Ultrasound-Assisted Extraction of Polyphenols from Crude Pollen. Antioxidants 2020, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Rocchetti, G.; Castiglioni, S.; Maldarizzi, G.; Carloni, P.; Lucini, L. UHPLC-ESI-QTOF-MS Phenolic Profiling and Antioxidant Capacity of Bee Pollen from Different Botanical Origin. Int. J. Food Sci. Technol. 2019, 54, 335–346. [Google Scholar] [CrossRef]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and Therapeutic Properties of Bee Pollen: A Review: Bee Pollen and Medicine. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Lyoussi, B.; Miguel, M.G. Insight into the Chemical Composition and Biological Properties of Mediterranean Royal Jelly. J. Apic. Res. 2020, 59, 890–909. [Google Scholar] [CrossRef]
- Aličić, D.; Flanjak, I.; Ačkar, Đ.; Jašić, M.; Babić, J.; Šubarić, D. Physicochemical Properties and Antioxidant Capacity of Bee Pollen Collected in Tuzla Canton (B&H). J. Cent. Eur. Agric. 2020, 21, 42–50. [Google Scholar] [CrossRef]
- AbdElsalam, E.; Foda, H.S.; Abdel-Aziz, M.S.; Abd, F.K. Antioxidant and Antimicrobial Activities of Egyptian Bee Pollen. Middle East J. Appl. Sci. 2018, 8, 1248–1255. [Google Scholar]
- de Florio Almeida, J.; dos Reis, A.S.; Heldt, L.F.S.; Pereira, D.; Bianchin, M.; de Moura, C.; Oviedo, M.V.P.; Haminiuk, C.W.I.; Ribeiro, I.S.; da Luz, C.F.P.; et al. Lyophilized Bee Pollen Extract: A Natural Antioxidant Source to Prevent Lipid Oxidation in Refrigerated Sausages. LWT-Food Sci. Technol. 2017, 76, 299–305. [Google Scholar] [CrossRef]
- Anjos, O.; Fernandes, R.; Cardoso, S.M.; Delgado, T.; Farinha, N.; Paula, V.; Estevinho, L.M.; Carpes, S.T. Bee Pollen as a Natural Antioxidant Source to Prevent Lipid Oxidation in Black Pudding. LWT 2019, 111, 869–875. [Google Scholar] [CrossRef] [Green Version]
- Atsalakis, E.; Chinou, I.; Makropoulou, M.; Karabournioti, S.; Graikou, K. Evaluation of Phenolic Compounds in Cistus Creticus Bee Pollen from Greece. Antioxidant and Antimicrobial Properties. Nat. Prod. Commun. 2017, 12, 1934578X1701201141. [Google Scholar] [CrossRef] [Green Version]
- Bleha, R.; Shevtsova, T.; Kruzik, V.; Brindza, J.; Sinica, A. Morphology, Physicochemical Properties and Antioxidant Capacity of Bee Pollens. Czech J. Food Sci. 2019, 37, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Carpes, S.T.; Begnini, R.; de Alencar, S.M.; Masson, M.L. Study of Preparations of Bee Pollen Extracts, Antioxidant and Antibacterial Activity. Ciênc. Agrotec. 2007, 31, 1818–1825. [Google Scholar] [CrossRef] [Green Version]
- De-Melo, A.A.M.; Estevinho, L.M.; Moreira, M.M.; Delerue-Matos, C.; de Freitas, A.D.S.; Barth, O.M.; Almeida-Muradian, L.B. de A Multivariate Approach Based on Physicochemical Parameters and Biological Potential for the Botanical and Geographical Discrimination of Brazilian Bee Pollen. Food Biosci. 2018, 25, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Duarte, A.W.F.; dos Vasconcelos, M.R.S.; Oda-Souza, M.; de Oliveira, F.F.; López, A.M.Q. Honey and Bee Pollen Produced by Meliponini (Apidae) in Alagoas, Brazil: Multivariate Analysis of Physicochemical and Antioxidant Profiles. Food Sci. Technol. 2018, 38, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Dulger Altiner, D.; Sandίkcί Altunatmaz, S.; Sabuncu, M.; Aksu, F.; Sahan, Y. In-Vitro Bioaccessibility of Antioxidant Properties of Bee Pollen in Turkey. Food Sci. Technol. 2020, 41, 133–141. [Google Scholar] [CrossRef]
- Fatrcová-Šramková, K.; Nôžková, J.; Máriássyová, M.; Kačániová, M. Biologically Active Antimicrobial and Antioxidant Substances in the Helianthus Annuus L. Bee Pollen. J. Environ. Sci. Health Part B 2016, 51, 176–181. [Google Scholar] [CrossRef]
- Fatrcová-Šramková, K.; Nôžková, J.; Kačániová, M.; Máriássyová, M.; Rovná, K.; Stričík, M. Antioxidant and Antimicrobial Properties of Monofloral Bee Pollen. J. Environ. Sci. Health Part B 2013, 48, 133–138. [Google Scholar] [CrossRef]
- Feás, X.; Vázquez-Tato, M.P.; Estevinho, L.; Seijas, J.A.; Iglesias, A. Organic Bee Pollen: Botanical Origin, Nutritional Value, Bioactive Compounds, Antioxidant Activity and Microbiological Quality. Molecules 2012, 17, 8359–8377. [Google Scholar] [CrossRef]
- Futui, W.; Thongwai, N. Antimicrobial and Antioxidant Activities, Total Phenolic and Flavonoid Contents of Bee Pollen Crude Extracts. Int. J. Biosci. Biochem. Bioinform 2020, 10, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Jin, T.-Y.; Saravanakumar, K.; Wang, M.-H. In Vitro and in Vivo Antioxidant Properties of Water and Methanol Extracts of Linden Bee Pollen. Biocatal. Agric. Biotechnol. 2018, 13, 186–189. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Gašić, U.M.; Nedić, N.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Polyphenolic Profile and Antioxidant Properties of Bee-Collected Pollen from Sunflower (Helianthus Annuus L.) Plant. LWT 2019, 112, 108244. [Google Scholar] [CrossRef]
- Leja, M.; Mareczek, A.; Wyżgolik, G.; Klepacz-Baniak, J.; Czekońska, K. Antioxidative Properties of Bee Pollen in Selected Plant Species. Food Chem. 2007, 100, 237–240. [Google Scholar] [CrossRef]
- Mayda, N.; Özkök, A.; Ecem Bayram, N.; Gerçek, Y.C.; Sorkun, K. Bee Bread and Bee Pollen of Different Plant Sources: Determination of Phenolic Content, Antioxidant Activity, Fatty Acid and Element Profiles. Food Meas. 2020, 14, 1795–1809. [Google Scholar] [CrossRef]
- Mejías, E.; Montenegro, G. The Antioxidant Activity of C Hilean Honey and Bee Pollen Produced in the L Laima V Olcano’s Zones. J. Food Qual. 2012, 35, 315–322. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Mahmoud, A.A.; Roby, M.H.H.; Smetanska, I.; Ramadan, M.F. Phenolic Extract from Propolis and Bee Pollen: Composition, Antioxidant and Antibacterial Activities. J. Food Biochem. 2015, 39, 538–547. [Google Scholar] [CrossRef]
- Nurdianah, H.F.; Firdaus, A.A.; Azam, O.E.; Adnan, W.W. Antioxidant Activity of Bee Pollen Ethanolic Extracts from Malaysian Stingless Bee Measured Using DPPH-HPLC Assay. Int. Food Res. J. 2016, 23, 403. [Google Scholar]
- Pascoal, A.; Rodrigues, S.; Teixeira, A.; Feás, X.; Estevinho, L.M. Biological Activities of Commercial Bee Pollens: Antimicrobial, Antimutagenic, Antioxidant and Anti-Inflammatory. Food Chem. Toxicol. 2014, 63, 233–239. [Google Scholar] [CrossRef]
- Rebiai, A.; Lanez, T. Chemical Composition and Antioxidant Activity of Apis Mellifera Bee Pollen from Northwest Algeria. J. Fundam. Appl. Sci. 2015, 4, 155. [Google Scholar] [CrossRef] [Green Version]
- Saral, Ö.; Kilicarslan, M.; Şahin, H.; Yildiz, O.; Dincer, B. Evaluation of Antioxidant Activity of Bee Products of Different Bee Races in Turkey. Turk. J. Vet. Anim. Sci. 2019, 43, 441–447. [Google Scholar] [CrossRef]
- Ulusoy, E.; Kolayli, S. Phenolic Composition and Antioxidant Properties of Anzer Bee Pollen. J. Food Biochem. 2014, 38, 73–82. [Google Scholar] [CrossRef]
- dos Vasconcelos, M.R.S.; Duarte, A.W.F.; Gomes, E.P.; da Silva, S.C.; López, A.M.Q. Physicochemical Composition and Antioxidant Potential of Bee Pollen from Different Botanical Sources in Alagoas, Brazil. Ciência e Agrotecnologia 2017, 41, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, X.; Wang, K.; Li, C. Antioxidant and Tyrosinase Inhibitory Properties of Aqueous Ethanol Extracts from Monofloral Bee Pollen. J. Apic. Sci. 2015, 59, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Hu, J.; Huang, W.; Zhu, L.; Shao, M.; Dordoe, C.; Ahn, Y.-J.; Wang, D.; Zhao, Y.; Xiong, Y. The Botanical Origin and Antioxidant, Anti-BACE1 and Antiproliferative Properties of Bee Pollen from Different Regions of South Korea. BMC Complement. Med. Ther. 2020, 20, 236. [Google Scholar] [CrossRef]
- Carpes, S.T.; Prado, A.; Moreno, I.A.M.; Mourão, G.B.; de Alencar, S.M.; Masson, M.L. Avaliação do potencial antioxidante do pólen apícola produzido na região sul do Brasil. Química Nova 2008, 31, 1660–1664. [Google Scholar] [CrossRef]
- Crane, E. The Past and Present Importance of Bee Products to Man. In Bee Products: Properties, Applications, and Apitherapy; Mizrahi, A., Lensky, Y., Eds.; Springer: Boston, MA, USA, 1997; pp. 1–13. ISBN 978-1-4757-9371-0. [Google Scholar]
- Mizrahi, A.; Lensky, Y. (Eds.) Bee Products: Properties, Applications, and Apitherapy; Springer: New York, NY, USA, 1997; ISBN 978-0-306-45502-5. [Google Scholar]
- Arivarasu, N.A.; Priyamvada, S.; Mahmood, R. Oral Administration of Caffeic Acid Ameliorates the Effect of Cisplatin on Brush Border Membrane Enzymes and Antioxidant System in Rat Intestine. Exp. Toxicol. Pathol. 2013, 65, 21–25. [Google Scholar] [CrossRef]
- Derochette, S.; Franck, T.; Mouithys-Mickalad, A.; Deby-Dupont, G.; Neven, P.; Serteyn, D. Intra- and Extracellular Antioxidant Capacities of the New Water-Soluble Form of Curcumin (NDS27) on Stimulated Neutrophils and HL-60 Cells. Chem. Biol. Interact 2013, 201, 49–57. [Google Scholar] [CrossRef]
- Aabed, K.; Shafi Bhat, R.; Moubayed, N.; Al-Mutiri, M.; Al-Marshoud, M.; Al-Qahtani, A.; Ansary, A. Ameliorative Effect of Probiotics (Lactobacillus Paracaseii and Protexin®) and Prebiotics (Propolis and Bee Pollen) on Clindamycin and Propionic Acid-Induced Oxidative Stress and Altered Gut Microbiota in a Rodent Model of Autism. Cell Mol. Biol. (Noisy-le-grand) 2019, 65, 1–7. [Google Scholar] [CrossRef]
- Pari, L.; Karthikesan, K. Protective Role of Caffeic Acid against Alcohol-induced Biochemical Changes in Rats. Fundam. Clin. Pharmacol. 2007, 21, 355–361. [Google Scholar] [CrossRef]
- Hemmati, A.A.; Alboghobeish, S.; Ahangarpour, A. Effects of Cinnamic Acid on Memory Deficits and Brain Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Korean J. Physiol. Pharmacol. 2018, 22, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Nafees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin Ameliorates Cyclophosphamide Induced Oxidative Stress and Inflammation in Wistar Rats: Role of NFκB/MAPK Pathway. Chem. Biol. Interact. 2015, 231, 98–107. [Google Scholar] [CrossRef]
- Ince, E. The Protective Effect of Quercetin in the Alcohol-Induced Liver and Lymphoid Tissue Injuries in Newborns. Mol. Biol. Rep. 2020, 47, 451–459. [Google Scholar] [CrossRef]
- Alekhya Sita, G.J.; Gowthami, M.; Srikanth, G.; Krishna, M.M.; Rama Sireesha, K.; Sajjarao, M.; Nagarjuna, K.; Nagarjuna, M.; Chinnaboina, G.K.; Mishra, A. Protective Role of Luteolin against Bisphenol A-induced Renal Toxicity through Suppressing Oxidative Stress, Inflammation, and Upregulating Nrf2/ARE/HO-1 Pathway. IUBMB Life 2019, 71, 1041–1047. [Google Scholar] [CrossRef]
- Saad, M.A.; Salam, R.M.A.; Kenawy, S.A.; Attia, A.S. Pinocembrin Attenuates Hippocampal Inflammation, Oxidative Perturbations and Apoptosis in a Rat Model of Global Cerebral Ischemia Reperfusion. Pharmacol. Rep. 2015, 67, 115–122. [Google Scholar] [CrossRef]
- Afsharpour, F.; Javadi, M.; Hashemipour, S.; Koushan, Y. Propolis Supplementation Improves Glycemic and Antioxidant Status in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Study. Complement. Ther. Med. 2019, 43, 283–288. [Google Scholar] [CrossRef]
- Senyuk, B.; Boreyko, L.; Yurnyuk, S. Correction of clinical and biochemical parameters using bee pollen in patients with diabetes. Unity Sci. Int. Sci. Period. J. 2016, 137–139. [Google Scholar]
- Daudu, O.M. Bee Pollen Extracts as Potential Antioxidants and Inhibitors of α-Amylase and α-Glucosidase Enzymes In Vitro Assessment. J. Apic. Sci. 2019, 63, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Adisakwattana, S. Cinnamic Acid and Its Derivatives: Mechanisms for Prevention and Management of Diabetes and Its Complications. Nutrients 2017, 9, 163. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Hao, M.; Wu, W.; Zhang, N.; Isaac, A.T.; Yin, J.; Zhu, X.; Du, L.; Yin, X. Antidiabetic Cataract Effects of GbE, Rutin and Quercetin Are Mediated by the Inhibition of Oxidative Stress and Polyol Pathway. Acta Biochim. Pol. 2018, 65, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Alkhalidy, H.; Moore, W.; Wang, Y.; Luo, J.; McMillan, R.P.; Zhen, W.; Zhou, K.; Liu, D. The Flavonoid Kaempferol Ameliorates Streptozotocin-Induced Diabetes by Suppressing Hepatic Glucose Production. Molecules 2018, 23, 2338. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.; Ren, N.; Gao, H.; Lei, X.; Zheng, J.; Cao, W. Antioxidant and Hepatoprotective Effects of Schisandra Chinensis Pollen Extract on CCl4-Induced Acute Liver Damage in Mice. Food Chem. Toxicol. 2013, 55, 234–240. [Google Scholar] [CrossRef]
- Malayeri, A.; Badparva, R.; Mombeini, M.A.; Khorsandi, L.; Goudarzi, M. Naringenin: A Potential Natural Remedy against Methotrexate-Induced Hepatotoxicity in Rats. Drug Chem. Toxicol. 2022, 45, 491–498. [Google Scholar] [CrossRef]
- Yang, C.; Li, L.; Ma, Z.; Zhong, Y.; Pang, W.; Xiong, M.; Fang, S.; Li, Y. Hepatoprotective Effect of Methyl Ferulic Acid against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Exp. Ther. Med. 2018, 15, 2228–2238. [Google Scholar] [CrossRef] [Green Version]
- Owumi, S.; Ajijola, I.; Agbeti, O. Hepatorenal Protective Effects of Protocatechuic Acid in Rats Administered with Anticancer Drug Methotrexate. Hum. Exp. Toxicol. 2019, 38, 1254–1265. [Google Scholar] [CrossRef]
- Bispo, V.S.; Dantas, L.S.; CHAVES, A.B.; Pinto, I.F.; SILVA, R.P.; Otsuka, F.A.; Santos, R.B.; Santos, A.C.; Trindade, D.J.; Matos, H.R. Reduction of the DNA Damages, Hepatoprotective Effect and Antioxidant Potential of the Coconut Water, Ascorbic and Caffeic Acids in Oxidative Stress Mediated by Ethanol. Anais da Academia Brasileira de Ciências 2017, 89, 1095–1109. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Sepand, M.R.; Seyednejad, S.A.; Omidi, A.; Akbariani, M.; Gholami, M.; Sabzevari, O. Ellagic Acid Reduces Methotrexate-Induced Apoptosis and Mitochondrial Dysfunction via up-Regulating Nrf2 Expression and Inhibiting the IĸBα/NFĸB in Rats. DARU J. Pharm. Sci. 2019, 27, 721–733. [Google Scholar] [CrossRef]
- Hassan, S.M.; Khalaf, M.M.; Sadek, S.A.; Abo-Youssef, A.M. Protective Effects of Apigenin and Myricetin against Cisplatin-Induced Nephrotoxicity in Mice. Pharm. Biol. 2017, 55, 766–774. [Google Scholar] [CrossRef] [Green Version]
- Said, S.E.; Eldin, H.O.H.; Meghawry, E.K.A.E. Renoprotective effects of naringenin and olive oil against cyclosporine- induced nephrotoxicity in rats. Iran. J. Toxicol. 2016, 10, 27–37. [Google Scholar]
- Chowdhury, S.; Ghosh, S.; Das, A.K.; Sil, P.C. Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy. Front. Pharmacol. 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, E.T.; Hashem, K.S.; Abdelazem, A.Z.; Foda, F.A.M.A. Prospective Protective Effect of Ellagic Acid as a SIRT1 Activator in Iron Oxide Nanoparticle-Induced Renal Damage in Rats. Biol. Trace. Elem. Res. 2020, 198, 177–188. [Google Scholar] [CrossRef]
- Promsan, S.; Jaikumkao, K.; Pongchaidecha, A.; Chattipakorn, N.; Chatsudthipong, V.; Arjinajarn, P.; Pompimon, W.; Lungkaphin, A. Pinocembrin Attenuates Gentamicin-Induced Nephrotoxicity in Rats. Can. J. Physiol. Pharmacol. 2016, 94, 808–818. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, K.R.; Shanmugam, B.; Subbaiah, G.V.; Ravi, S.; Reddy, K.S. Medicinal Plants and Bioactive Compounds for Diabetes Management: Important Advances in Drug Discovery. Curr. Pharm. Des. 2021, 27, 763–774. [Google Scholar] [CrossRef]
- Shin, K.-M.; Kim, I.-T.; Park, Y.-M.; Ha, J.; Choi, J.-W.; Park, H.-J.; Lee, Y.S.; Lee, K.-T. Anti-Inflammatory Effect of Caffeic Acid Methyl Ester and Its Mode of Action through the Inhibition of Prostaglandin E2, Nitric Oxide and Tumor Necrosis Factor-α Production. Biochem. Pharmacol. 2004, 68, 2327–2336. [Google Scholar] [CrossRef]
- Bumrungpert, A.; Lilitchan, S.; Tuntipopipat, S.; Tirawanchai, N.; Komindr, S. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2018, 10, 713. [Google Scholar] [CrossRef] [Green Version]
- Abozaid, O.A.R.; Moawed, F.S.M.; Ahmed, E.S.A.; Ibrahim, Z.A. Cinnamic Acid Nanoparticles Modulate Redox Signal and Inflammatory Response in Gamma Irradiated Rats Suffering from Acute Pancreatitis. Biochim. et Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165904. [Google Scholar] [CrossRef]
- Khanal, L.; Yadav, P.; Baral, P.; Shah, R.; Rauniar, G.P. Effect of Local Bee Honey on Dihydrofolate Reductase Enzyme Inhibitor-Induced Mucositis: A Histological Study on Albino Wistar Rats. Indian J. Dent. Res. 2019, 30, 708. [Google Scholar] [CrossRef]
- Choi, M.-J.; Lee, E.-J.; Park, J.-S.; Kim, S.-N.; Park, E.-M.; Kim, H.-S. Anti-Inflammatory Mechanism of Galangin in Lipopolysaccharide-Stimulated Microglia: Critical Role of PPAR-γ Signaling Pathway. Biochem. Pharmacol. 2017, 144, 120–131. [Google Scholar] [CrossRef]
- Li, Z.; Chu, S.; He, W.; Zhang, Z.; Liu, J.; Cui, L.; Yan, X.; Li, D.; Chen, N. A20 as a Novel Target for the Anti-Neuroinflammatory Effect of Chrysin via Inhibition of NF-ΚB Signaling Pathway. Brain Behav. Immun. 2019, 79, 228–235. [Google Scholar] [CrossRef]
- Chen, X.; Lu, J.; An, M.; Ma, Z.; Zong, H.; Yang, J. Anti-inflammatory Effect of Resveratrol on Adjuvant Arthritis Rats with Abnormal Immunological Function via the Reduction of Cyclooxygenase-2 and Prostaglandin E2. Mol. Med. Rep. 2014, 9, 2592–2598. [Google Scholar] [CrossRef] [Green Version]
- Comalada, M.; Camuesco, D.; Sierra, S.; Ballester, I.; Xaus, J.; Gálvez, J.; Zarzuelo, A. In Vivo Quercitrin Anti-Inflammatory Effect Involves Release of Quercetin, Which Inhibits Inflammation through down-Regulation of the NF-ΚB Pathway. Eur. J. Immunol. 2005, 35, 584–592. [Google Scholar] [CrossRef]
- Park, M.J.; Lee, E.K.; Heo, H.-S.; Kim, M.-S.; Sung, B.; Kim, M.K.; Lee, J.; Kim, N.D.; Anton, S.; Choi, J.S.; et al. The Anti-Inflammatory Effect of Kaempferol in Aged Kidney Tissues: The Involvement of Nuclear Factor-ΚB via Nuclear Factor-Inducing Kinase/IκB Kinase and Mitogen-Activated Protein Kinase Pathways. J. Med. Food 2009, 12, 351–358. [Google Scholar] [CrossRef]
- Kelainy, E.G.; Ibrahim Laila, I.M.; Ibrahim, S.R. The Effect of Ferulic Acid against Lead-Induced Oxidative Stress and DNA Damage in Kidney and Testes of Rats. Environ. Sci. Pollut. Res. 2019, 26, 31675–31684. [Google Scholar] [CrossRef]
- Karimi, M.Y.; Fatemi, I.; Kalantari, H.; Mombeini, M.A.; Mehrzadi, S.; Goudarzi, M. Ellagic Acid Prevents Oxidative Stress, Inflammation, and Histopathological Alterations in Acrylamide-Induced Hepatotoxicity in Wistar Rats. J. Diet. Suppl. 2020, 17, 651–662. [Google Scholar] [CrossRef]
- Feng, H.; Cao, J.; Zhang, G.; Wang, Y. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress. Planta Med. 2017, 83, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Aloud, A.A.; Veeramani, C.; Govindasamy, C.; Alsaif, M.A.; El Newehy, A.S.; Al-Numair, K.S. Galangin, a Dietary Flavonoid, Improves Antioxidant Status and Reduces Hyperglycemia-Mediated Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Redox Rep. 2017, 22, 290–300. [Google Scholar] [CrossRef] [Green Version]
- El Khashab, I.H.; Abdelsalam, R.M.; Elbrairy, A.I.; Attia, A.S. Chrysin Attenuates Global Cerebral Ischemic Reperfusion Injury via Suppression of Oxidative Stress, Inflammation and Apoptosis. Biomed. Pharmacother. 2019, 112, 108619. [Google Scholar] [CrossRef]
- Al Olayan, E.M.; Aloufi, A.S.; AlAmri, O.D.; El-Habit, O.H.; Abdel Moneim, A.E. Protocatechuic Acid Mitigates Cadmium-Induced Neurotoxicity in Rats: Role of Oxidative Stress, Inflammation and Apoptosis. Sci. Total Environ. 2020, 723, 137969. [Google Scholar] [CrossRef]
- Pan, X.; Shao, Y.; Wang, F.; Cai, Z.; Liu, S.; Xi, J.; He, R.; Zhao, Y.; Zhuang, R. Protective Effect of Apigenin Magnesium Complex on H2O2-Induced Oxidative Stress and Inflammatory Responses in Rat Hepatic Stellate Cells. Pharm. Biol. 2020, 58, 553–560. [Google Scholar] [CrossRef]
- Han, X.-Y.; Du, W.-L.; Huang, Q.-C.; Xu, Z.-R.; Wang, Y.-Z. Changes in Small Intestinal Morphology and Digestive Enzyme Activity with Oral Administration of Copper-Loaded Chitosan Nanoparticles in Rats. Biol. Trace. Elem. Res. 2012, 145, 355–360. [Google Scholar] [CrossRef]
- Chen, L.; Gnanaraj, C.; Arulselvan, P.; El-Seedi, H.; Teng, H. A Review on Advanced Microencapsulation Technology to Enhance Bioavailability of Phenolic Compounds: Based on Its Activity in the Treatment of Type 2 Diabetes. Trends Food Sci. Technol. 2019, 85, 149–162. [Google Scholar] [CrossRef]
- Ramar, M.; Manikandan, B.; Raman, T.; Priyadarsini, A.; Palanisamy, S.; Velayudam, M.; Munusamy, A.; Marimuthu Prabhu, N.; Vaseeharan, B. Protective Effect of Ferulic Acid and Resveratrol against Alloxan-Induced Diabetes in Mice. Eur. J. Pharmacol. 2012, 690, 226–235. [Google Scholar] [CrossRef]
- Fatima, N.; Hafizur, R.M.; Hameed, A.; Ahmed, S.; Nisar, M.; Kabir, N. Ellagic Acid in Emblica Officinalis Exerts Anti-Diabetic Activity through the Action on β-Cells of Pancreas. Eur. J. Nutr. 2017, 56, 591–601. [Google Scholar] [CrossRef]
- Shi, G.-J.; Li, Y.; Cao, Q.-H.; Wu, H.-X.; Tang, X.-Y.; Gao, X.-H.; Yu, J.-Q.; Chen, Z.; Yang, Y. In Vitro and in Vivo Evidence That Quercetin Protects against Diabetes and Its Complications: A Systematic Review of the Literature. Biomed. Pharmacother. 2019, 109, 1085–1099. [Google Scholar] [CrossRef]
- Sharma, D.; Kumar Tekade, R.; Kalia, K. Kaempferol in Ameliorating Diabetes-Induced Fibrosis and Renal Damage: An in Vitro and in Vivo Study in Diabetic Nephropathy Mice Model. Phytomedicine 2020, 76, 153235. [Google Scholar] [CrossRef]
- Vinayagam, R.; Xu, B. Antidiabetic Properties of Dietary Flavonoids: A Cellular Mechanism Review. Nutr. Metab. 2015, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- El-Sonbaty, Y.A.; Suddek, G.M.; Megahed, N.; Gameil, N.M. Protocatechuic Acid Exhibits Hepatoprotective, Vasculoprotective, Antioxidant and Insulin-like Effects in Dexamethasone-Induced Insulin-Resistant Rats. Biochimie 2019, 167, 119–134. [Google Scholar] [CrossRef]
- Hossain, C.M.; Ghosh, M.K.; Satapathy, B.S.; Dey, N.S.; Mukherjee, B. Apigenin Causes Biochemical Modulation, GLUT4 and Cd38 Alterations to Improve Diabetes and to Protect Damages of Some Vital Organs in Experimental Diabetes. Am. J. Pharmacol. Toxicol. 2014, 9, 39–52. [Google Scholar] [CrossRef]
- Zhang, M.; He, L.; Liu, J.; Zhou, L. Luteolin Attenuates Diabetic Nephropathy through Suppressing Inflammatory Response and Oxidative Stress by Inhibiting STAT3 Pathway. Exp. Clin. Endocrinol. Diabetes 2021, 129, 729–739. [Google Scholar] [CrossRef]
- Ren, B.; Qin, W.; Wu, F.; Wang, S.; Pan, C.; Wang, L.; Zeng, B.; Ma, S.; Liang, J. Apigenin and Naringenin Regulate Glucose and Lipid Metabolism, and Ameliorate Vascular Dysfunction in Type 2 Diabetic Rats. Eur. J. Pharmacol. 2016, 773, 13–23. [Google Scholar] [CrossRef]
- Pei, B.; Sun, J. Pinocembrin Alleviates Cognition Deficits by Inhibiting Inflammation in Diabetic Mice. J. Neuroimmunol. 2018, 314, 42–49. [Google Scholar] [CrossRef]
- Aref, A.; Tohamy, A.; E Abdel Moneim, A.; Sayed, R. Cinnamic Acid Attenuates Cisplatin-Induced Hepatotoxicity and Nephrotoxicity. J. Basic Environ. Sci. 2016, 1–9. [Google Scholar]
- Zhao, L.; Chen, F.; Zhang, Y.; Yue, L.; Guo, H.; Ye, G.; Shi, F.; Lv, C.; Jing, B.; Tang, H.; et al. Involvement of P450s and Nuclear Receptors in the Hepatoprotective Effect of Quercetin on Liver Injury by Bacterial Lipopolysaccharide. Immunopharmacol. Immunotoxicol. 2020, 42, 211–220. [Google Scholar] [CrossRef]
- Wang, M.; Sun, J.; Jiang, Z.; Xie, W.; Zhang, X. Hepatoprotective Effect of Kaempferol Against Alcoholic Liver Injury in Mice. Am. J. Chin. Med. 2015, 43, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Aladaileh, S.H.; Abukhalil, M.H.; Saghir, S.A.M.; Hanieh, H.; Alfwuaires, M.A.; Almaiman, A.A.; Bin-Jumah, M.; Mahmoud, A.M. Galangin Activates Nrf2 Signaling and Attenuates Oxidative Damage, Inflammation, and Apoptosis in a Rat Model of Cyclophosphamide-Induced Hepatotoxicity. Biomolecules 2019, 9, 346. [Google Scholar] [CrossRef] [Green Version]
- Pingili, R.B.; Pawar, A.K.; Challa, S.R.; Kodali, T.; Koppula, S.; Toleti, V. A Comprehensive Review on Hepatoprotective and Nephroprotective Activities of Chrysin against Various Drugs and Toxic Agents. Chem. -Biol. Interact. 2019, 308, 51–60. [Google Scholar] [CrossRef]
- Rašković, A.; Gigov, S.; Čapo, I.; Kusturica, M.P.; Milijašević, B.; Kojić-Damjanov, S.; Martić, N. Antioxidative and Protective Actions of Apigenin in a Paracetamol-Induced Hepatotoxicity Rat Model. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 849–856. [Google Scholar] [CrossRef]
- Yan, Y.; Jun, C.; Lu, Y.; Jiangmei, S. Combination of Metformin and Luteolin Synergistically Protects Carbon Tetrachloride-Induced Hepatotoxicity: Mechanism Involves Antioxidant, Anti-Inflammatory, Antiapoptotic, and Nrf2/HO-1 Signaling Pathway. BioFactors 2019, 45, 598–606. [Google Scholar] [CrossRef]
- Reddy, M.K.; Reddy, A.G.; Kumar, B.K.; Madhuri, D.; Boobalan, G.; Reddy, M.A. Protective Effect of Rutin in Comparison to Silymarin against Induced Hepatotoxicity in Rats. Vet World 2017, 10, 74–80. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Fan, X.; Tan, H.; Zeng, H.; Wang, Y.; Chen, P.; Huang, M.; Bi, H. Hepato-Protective Effect of Resveratrol against Acetaminophen-Induced Liver Injury Is Associated with Inhibition of CYP-Mediated Bioactivation and Regulation of SIRT1–P53 Signaling Pathways. Toxicol. Lett. 2015, 236, 82–89. [Google Scholar] [CrossRef]
- Olayinka, E.T.; Ola, O.S.; Ore, A.; Adeyemo, O.A. Ameliorative Effect of Caffeic Acid on Capecitabine-Induced Hepatic and Renal Dysfunction: Involvement of the Antioxidant Defence System. Medicines 2017, 4, 78. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, E.-S.M.; Abd El-Raouf, O.M.; Fawzy, H.M.; Manie, M.F. Comparative Study of the Possible Protective Effects of Cinnamic Acid and Cinnamaldehyde on Cisplatin-Induced Nephrotoxicity in Rats. J. Biochem. Mol. Toxicol. 2013, 27, 508–514. [Google Scholar] [CrossRef]
- Kocahan, S.; Dogan, Z.; Erdemli, M.E.; Taskin, E. Protective Effect of Quercetin Against Oxidative Stressinduced Toxicity Associated With Doxorubicin and Cyclophosphamide in Rat Kidney and Liver Tissue. Iran. J. Kidney Dis. 2017, 11, 124. [Google Scholar]
- Vijayaprakash, S.; Langeswaran, K.; Gowtham Kumar, S.; Revathy, R.; Balasubramanian, M.P. Nephro-Protective Significance of Kaempferol on Mercuric Chloride Induced Toxicity in Wistar Albino Rats. Biomed. Aging Pathol. 2013, 3, 119–124. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Samarghandian, S.; Roshanravan, B. Impact of Chrysin on the Molecular Mechanisms Underlying Diabetic Complications. J. Cell. Physiol. 2019, 234, 17144–17158. [Google Scholar] [CrossRef]
- Chen, L.; Tian, G.; Tang, W.; Luo, W.; Liu, P.; Ma, Z. Protective Effect of Luteolin on Streptozotocin-Induced Diabetic Renal Damage in Mice via the Regulation of RIP140/NF-KB Pathway and Insulin Signalling Pathway. J. Funct. Foods 2016, 22, 93–100. [Google Scholar] [CrossRef]
- Wang, B.; Liu, D.; Zhu, Q.; Li, M.; Chen, H.; Guo, Y.; Fan, L.; Yue, L.; Li, L.; Zhao, M. Rutin Ameliorates Kidney Interstitial Fibrosis in Rats with Obstructive Nephropathy. Int. Immunopharmacol. 2016, 35, 77–84. [Google Scholar] [CrossRef]
- Xue, H.-Y.; Yuan, L.; Cao, Y.-J.; Fan, Y.-P.; Chen, X.-L.; Huang, X.-Z. Resveratrol Ameliorates Renal Injury in Spontaneously Hypertensive Rats by Inhibiting Renal Micro-Inflammation. Biosci. Rep. 2016, 36, e00339. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A.; Ghorbanzadeh, B. A Study of the Mechanisms Underlying the Anti-Inflammatory Effect of Ellagic Acid in Carrageenan-Induced Paw Edema in Rats. Indian J. Pharm. 2015, 47, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-Y.; Huang, C.-S.; Huang, C.-Y.; Yin, M.-C. Anticoagulatory, Antiinflammatory, and Antioxidative Effects of Protocatechuic Acid in Diabetic Mice. J. Agric. Food Chem. 2009, 57, 6661–6667. [Google Scholar] [CrossRef]
- Darabi, P.; Khazali, H.; Mehrabani Natanzi, M. Therapeutic Potentials of the Natural Plant Flavonoid Apigenin in Polycystic Ovary Syndrome in Rat Model: Via Modulation of pro-Inflammatory Cytokines and Antioxidant Activity. Gynecol. Endocrinol. 2020, 36, 582–587. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, K.; Yuan, C.; Xing, R.; Ni, J.; Hu, G.; Chen, F.; Wang, X. Luteolin Protects Mice from Severe Acute Pancreatitis by Exerting HO-1-Mediated Anti-Inflammatory and Antioxidant Effects. Int. J. Mol. Med. 2017, 39, 113–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhoshani, A.R.; Hafez, M.M.; Husain, S.; Al-sheikh, A.M.; Alotaibi, M.R.; Al Rejaie, S.S.; Alshammari, M.A.; Almutairi, M.M.; Al-Shabanah, O.A. Protective Effect of Rutin Supplementation against Cisplatin-Induced Nephrotoxicity in Rats. BMC Nephrol. 2017, 18, 194. [Google Scholar] [CrossRef]
- Fan, R.; Pan, T.; Zhu, A.-L.; Zhang, M.-H. Anti-Inflammatory and Anti-Arthritic Properties of Naringenin via Attenuation of NF-ΚB and Activation of the Heme Oxygenase (HO)-1/Related Factor 2 Pathway. Pharmacol. Rep. 2017, 69, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhang, Q.; Du, Q.; Shen, H.; Zhu, Z. Pinocembrin Attenuates Allergic Airway Inflammation via Inhibition of NF-ΚB Pathway in Mice. Int. Immunopharmacol. 2017, 53, 90–95. [Google Scholar] [CrossRef]
- Fazayeli-Rad, A.R.; Afzali, N.; Farhangfar, H.; Asghari, M.R. Effect of Bee Pollen on Growth Performance, Intestinal Morphometry and Immune Status of Broiler Chicks. Eur. Poult. Sci. 2015, 79, 86. [Google Scholar] [CrossRef]
- Münstedt, K.; Voss, B.; Kullmer, U.; Schneider, U.; Hübner, J. Bee Pollen and Honey for the Alleviation of Hot Flushes and Other Menopausal Symptoms in Breast Cancer Patients. Mol. Clin. Oncol. 2015, 3, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Wang, K.; Wang, X.; Ou, A.; Wang, F.; Wu, L.; Xue, X. Effect of Fermented Bee Pollen on Metabolic Syndrome in High-Fat Diet-Induced Mice. Food Sci. Hum. Wellness 2021, 10, 345–355. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee Products in Dermatology and Skin Care. Molecules 2020, 25, 556. [Google Scholar] [CrossRef] [Green Version]
- Xi, X.; Li, J.; Guo, S.; Li, Y.; Xu, F.; Zheng, M.; Cao, H.; Cui, X.; Guo, H.; Han, C. The Potential of Using Bee Pollen in Cosmetics: A Review. J. Oleo Sci. 2018, 67, 1071–1082. [Google Scholar] [CrossRef] [Green Version]
Identified Vitamins | Apiaries | Floral Origin | Isolation Methods | References |
---|---|---|---|---|
A, B1, B2, B5, B6, B7, B12, C, E, K2 | Turkey | monofloral bee pollen of Rhododendron ponticum | HPLC-FLD HPLC-UV | [102] |
β-Carotene Vit. C | Portugal | Polyfloral bee pollen of: Rubus spp.; Castanea; sativa; Cytisus spp.; Quercus spp.; Echium spp.; Prunus spp.; Leontondon spp.; Eucalyptus spp.; Erica spp.; Cistus spp.; Trifolium spp. | (NH4)2SO4 for β-Carotene AOAC for vitamin-C | [103] |
B2, B3, B6, B9 | Italy | Polyfloral bee pollen of: Prunu; Erica; Brassicaceae; Rubus; Viburnum Viburnum; Trifolium pratense; Asteraceae T.; Eucalyptus; Rosa spp. | Fluorescence spectroscopy (Bulk analysis) | [104] |
B1, B2, B6 | Brazil | Polyfloral bee pollen of: Arecaceae; Cecropia; Cestrum; Cyperaceae; Eucalyptus; Ilex; Myrcia; Piper; Vernonia; Trema | HPLC | [105] |
B3 (Niacin); B6 (Pyridoxine) B9 (Folic acid) B12 (Cobalamin) | Saudi Arabia | Monofloral bee pollen of: alfalfa; date palm; rape; summer squash; sunflower | HPLC | [75] |
C; E; Provit. A (β-carotene) | Brazil | ND | Vit C: AOAC Vit E: HPLC β-carotene: OCC | [106] |
Country | Botanical Origin | Extracts | Used Methods | Key Results | References |
---|---|---|---|---|---|
Morocco | Coriandrum sativum | Aqueous extract | DPPH | IC50 = 0.39 ± 0.13 mg/mL | [138] |
Ferric reducing power | IC50 = 0.54 ± 0.53 mg/mL | ||||
Total antioxidant capacity | 56.92 ± 0.21 mg AAE/g | ||||
Algeria | Monofloral samples: wild carrot, rosemary, and eucalyptus | Methanolic extract | Molybdate ion reduction Assay | 101.58 ugGAE/g | [165] |
Brazil | Monofloral: Brassica genus; Brassica rapa; Astrocaryum; Aculeatissimum; Cocos nucifera; Myrcia; Alternanthera; M. scabrella; Eucalyptus; Coffea; M. scabrella; M. verrucosa; Eupatorium; Syagrus; A. aculeatissimum; Eupatorium; Myrcia; Cecropia; Myrcia; Alternanthera; M. caesalpiniifolia; Montanoa; Asteraceae; C. nucifera; Machaerium; M. caesalpiniifolia; Myrcia; Anadenanthera; Cecropia; Schinus; Ilex; Ricinus | Ethanolic extract | DPPH | 140 ± 5 mmol TE/g | [150] |
ORAC | 563 ± 15 mmol TE/g | ||||
Brazil | Mimosa misera, Mimosa caesalpinifolia, Eythrina velutina, Ziziphus lotus, Prosopis juliflora, Mimosa tenuiflora, Piptadenia macrocarpa, Cautarea hexandra, Hyptis suavelens, Cautarea hexandra, and Maytenus rigida | Ethanolic extract | β-carotene bleaching method | Antioxidant activity = 83.3% | [168] |
Brazil | Heterofloral: Arecaceae, Asteraceae baccharis, and Asteraceae eupatorium | Hydroethanolic extract | FRAP | 131.47 ± 75.08 mg GA eq/g | [145] |
DPPH | % inhibition = 72.46 ± 5.25% | ||||
Brazil | Arecaceae; Asteraceae baccharis; Asteraceae eupatorium; Brassicaceae | Lyophilized extract | ABTS | 120.10 ± 0.21 mmol TEAC/g | [145] |
DPPH | Antioxidant activity = 54.42 ± 0.23% | ||||
FRAP | 60.64 ± 0.63 mmol of Fe2þ/g | ||||
β-carotene/linoleic acid Assay | Antioxidant activity = 91.93 ± 0.22% | ||||
Brazil | ND | Hydroethanolic extract | DPPH | EC50 = 0.86 mg/mL | [151] |
FRAP | 123.4 mgGAEq.100 g−1 | ||||
β-carotene/linoleic acid Assay | Antioxidant activity = 83.3% | ||||
Chile | Tilia Tuan Szyszyl | Aqueous extract | DPPH | IC50 = 2.36 mg/mL | [161] |
Superoxide-scavenging activity | IC50 = 2.29 mg/mL | ||||
Methanolic extract | DPPH | IC50 = 1.72 mg/mL | |||
Superoxide-scavenging activity | IC50 = 3.48 mg/mL | ||||
China | Agastache rugosatache rugosa Brassica napus L. Camellia japonica L. Crataegus pinnatifi Dendranthema indicum L. Fagopyrum esculentum moench Helianthus annuus L. Nelumbo nucifera Gaertn. Phellodendron amurensis Prunus armeniaca Prunus persica L. Rosa rugosa Thunb. Schisandra chinensis Taraxacum mongolicum | Hydroethanolic extract | ABTS | 1.06 ± 0.02 mmol TE g−1 | [169] |
DPPH | IC50 = 1.28 ± 0.03 mg/mL | ||||
Reducing power | Antioxidant activity = 70.55 ± 0.00% | ||||
China | Lotus uligionosus, Escallonia rubra | Aqueous extract | DPPH | 119.9 eq/g | [157] |
Reducing power | 69.5 eq/g | ||||
Egypt | Trifolium alexandrinum L. | Ethanolic extract | DPPH | Antioxidant activity = 90% | [144] |
Petroleum ether | DPPH | Antioxidant activity = 75% | |||
Dichloromethane | DPPH | Antioxidant activity = 63% | |||
Ethyl acetate | DPPH | Antioxidant activity = 79% | |||
Egypt | Zea mays | Methanolic extract | DPPH | Antioxidant activity = 59% | [162] |
ABTS | Antioxidant activity = 76.51% | ||||
Greece | Monofloral sample: Brassica sp. Heterofloral sample: Cistus sp. (Cistaceae), Verbascum sp. (Scrophulariaceae), Trifolium sp. (Leguminosae), Prunus sp. (Rosaceae), Rubus sp. (Rosaceae), Asphodelus sp. (Liliaceae), and Persea americana (Lauraceae) | Aqueous extract | DPPH | IC50 = 233.3 ± 6.1 μg/mL | [147] |
ABTS | IC50 = 56.2 ± 0.8 μg/mL | ||||
Italy | Genus: Hedera, Helianthus, Cistus, Cornus, Brassica, Gledistia, Hedysarum, Trifolium, Castanea, lamium, Magnolia, Fraxinus, Papaver, Crataegus, Prunus, Rubus, and Cordiandrum | Aqueous/methanol extract | ORAC | 839.5 ± 49.5 μmol TE g−1 DW | [140] |
ABTS | 224.6 ± 18.6 μmol TE g−1 DW | ||||
DPPH | 134.7 ± 4.3 μmol TE g−1 DW | ||||
Korea | Monofloral samples: Quercus palustris, Actinidia arguta, Robinia pseudoacacia, and Amygdalus persica. | Ethanolic extract | DPPH | EC50 = 292.0 ± 13.05 μg/mL | [170] |
Portugal | Cistus ladanifer, Echium spp., Apiaceae, and Cistaceae | Hydroethanolic extract | DPPH | EC50 = 2.62 ± 0.09 mg/mL | [146] |
Reducing power Assay | 6.51 ± 0.30 mg GAE/mL | ||||
Portugal | Cistacae Boraginacae, Rosaceae, Fagaceae, Asteraceae, Fabaceae, Ericaceae, Mimosaceae, and Myrtaceae. | Methanolic extract | DPPH | EC50 = 3.0 ± 0.7 mg/mL | [155] |
β-carotene bleaching Assays | EC50 = 4.6 mg/mL | ||||
Spain | Cistaceae, Fabaceae, Cistaceae, Ericaceae, Fabaceae, Cistaceae, Ericaceae, and Boraginaceae | Methanolic extract | DPPH | EC50 = 2.98 ± 0.47 mg/mg extract | [164] |
TBARS | EC50 = 0.35 ± 0.02 mg/mg extract | ||||
Turkey | ND | Methanolic extract | FRAP | 11.77 ± 0.63–105.06 ± 0.59 mmol Trolox/g pollen | [167] |
DPPH | SC50 = 0.65–8.20 mg/mL | ||||
CUPRAC Assay | 33.1 ± 0.4–91.8 ± 1.8 mmol Trolox/g pollen | ||||
Turkey | Centaurea sp, Lotus sp., Coronilla sp., Centaurea sp., Scabiosa sp., Euphorbia sp., Echium sp., Coronilla sp., Teucrium sp., Crepis sp., and Castanea sativa | Ethanolic extract | ABTS | 0.373 ± 0.015–5.980 ± 0.100 mg TEAC/g | [160] |
DDPH Assays | 1.293 ± 0.031–3.85 ± 0.030 mg TEAC/g | ||||
Turkey | Commercial bee pollen | Extractable fraction | CUPRAC Assay | 6.25–64.88 μmol TE/g | [152] |
ABTS | 6.20–38.20 μmol TE/g | ||||
DPPH | 0.44–22.45 μmol TE/g | ||||
Hydrolysable fraction | CUPRAC Assay | 69.16–192.96 μmol TE/g | |||
ABTS | 37.63–80.49 μmol TE/g | ||||
DPPH | 33.21–62.37 μmol TE/g | ||||
Bio-accessible fraction | CUPRAC Assay | 83.24–257.27 μmol TE/g | |||
ABTS | 48.96–111.40 μmol TE/g | ||||
DPPH | 35.69–83.84 μmol TE/g | ||||
Turkey | ND | Methanolic extract | CUPRAC Assay | 0.02 ± 0.02–0.24 ± 0.04 mmol Trolox/g | [166] |
FRAP | 8.69 ± 1.64–84.89 ± 10.09μmol FeSO4.7H2O/g | ||||
DPPH | SC50 =0.47 ± 0.51–0.84 ± 0.17 mg/mL | ||||
Poland | Aesculus hippocastanum, Chamerion angustifolium, Lamium purpureum, Lupinus polyphyllus, Malus domestica, Phacelia tanacetifolia, Pyrus communis, Robinia pseudoacacia, Sinapis alba, Taraxacum officinale, Trifolium sp., and Zea mays. | Pepsin-digested extract | DPPH | EC50 = 20.912 ± 0.821 μL/mL | [159] |
ABTS | 1.752 ± 0.024 mmol Trolox/g | ||||
Malaysia | ND | Ethanolic extract | DPPH | Antioxidant activity = 39% | [163] |
Serbia | Helianthus annuus L. | Methanolic extract | ABTS | Antioxidant activity = 95.5% | [158] |
FRAP | A700 nm = 0.738 | ||||
Ethanolic extract | ABTS | Antioxidant activity = 75% | |||
FRAP | A700 nm = 0.485 | ||||
Slovakia | Helianthus annuus L. | Ethanolic extract | DPPH | Antioxidant activity = 47.97 ± 0.29–50.46 ± 0.43% | [153] |
Slovakia | Monofloral samples: Brassica napus L. var. napus, Helianthus annuus L., Papaver somniferum L., Phacelia tanacetifolia L., Robinia pseudoacacia L., and Trifolium repens L. | Methanolic extract | ABTS | 0.83 ± 0.10–2.08 ± 0.25 mm/l | [148] |
DPPH | Antioxidant activity = 25.96 ± 1.61–93.69 ± 5.80% | ||||
Aqueous extract | DPPH | Antioxidant activity = 19.66 ± 1.06–50.29 ± 3.05% | |||
Slovakia | Monofloral samples: Brassica napus subsp. napus L, Papaver somniferum L., and Helianthus annuus L | Ethanolic extract | DPPH | Antioxidant activity = 70.05± 17.17% | [154] |
Reduction power | 3575.56 ± 749.04 μg. mL−1 | ||||
Thailand | Commercial bee pollen | Ethanolic extract | DPPH | 40.69 ± 3.01 mg GAE/g extract | [156] |
Aqueous extract | DPPH | 21.27 ± 2.63 mg GAE/g extract | |||
Bosnia and Herzegovina | Poaceae spp., Trifolium spp., Zea mays, and Plantago spp. | Methanolic extract | DPPH | IC50 = 1.43 ± 0.00 mg/g | [143] |
FRAP | 4.111 ± 0.136 mmol Fe+2/g | ||||
ABTS | Antioxidant activity = 86.13 ± 2.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Ghouizi, A.; Bakour, M.; Laaroussi, H.; Ousaaid, D.; El Menyiy, N.; Hano, C.; Lyoussi, B. Bee Pollen as Functional Food: Insights into Its Composition and Therapeutic Properties. Antioxidants 2023, 12, 557. https://doi.org/10.3390/antiox12030557
El Ghouizi A, Bakour M, Laaroussi H, Ousaaid D, El Menyiy N, Hano C, Lyoussi B. Bee Pollen as Functional Food: Insights into Its Composition and Therapeutic Properties. Antioxidants. 2023; 12(3):557. https://doi.org/10.3390/antiox12030557
Chicago/Turabian StyleEl Ghouizi, Asmae, Meryem Bakour, Hassan Laaroussi, Driss Ousaaid, Naoual El Menyiy, Christophe Hano, and Badiaa Lyoussi. 2023. "Bee Pollen as Functional Food: Insights into Its Composition and Therapeutic Properties" Antioxidants 12, no. 3: 557. https://doi.org/10.3390/antiox12030557
APA StyleEl Ghouizi, A., Bakour, M., Laaroussi, H., Ousaaid, D., El Menyiy, N., Hano, C., & Lyoussi, B. (2023). Bee Pollen as Functional Food: Insights into Its Composition and Therapeutic Properties. Antioxidants, 12(3), 557. https://doi.org/10.3390/antiox12030557