Wine Lees as Source of Antioxidant Molecules: Green Extraction Procedure and Biological Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Collection and Preparation
2.3. Wine Lees Extraction
2.4. Chemical Characterization of Lyophilized Wine Lees
2.4.1. HPLC-DAD Analysis of Lyophilized Wine Lees
2.4.2. Fourier Transform Infrared Analysis of Lyophilized Wine Lees
2.4.3. Polyphenols Total Content
2.4.4. Phenolic Acid Content
2.4.5. Flavonoid Content
2.5. Antioxidant Properties
2.6. Effect of LWE3 on H2O2-Induced Reactive Oxygen Species Production in SH-SY5Y Cells
2.6.1. Cell Cultures
2.6.2. Reactive Oxygen Species Detection
2.7. Statistical and Chemometric Analysis
3. Results and Discussion
3.1. HPLC-DAD Characterization of Polyphenols in Wine Lees Extracts
3.2. Characterization of Wine Lees Extracts Via FTIR and PCA
3.3. Antioxidant Characterization of the Wine Lees Extracts
3.4. Effect of LWE3 on H2O2-Induced ROS Production in SH-SY5Y Cells
3.5. Relationship between Antioxidant Properties and Metabolite Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moscovici, D.; Gow, J.; Alonso Ugaglia, A.; Rezwanul, R.; Valenzuela, L.; Mihailescu, R. Consumer Preferences for Organic Wine-Global Analysis of People and Place. J. Clean Prod. 2022, 368, 133215. [Google Scholar] [CrossRef]
- Sellers, R.; Alampi-Sottini, V. The Influence of Size on Winery Performance: Evidence from Italy. Wine Econ. Policy 2016, 5, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Lavelli, V.; Sri Harsha, P.S.C.; Ferranti, P.; Scarafoni, A.; Iametti, S. Grape Skin Phenolics as Inhibitors of Mammalian α-Glucosidase and α-Amylase-Effect of Food Matrix and Processing on Efficacy. Food Funct. 2016, 7, 1655–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Paramás, A.M.; Esteban-Ruano, S.; Santos-Buelga, C.; de Pascual-Teresa, S.; Rivas-Gonzalo, J.C. Flavanol Content and Antioxidant Activity in Winery Byproducts. J. Agric. Food Chem. 2004, 52, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Restuccia, D.; Giorgi, G.; Gianfranco Spizzirri, U.; Sciubba, F.; Capuani, G.; Rago, V.; Carullo, G.; Aiello, F. Autochthonous White Grape Pomaces as Bioactive Source for Functional Jams. Int. J. Food Sci. Technol. 2019, 54, 1313–1320. [Google Scholar] [CrossRef]
- Ruggieri, L.; Cadena, E.; Martínez-Blanco, J.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X.; Gea, T.; Sort, X.; Sánchez, A. Recovery of Organic Wastes in the Spanish Wine Industry. Technical, Economic and Environmental Analyses of the Composting Process. J. Clean Prod. 2009, 17, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Serradilla, J.A.; Luque de Castro, M.D. Microwave-Assisted Extraction of Phenolic Compounds from Wine Lees and Spray-Drying of the Extract. Food Chem. 2011, 124, 1652–1659. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J. Wine Lees as a Source of Antioxidant Compounds. Antioxidants 2019, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Barcia, M.T.; Pertuzatti, P.B.; Gómez-Alonso, S.; Godoy, H.T.; Hermosín-Gutiérrez, I. Phenolic Composition of Grape and Winemaking By-Products of Brazilian Hybrid Cultivars BRS Violeta and BRS Lorena. Food Chem. 2014, 159, 95–105. [Google Scholar] [CrossRef]
- Irimia, L.M.; Patriche, C.V.; Murariu, O.C. The Impact of Climate Change on Viticultural Potential and Wine Grape Varieties of a Temperate Wine Growing Region. Appl. Ecol. Environ. Res. 2018, 16, 2663–2680. [Google Scholar] [CrossRef]
- Versari, A.; Castellari, M.; Spinabelli, U.; Galassi, S. Recovery of Tartaric Acid from Industrial Enological Wastes. J. Chem. Technol. Biotechnol. 2001, 76, 485–488. [Google Scholar] [CrossRef]
- Alarcón, M.; López-Viñas, M.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; Alañón, M.E.; Soriano, A. Effect of Wine Lees as Alternative Antioxidants on Physicochemical and Sensorial Composition of Deer Burgers Stored during Chilled Storage. Antioxidants 2020, 9, 687. [Google Scholar] [CrossRef] [PubMed]
- Carullo, G.; Durante, M.; Sciubba, F.; Restuccia, D.; Spizzirri, U.G.; Ahmed, A.; di Cocco, M.E.; Saponara, S.; Aiello, F.; Fusi, F. Vasoactivity of Mantonico and Pecorello Grape Pomaces on Rat Aorta Rings: An Insight into Nutraceutical Development. J. Funct. Foods 2019, 57, 328–334. [Google Scholar] [CrossRef]
- Matos, M.S.; Romero-Díez, R.; Álvarez, A.; Bronze, M.R.; Rodríguez-Rojo, S.; Mato, R.B.; Cocero, M.J.; Matias, A.A. Polyphenol-Rich Extracts Obtained from Winemakingwaste Streams as Natural Ingredients with Cosmeceutical Potential. Antioxidants 2019, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Alba, V.; Natrella, G.; Gambacorta, G.; Crupi, P.; Coletta, A. Effect of over Crop and Reduced Yield by Cluster Thinning on Phenolic and Volatile Compounds of Grapes and Wines of ‘Sangiovese’ Trained to Tendone. J. Sci. Food Agric. 2022, 102, 7155–7163. [Google Scholar] [CrossRef]
- Abbas, O.; Compère, G.; Larondelle, Y.; Pompeu, D.; Rogez, H.; Baeten, V. Phenolic Compound Explorer: A Mid-Infrared Spectroscopy Database. Vib. Spectrosc. 2017, 92, 111–118. [Google Scholar] [CrossRef]
- Ceramella, J.; la Torre, C.; De Luca, M.; Iacopetta, D.; Fazio, A.; Catalano, A.; Ragno, G.; Longo, P.; Sinicropi, M.S.; Rosano, C. Exploring the Anticancer and Antioxidant Properties of Vicia faba L. Pods Extracts, a Promising Source of Nutraceuticals. PeerJ 2022, 10, e13683. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Carullo, G.; de Cicco, L.; Crispini, A.; Scarpelli, F.; Restuccia, D.; Aiello, F. Synthesis and Characterization of a (+)-Catechin and L-(+)-Ascorbic Acid Cocrystal as a New Functional Ingredient for Tea Drinks. Heliyon 2019, 5, e02291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spizzirri, U.G.; Caputo, P.; Oliviero Rossi, C.; Crupi, P.; Muraglia, M.; Rago, V.; Malivindi, R.; Clodoveo, M.L.; Restuccia, D.; Aiello, F. A Tara Gum/Olive Mill Wastewaters Phytochemicals Conjugate as a New Ingredient for the Formulation of an Antioxidant-Enriched Pudding. Foods 2022, 11, 158. [Google Scholar] [CrossRef] [PubMed]
- Spizzirri, U.G.; Carullo, G.; Aiello, F.; Paolino, D.; Restuccia, D. Valorisation of Olive Oil Pomace Extracts for a Functional Pear Beverage Formulation. Int. J. Food Sci. Technol. 2021, 56, 5497–5505. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Abduvakhidov, A.; Caputo, P.; Crupi, P.; Muraglia, M.; Rossi, C.O.; Clodoveo, M.L.; Aiello, F.; Restuccia, D. Kefir Enriched with Carob (Ceratonia siliqua L.) Leaves Extract as a New Ingredient during a Gluten-Free Bread-Making Process. Fermentation 2022, 8, 305. [Google Scholar] [CrossRef]
- Carullo, G.; Spizzirri, U.G.; Montopoli, M.; Cocetta, V.; Armentano, B.; Tinazzi, M.; Sciubba, F.; Giorgi, G.; Enrica Di Cocco, M.; Bohn, T.; et al. Milk Kefir Enriched with Inulin-Grafted Seed Extract from White Wine Pomace: Chemical Characterisation, Antioxidant Profile and in Vitro Gastrointestinal Digestion. Int. J. Food Sci. Technol. 2022, 57, 4086–4095. [Google Scholar] [CrossRef]
- Spatari, C.; De Luca, M.; Ioele, G.; Ragno, G. A Critical Evaluation of the Analytical Techniques in the Photodegradation Monitoring of Edible Oils. LWT 2017, 76, 147–155. [Google Scholar] [CrossRef]
- De Luca, M.; Ioele, G.; Spatari, C.; Caruso, L.; Galasso, M.P.; Ragno, G. Evaluation of Human Breastmilk Adulteration by Combining Fourier Transform Infrared Spectroscopy and Partial Least Square Modeling. Food Sci. Nutr. 2019, 7, 2194–2201. [Google Scholar] [CrossRef]
- Chang, Y.; Shi, X.; He, F.; Wu, T.; Jiang, L.; Normakhamatov, N.; Sharipov, A.; Wang, T.; Wen, M.; Aisa, H.A. Valorization of Food Processing Waste to Produce Valuable Polyphenolics. J. Agric. Food Chem. 2022, 70, 8855–8870. [Google Scholar] [CrossRef]
- Cañadas, R.; González-Miquel, M.; González, E.J.; Díaz, I.; Rodríguez, M. Overview of Neoteric Solvents as Extractants in Food Industry: A Focus on Phenolic Compounds Separation from Liquid Streams. Food Res. 2020, 136, 109558. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Landívar, M.F.; Tapia-Quirós, P.; Vecino, X.; Reig, M.; Valderrama, C.; Granados, M.; Cortina, J.L.; Saurina, J. Fruit and Vegetable Processing Wastes as Natural Sources of Antioxidant-Rich Extracts: Evaluation of Advanced Extraction Technologies by Surface Response Methodology. J. Environ. Chem. Eng. 2021, 9, 105330. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Crupi, P.; Muraglia, M.; Corbo, F. Ultrasound Assisted Extraction of Polyphenols from Ripe Carob Pods (Ceratonia siliqua L.): Combined Designs for Screening and Optimizing the Processing Parameters. Foods 2022, 11, 284. [Google Scholar] [CrossRef] [PubMed]
- Rached, I.; Barros, L.; Fernandes, I.P.; Santos-Buelga, C.; Rodrigues, A.E.; Ferchichi, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Ceratonia siliqua L. Hydroethanolic Extract Obtained by Ultrasonication: Antioxidant Activity, Phenolic Compounds Profile and Effects in Yogurts Functionalized with Their Free and Microencapsulated Forms. Food Funct. 2016, 7, 1319–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.; Wu, D.; Zhang, Q.A.; Sun, D.W. Ultrasound-Assisted Extraction of Phenolics from Wine Lees: Modeling, Optimization and Stability of Extracts during Storage. Ultrason. Sonochem. 2014, 21, 706–715. [Google Scholar] [CrossRef]
- de Bruno, A.; Romeo, R.; Fedele, F.L.; Sicari, A.; Piscopo, A.; Poiana, M. Antioxidant Activity Shown by Olive Pomace Extracts. J. Environ. Sci. Health B 2018, 53, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Kalia, K.; Sharma, K.; Singh, H.P.; Singh, B. Effects of Extraction Methods on Phenolic Contents and Antioxidant Activity in Aerial Parts of Potentilla Atrosanguinea Lodd. and Quantification of Its Phenolic Constituents by RP-HPLC. J. Agric. Food Chem. 2008, 56, 10129–10134. [Google Scholar] [CrossRef]
- Crupi, P.; Antonacci, D.; Savino, M.; Genghi, R.; Perniola, R.; Coletta, A. Girdling and Gibberellic Acid Effects on Yield and Quality of a Seedless Red Table Grape for Saving Irrigation Water Supply. Eur. J. Agron. 2016, 80, 21–31. [Google Scholar] [CrossRef]
- Jurcevic, I.L.; Dora, M.; Guberovic, I.; Petras, M.; Brncic, S.R.; Dikic, D. Polyphenols from Wine Lees as a Novel Functional Bioactive Compound in the Protection against Oxidative Stress and Hyperlipidaemia. Food Technol. Biotechnol. 2017, 55, 109–116. [Google Scholar] [CrossRef]
- Romero-Díez, R.; Rodríguez-Rojo, S.; Cocero, M.J.; Duarte, C.M.M.; Matias, A.A.; Bronze, M.R. Phenolic Characterization of Aging Wine Lees: Correlation with Antioxidant Activities. Food Chem. 2018, 259, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, G.M.; Faccin, H.; Viana, C.; da Rosa, M.B.; de Carvalho, L.M. Vitis vinifera L. Cv Pinot Noir Pomace and Lees as Potential Sources of Bioactive Compounds. Int. J. Food Sci. Nutr. 2016, 67, 789–796. [Google Scholar] [CrossRef]
- Ruskovska, T.; Maksimova, V.; Milenkovic, D. Polyphenols in Human Nutrition: From the in Vitro Antioxidant Capacity to the Beneficial Effects on Cardiometabolic Health and Related Inter-Individual Variability-An Overview and Perspective. Br. J. Nutr. 2020, 123, 241–254. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different in Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Ioele, G.; De Luca, M.; Oliverio, F.; Ragno, G. Prediction of Photosensitivity of 1,4-Dihydropyridine Antihypertensives by Quantitative Structure-Property Relationship. Talanta 2009, 79, 1418–1424. [Google Scholar] [CrossRef]
Sample | Extraction Conditions | Yield | |||||
---|---|---|---|---|---|---|---|
Code | Mass Dry Extract (g) | Solvent | Volume (mL) | T (°C) | t (min) | Mass (g) | % |
LE1 | 1.0 | Ethanol | 200 | 30 | 15 | 0.063 ± 0.005 c | 6.3 ± 0.5 ca |
LEW1 | 1.0 | Water (pH = 2.0)/Ethanol 50:50 v/v | 200 | 30 | 15 | 0.202 ± 0.014 f | 20.2 ± 1.5 f |
LW1 | 1.0 | Water (pH = 2.0) | 200 | 30 | 15 | 0.358 ± 0.007 i | 35.8 ± 0.6 i |
LE2 | 1.0 | Ethanol | 200 | 30 | 15 | 0.025 ± 0.001 a | 2.5 ± 0.1 a |
LEW2 | 1.0 | Water (pH = 2.0)/Ethanol 50:50 v/v | 200 | 30 | 15 | 0.132 ± 0.006 d | 13.2 ± 0.5 d |
LW2 | 1.0 | Water (pH = 2.0) | 200 | 30 | 15 | 0.277 ± 0.008 g | 27.7 ± 0.7 g |
LE3 | 1.0 | Ethanol | 200 | 30 | 15 | 0.040 ± 0.003 b | 4.0 ± 0.3 b |
LEW3 | 1.0 | Water (pH = 2.0)/Ethanol 50:50 v/v | 200 | 30 | 15 | 0.137 ± 0.014 d | 13.7 ± 1.5 d |
LW3 | 1.0 | Water (pH = 2.0) | 200 | 30 | 15 | 0.313 ± 0.007 h | 31.3 ± 0.6 h |
LE4 | 1.0 | Ethanol | 200 | 30 | 15 | 0.024 ± 0.001 a | 2.4 ± 0.1 a |
LEW4 | 1.0 | Water (pH = 2.0)/Ethanol 50:50 v/v | 200 | 30 | 15 | 0.169 ± 0.006 e | 16.9 ± 0.5 e |
LW4 | 1.0 | Water (pH = 2.0) | 200 | 30 | 15 | 0.278 ± 0.008 g | 27.8 ± 0.7 g |
Compound | RT (min) | LE1 | LWE1 | LW1 | LE2 | LWE2 | LW2 | LE3 | LWE3 | LW3 | LE4 | LWE4 | LW4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ = 280 nm | |||||||||||||
Gallic acid | 4.733 | n.d. | 390 ± 60 b | 650 ± 90 a | n.d. | 0.39 ± 0.04 d | 19 ± 3 c | n.d. | n.d. | tr | n.d. | 34 ± 6 c | 15 ± 3 c |
Procyanidin B1 | 7.124 | tr | 180 ± 40 b | 44 ± 8 c | n.d. | n.d. | n.d. | n.d. | 700 ± 140 a | n.d. | tr | tr | n.d. |
Unknown | 7.745 | n.d. | n.d. | n.d. | n.d. | n.d. | 460 ± 90 ab | 340 ± 60 b | 620 ± 120 a | tr | 140 ± 20 c | 180 ± 40 c | 400 ± 60 ab |
(−)-epigallocatechin | 8.643 | n.d. | n.d. | n.d. | n.d. | n.d. | 220 ± 50 a | n.d. | n.d. | n.d. | n.d. | 160 ± 30 b | 110 ± 20 b |
Procyanidin B2 | 10.699 | n.d. | n.d. | n.d. | n.d. | n.d. | 21 ± 3 b | n.d. | 110 ± 20 a | n.d. | tr | tr | 12.8 ± 1.9 b |
Epigallocatechin gallate | 11.736 | 820 ± 160 c | 250 ± 50 d | n.d. | 1800 ± 400 b | 190 ± 40 d | n.d. | 2900 ± 700 a | 1200 ± 300 b | n.d. | 880 ± 190 c | 260 ± 50 d | n.d. |
(−)-Epicatechin | 13.544 | n.d. | 120 ± 20 a | 34 ± 5 b | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | tr | tr | 5.5 ± 0.8 c |
Unknown | 14.795 | 210 ± 40 b | 370 ± 80 ab | 110 ± 20 c | n.d. | n.d. | n.d. | n.d. | 410 ± 90 a | n.d. | n.d. | n.d. | n.d. |
Unknown | 16.224 | n.d. | 40 ± 7 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Unknown | 25.406 | n.d. | 160 ± 30 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
λ = 320 nm | |||||||||||||
Unknown | 6.363 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 170 ± 40 a | n.d. | 20 ± 3 b | 5.8 ± 0.4 c | 1.37 ± 0.14 c |
Unknown | 7.081 | n.d. | n.d. | n.d. | 56 ± 12 a | 42 ± 8 ab | 26 ± 5 b | n.d. | 51 ± 10 a | n.d. | n.d. | 7.2 ± 0.8 c | 12 ± 2 bc |
trans-caftaric acid | 7.899 | 710 ± 140 c | 570 ± 120 cd | 330 ± 70 d | 1200 ± 300 b | 500 ± 100 cd | 220 ± 40 b | 170 ± 30 e | 2100 ± 400 a | 48 ± 8 b | 520 ± 90 cd | 230 ± 40 de | 250 ± 50 d |
Unknown | 8.380 | n.d. | n.d. | 87 ± 19 a | n.d. | 7.8 ± 0.9 b | 1.9 ± 0.4 b | n.d. | n.d. | n.d. | n.d. | tr | n.d. |
Unknown | 8.625 | 27 ± 6 b | 20 ± 4 b | 20 ± 3 b | tr | 13 ± 3 c | n.d. | n.d. | 66 ± 9 a | tr | n.d. | tr | 3.2 ± 0.7 d |
Unknown | 8.774 | 29 ± 6 b | 31 ± 8 b | 41 ± 7 ab | n.d. | 21 ± 5 b | 5.2 ± 1.1 c | n.d. | 72 ± 14 a | tr | n.d. | 3.2 ± 0.7 c | 1.5 ± 0.3 c |
Chlorogenic acid | 10.871 | 370 ± 70 b | 290 ± 60 b | 170 ± 30 bc | 230 ± 50 b | 102 ± 14 c | 60 ± 12 d | 66 ± 13 d | 830 ± 140 a | 27 ± 5 e | 130 ± 30 c | 55 ± 10 d | 51 ± 10 d |
Unknown | 11.41 | 11 ± 3 b | 9 ± 2 b | 11 ± 3 b | n.d. | n.d. | n.d. | n.d. | 25 ± 6 a | n.d. | n.d. | n.d. | n.d. |
Unknown | 12.403 | 16 ± 3 bc | 50 ± 9 b | n.d. | tr | 4.8 ± 0.9 c | 8.4 ± 1.5 c | n.d. | 160 ± 40 a | n.d. | n.d. | 2.6 ± 0.5 c | 3.4 ± 0.6 c |
Unknown | 12.691 | 16 ± 4 a | 21 ± 5 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 12 ± 4 a | n.d. | n.d. |
Caffeic acid | 13.097 | n.d. | 35 ± 8 b | 25 ± 5 b | tr | 12 ± 3 b | 5.6 ± 1.2 c | n.d. | 180 ± 50 a | 5.0 ± 1.1 c | 20 ± 4 b | 7.5 ± 1.8 c | 7.5 ± 1.4 c |
trans-coutaric acid | 13.794 | 10 ± 2 b | 37 ± 10 a | n.d. | n.d. | n.d. | n.d. | n.d. | 16 ± 4 b | n.d. | n.d. | n.d. | n.d. |
trans-p-coumaric acid | 27.072 | n.d. | 46 ± 9 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
trans-ferulic acid | 28.728 | n.d. | 150 ± 30 a | n.d. | n.d. | 33 ± 9 b | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Unknown | 31.306 | n.d. | 31 ± 7 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Unknown | 34.182 | n.d. | 18 ± 3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Unknown | 35.586 | n.d. | 69 ± 15 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
λ = 360 nm | |||||||||||||
Quercetin-3O-glucoside | 22.627 | tr | 26 ± 6 b | n.d. | n.d. | 8.3 ± 1.8 bc | n.d. | n.d. | 90 ± 20 a | n.d. | 25 ± 5 b | 4.5 ± 1.0 c | 4.70 ± 0.8 c |
λ = 520 nm | |||||||||||||
Delphinidin-3O-glucoside | 11.782 | 16 ± 4 b | n.d. | 86 ± 18 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Cyanidin -3O-glucoside | 15.303 | 30 ± 7 b | 12 ± 3 b | 135 ± 30 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Petunidin -3O-glucoside | 17.959 | 52 ± 11 ab | 20 ± 4 b | 87 ± 16 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Peonidin-3O-glucoside | 19.531 | 400 ± 90 b | 190 ± 40 b | 1400 ± 300 a | n.d. | 16 ± 3 c | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Malvidin-3 O-glucoside | 20.843 | n.d. | 9.0 ± 1.9 b | 330 ± 70 a | n.d. | 5.3 ± 1.3 b | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Unknown | 21.744 | n.d. | n.d. | 24 ± 7 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Unknown | 22.549 | n.d. | n.d. | 33 ± 8 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Unknown | 25.853 | n.d. | n.d. | 21 ± 4 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Unknown | 31.293 | n.d. | n.d. | 52 ± 12 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Unknown | 33.991 | n.d. | n.d. | 22 ± 5 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Peonidin-3O-trans-coumaroylglucoside | 40.364 | 31 ± 7 a | 11 ± 3 b | 24 ± 5 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Malvidin-3 O-trans-coumaroylglucoside | 41.482 | 72 ± 13 b | 79 ± 15 b | 110 ± 20 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Total | 2820 ± 623 | 3045 ± 642 | 3802 ± 749 b | 3286 ± 741 | 929 ± 180 | 1026 ± 196 | 3476 ± 685 b | 6800 ± 1445 a | 75 ± 14 | 1747 ± 358 | 919 ± 167 | 838 ± 145 |
Sample | TPC (mg GA g−1 extract) | PAC (mg GA g−1 extract) | FC (mg CT g−1 extract) | IC50 (mg mL−1) | |
---|---|---|---|---|---|
DPPH | ABTS | ||||
LE1 | 18.94 ± 0.37 e | 5.89 ± 0.15 f | 9.54 ± 0.17 f | 0.470 ± 0.017 c | 0.770 ± 0.027 d |
LWE1 | 20.01 ± 0.46 f | 6.58 ± 0.16 g | 10.89 ± 0.26 g | 0.490 ± 0.022 c | 0.690 ± 0.025 c |
LW1 | 27.23 ± 0.49 h | 10.25 ± 0.49 l | 18.15 ± 0.38 l | 0.608 ± 0.019 e | 0.500 ± 0.019 b |
LE2 | 24.25 ± 0.47 g | 9.14 ± 0.17 h | 13.23 ± 0.17 h | 0.457 ± 0.022 c | 0.790 ± 0.027 d |
LWE2 | 11.02 ± 0.36 c | 3.12 ± 0.08 c | 7.59 ± 0.16 d | 0.643 ± 0.025 e | 0.710 ± 0.030 c |
LW2 | 10.89 ± 0.29 c | 3.26 ± 0.10 c | 8.25 ± 0.19 e | 0.803 ± 0.038 f | 0.680 ± 0.032 c |
LE3 | 23.72 ± 0.27 g | 8.89 ± 0.17 h | 16.24 ± 0.26 i | 0.419 ± 0.013 a | 0.700 ± 0.027 c |
LWE3 | 49.56 ± 0.56 i | 22.67 ± 0.56 i | 20.15 ± 0.32 m | 0.395 ± 0.016 a | 0.451 ± 0.015 a |
LW3 | 4.61 ± 0.09 a | 1.58 ± 0.07 a | 1.54 ± 0.07 a | 1.360 ± 0.067 h | 1.480 ± 0.049 g |
LE4 | 12.24 ± 0.22 d | 5.54 ± 0.12 e | 6.25 ± 0.22 c | 0.560 ± 0.028 d | 0.850 ± 0.032 ef |
LWE4 | 11.35 ± 0.26 c | 2.54 ± 0.08 b | 8.01 ± 0.16 e | 0.630 ± 0.026 e | 0.800 ± 0.026 de |
LW4 | 10.29 ± 0.23 b | 2.65 ± 0.07 b | 5.23 ± 0.13 b | 1.080 ± 0.050 g | 0.912 ± 0.035 f |
Positive control | |||||
Ascorbic acid | 0.017 ± 0.002 | 0.050 ± 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, M.; Restuccia, D.; Spizzirri, U.G.; Crupi, P.; Ioele, G.; Gorelli, B.; Clodoveo, M.L.; Saponara, S.; Aiello, F. Wine Lees as Source of Antioxidant Molecules: Green Extraction Procedure and Biological Activity. Antioxidants 2023, 12, 622. https://doi.org/10.3390/antiox12030622
De Luca M, Restuccia D, Spizzirri UG, Crupi P, Ioele G, Gorelli B, Clodoveo ML, Saponara S, Aiello F. Wine Lees as Source of Antioxidant Molecules: Green Extraction Procedure and Biological Activity. Antioxidants. 2023; 12(3):622. https://doi.org/10.3390/antiox12030622
Chicago/Turabian StyleDe Luca, Michele, Donatella Restuccia, Umile Gianfranco Spizzirri, Pasquale Crupi, Giuseppina Ioele, Beatrice Gorelli, Maria Lisa Clodoveo, Simona Saponara, and Francesca Aiello. 2023. "Wine Lees as Source of Antioxidant Molecules: Green Extraction Procedure and Biological Activity" Antioxidants 12, no. 3: 622. https://doi.org/10.3390/antiox12030622
APA StyleDe Luca, M., Restuccia, D., Spizzirri, U. G., Crupi, P., Ioele, G., Gorelli, B., Clodoveo, M. L., Saponara, S., & Aiello, F. (2023). Wine Lees as Source of Antioxidant Molecules: Green Extraction Procedure and Biological Activity. Antioxidants, 12(3), 622. https://doi.org/10.3390/antiox12030622