Polyunsaturated and Saturated Oxylipin Plasma Levels Allow Monitoring the Non-Alcoholic Fatty Liver Disease Progression to Severe Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Anthropometric Characteristics, Blood Collection and Biochemistry Analysis
2.3. Malondialdehyde Assay
2.4. Oxylipin Determination
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellentani, S.; Scaglioni, F.; Marino, M.; Bedogni, G. Epidemiology of non-alcoholic fatty liver disease. Dig. Dis. 2010, 28, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Schwimmer, J.B.; Deutsch, R.; Kahen, T.; Lavine, J.E.; Stanley, C.; Behling, C. Prevalence of fatty liver in children and adolescents. Pediatrics 2006, 118, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.D.; Szczepaniak, L.S.; Dobbins, R.; Nuremberg, P.; Horton, J.D.; Cohen, J.C.; Grundy, S.M.; Hobbs, H.H. Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology 2004, 40, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Contos, M.J.; Sanyal, A.J. The clinicopathologic spectrum and management of nonalcoholic fatty liver disease. Adv. Anat. Pathol. 2002, 9, 37–51. [Google Scholar] [CrossRef]
- Than, N.N.; Newsome, P.N. Non-alcoholic fatty liver disease: When to intervene and with what. Clin. Med. 2015, 15, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Finck, B.N. Targeting Metabolism, Insulin Resistance, and Diabetes to Treat Nonalcoholic Steatohepatitis. Diabetes 2018, 67, 2485–2493. [Google Scholar] [CrossRef] [Green Version]
- Puri, P.; Wiest, M.M.; Cheung, O.; Mirshahi, F.; Sargeant, C.; Min, H.K.; Contos, M.J.; Sterling, R.K.; Fuchs, M.; Zhou, H.; et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 2009, 50, 1827–1838. [Google Scholar] [CrossRef] [Green Version]
- Yasutake, K.; Kohjima, M.; Kotoh, K.; Nakashima, M.; Nakamuta, M.; Enjoji, M. Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 1756–1767. [Google Scholar] [CrossRef]
- Perdomo, C.M.; Fruhbeck, G.; Escalada, J. Impact of Nutritional Changes on Nonalcoholic Fatty Liver Disease. Nutrients 2019, 11, 677. [Google Scholar] [CrossRef] [Green Version]
- Bravo, A.A.; Sheth, S.G.; Chopra, S. Liver biopsy. N. Engl. J. Med. 2001, 344, 495–500. [Google Scholar] [CrossRef]
- Gaidos, J.K.; Hillner, B.E.; Sanyal, A.J. A decision analysis study of the value of a liver biopsy in nonalcoholic steatohepatitis. Liver Int. Off. J. Int. Assoc. Study Liver 2008, 28, 650–658. [Google Scholar] [CrossRef]
- Tang, A.; Tan, J.; Sun, M.; Hamilton, G.; Bydder, M.; Wolfson, T.; Gamst, A.C.; Middleton, M.; Brunt, E.M.; Loomba, R.; et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013, 267, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Monserrat-Mesquida, M.; Quetglas-Llabres, M.; Abbate, M.; Montemayor, S.; Mascaro, C.M.; Casares, M.; Tejada, S.; Abete, I.; Zulet, M.A.; Tur, J.A.; et al. Oxidative Stress and Pro-Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants 2020, 9, 759. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Campbell-Sargent, C.; Mirshahi, F.; Rizzo, W.B.; Contos, M.J.; Sterling, R.K.; Luketic, V.A.; Shiffman, M.L.; Clore, J.N. Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001, 120, 1183–1192. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitturi, S.; Abeygunasekera, S.; Farrell, G.C.; Holmes-Walker, J.; Hui, J.M.; Fung, C.; Karim, R.; Lin, R.; Samarasinghe, D.; Liddle, C.; et al. NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology 2002, 35, 373–379. [Google Scholar] [CrossRef]
- Miura, K.; Yang, L.; van Rooijen, N.; Ohnishi, H.; Seki, E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G1310–G1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loomba, R.; Quehenberger, O.; Armando, A.; Dennis, E.A. Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J. Lipid Res. 2015, 56, 185–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhouri, N.; Dixon, L.J.; Feldstein, A.E. Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 2009, 3, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Malhi, H.; Gores, G.J. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin. Liver Dis. 2008, 28, 360–369. [Google Scholar] [CrossRef] [Green Version]
- Feldstein, A.E.; Werneburg, N.W.; Canbay, A.; Guicciardi, M.E.; Bronk, S.F.; Rydzewski, R.; Burgart, L.J.; Gores, G.J. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 2004, 40, 185–194. [Google Scholar] [CrossRef]
- Puri, P.; Baillie, R.A.; Wiest, M.M.; Mirshahi, F.; Choudhury, J.; Cheung, O.; Sargeant, C.; Contos, M.J.; Sanyal, A.J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 2007, 46, 1081–1090. [Google Scholar] [CrossRef]
- Feldstein, A.E.; Lopez, R.; Tamimi, T.A.; Yerian, L.; Chung, Y.M.; Berk, M.; Zhang, R.; McIntyre, T.M.; Hazen, S.L. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Lipid Res. 2010, 51, 3046–3054. [Google Scholar] [CrossRef] [Green Version]
- Zein, C.O.; Lopez, R.; Fu, X.; Kirwan, J.P.; Yerian, L.M.; McCullough, A.J.; Hazen, S.L.; Feldstein, A.E. Pentoxifylline decreases oxidized lipid products in nonalcoholic steatohepatitis: New evidence on the potential therapeutic mechanism. Hepatology 2012, 56, 1291–1299. [Google Scholar] [CrossRef] [Green Version]
- Pigazzani, F.; Gorni, D.; Dyar, K.A.; Pedrelli, M.; Kennedy, G.; Costantino, G.; Bruno, A.; Mackenzie, I.; MacDonald, T.M.; Tietge, U.J.F.; et al. The Prognostic Value of Derivatives-Reactive Oxygen Metabolites (d-ROMs) for Cardiovascular Disease Events and Mortality: A Review. Antioxidants 2022, 11, 1541. [Google Scholar] [CrossRef]
- Papackova, Z.; Cahova, M. Fatty acid signaling: The new function of intracellular lipases. Int. J. Mol. Sci. 2015, 16, 3831–3855. [Google Scholar] [CrossRef] [Green Version]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef] [Green Version]
- Capo, X.; Ferrer, M.D.; Olek, R.A.; Salaberry, E.; Gomila, R.M.; Martorell, G.; Sureda, A.; Tur, J.A.; Pons, A. Simultaneous analysis of saturated and unsaturated oxylipins in ‘ex vivo’ cultured peripheral blood mononuclear cells and neutrophils. J. Pharm. Biomed. Anal. 2020, 186, 113258. [Google Scholar] [CrossRef]
- Norris, P.C.; Reichart, D.; Dumlao, D.S.; Glass, C.K.; Dennis, E.A. Specificity of eicosanoid production depends on the TLR-4-stimulated macrophage phenotype. J. Leukoc. Biol. 2011, 90, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Dennis, E.A.; Cao, J.; Hsu, Y.H.; Magrioti, V.; Kokotos, G. Phospholipase A2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 2011, 111, 6130–6185. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 2001, 294, 1871–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem. 2000, 69, 145–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misheva, M.; Kotzamanis, K.; Davies, L.C.; Tyrrell, V.J.; Rodrigues, P.R.S.; Benavides, G.A.; Hinz, C.; Murphy, R.C.; Kennedy, P.; Taylor, P.R.; et al. Oxylipin metabolism is controlled by mitochondrial beta-oxidation during bacterial inflammation. Nat. Commun. 2022, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.J.; Ofman, R.; Valianpour, F.; Kemp, S.; Wanders, R.J. Evidence for two enzymatic pathways for omega-oxidation of docosanoic acid in rat liver microsomes. J. Lipid Res. 2005, 46, 1001–1008. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.M.; Bennett, M.J. Disorders of mitochondrial fatty acid β-oxidation. In Biomarkers in Inborn Errors of Metabolism Clinical Aspects and Laboratory Determination; Elsevier: Amsterdam, The Netherlands, 2017; pp. 87–101. [Google Scholar]
- Patel, R.; Santoro, A.; Hofer, P.; Tan, D.; Oberer, M.; Nelson, A.T.; Konduri, S.; Siegel, D.; Zechner, R.; Saghatelian, A.; et al. ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids. Nature 2022, 606, 968–975. [Google Scholar] [CrossRef]
- Aryal, P.; Syed, I.; Lee, J.; Patel, R.; Nelson, A.T.; Siegel, D.; Saghatelian, A.; Kahn, B.B. Distinct biological activities of isomers from several families of branched fatty acid esters of hydroxy fatty acids (FAHFAs). J. Lipid Res. 2021, 62, 100108. [Google Scholar] [CrossRef]
- Cao, H.; Gerhold, K.; Mayers, J.R.; Wiest, M.M.; Watkins, S.M.; Hotamisligil, G.S. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008, 134, 933–944. [Google Scholar] [CrossRef] [Green Version]
- Balestrieri, B.; Di Costanzo, D.; Dwyer, D.F. Macrophage-Mediated Immune Responses: From Fatty Acids to Oxylipins. Molecules 2021, 27, 152. [Google Scholar] [CrossRef]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome; IDF Communications: Brussels, Belgium, 2006. [Google Scholar]
- Prevention and Reversion of NAFLD in Obese Patients with Metabolic Syndrome by Mediterranean Diet and Physical Activity (FLIPAN). Available online: https://clinicaltrials.gov/ct2/show/NCT04442620 (accessed on 19 January 2023).
- Reeder, S.B.; Sirlin, C.B. Quantification of liver fat with magnetic resonance imaging. Magn. Reson. Imaging Clin. North Am. 2010, 18, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wang, C.; Zhang, T.; He, X.; Hao, J.; Shen, A.; Zhao, H.; Chen, S.; Ren, L. Factors Associated with Liver Fibrosis in Chinese Patients with Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease. Int. J. Gen. Med. 2023, 16, 293–302. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Choi, S.J.; Kim, S.M.; Kim, Y.S.; Kwon, O.S.; Shin, S.K.; Kim, K.K.; Lee, K.; Park, I.B.; Choi, C.S.; Chung, D.H.; et al. Magnetic Resonance-Based Assessments Better Capture Pathophysiologic Profiles and Progression in Nonalcoholic Fatty Liver Disease. Diabetes Metab. J. 2021, 45, 739–752. [Google Scholar] [CrossRef]
- Aljabban, J.; Rohr, M.; Syed, S.; Khorfan, K.; Borkowski, V.; Aljabban, H.; Segal, M.; Mukhtar, M.; Mohammed, M.; Panahiazar, M.; et al. Transcriptome changes in stages of non-alcoholic fatty liver disease. World J. Hepatol. 2022, 14, 1382–1397. [Google Scholar] [CrossRef]
- Garbuzenko, D.V. Pathophysiological mechanisms of cardiovascular disorders in non-alcoholic fatty liver disease. Gastroenterol. Hepatol. Bed Bench 2022, 15, 194–203. [Google Scholar] [CrossRef]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef] [Green Version]
- Thong, V.D.; Quynh, B.T.H. Correlation of Serum Transaminase Levels with Liver Fibrosis Assessed by Transient Elastography in Vietnamese Patients with Nonalcoholic Fatty Liver Disease. Int. J. Gen. Med. 2021, 14, 1349–1355. [Google Scholar] [CrossRef]
- Sattar, N.; Forrest, E.; Preiss, D. Non-alcoholic fatty liver disease. BMJ 2014, 349, g4596. [Google Scholar] [CrossRef]
- Xiao, G.; Zhu, S.; Xiao, X.; Yan, L.; Yang, J.; Wu, G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology 2017, 66, 1486–1501. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Rempel, J.D.; Ball, T.B.; Aukema, H.; Minuk, G.Y. Plasma Oxylipins Levels in Nonalcoholic Fatty Liver Disease. Dig. Dis. Sci. 2020, 65, 3605–3613. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Norris, P.C.; Libreros, S.; Chiang, N.; Serhan, C.N. A cluster of immunoresolvents links coagulation to innate host defense in human blood. Sci. Signal. 2017, 10, eaan1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dakin, S.G.; Colas, R.A.; Wheway, K.; Watkins, B.; Appleton, L.; Rees, J.; Gwilym, S.; Little, C.; Dalli, J.; Carr, A.J. Proresolving Mediators LXB4 and RvE1 Regulate Inflammation in Stromal Cells from Patients with Shoulder Tendon Tears. Am. J. Pathol. 2019, 189, 2258–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serhan, C.N.; Yang, R.; Martinod, K.; Kasuga, K.; Pillai, P.S.; Porter, T.F.; Oh, S.F.; Spite, M. Maresins: Novel macrophage mediators with potent antiinflammatory and proresolving actions. J. Exp. Med. 2009, 206, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serhan, C.N.; Dalli, J.; Karamnov, S.; Choi, A.; Park, C.K.; Xu, Z.Z.; Ji, R.R.; Zhu, M.; Petasis, N.A. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J. 2012, 26, 1755–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanders, R.J.; Komen, J.; Kemp, S. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J. 2011, 278, 182–194. [Google Scholar] [CrossRef]
- Reddy, J.K.; Rao, M.S. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiology. Gastrointest. Liver Physiol. 2006, 290, G852–G858. [Google Scholar] [CrossRef] [Green Version]
- Kalsotra, A.; Anakk, S.; Brommer, C.L.; Kikuta, Y.; Morgan, E.T.; Strobel, H.W. Catalytic characterization and cytokine mediated regulation of cytochrome P450 4Fs in rat hepatocytes. Arch. Biochem. Biophys. 2007, 461, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Ferdinandusse, S.; Denis, S.; Van Roermund, C.W.; Wanders, R.J.; Dacremont, G. Identification of the peroxisomal beta-oxidation enzymes involved in the degradation of long-chain dicarboxylic acids. J. Lipid Res. 2004, 45, 1104–1111. [Google Scholar] [CrossRef] [Green Version]
- Spiekerkoetter, U.; Wood, P.A. Mitochondrial fatty acid oxidation disorders: Pathophysiological studies in mouse models. J. Inherit. Metab. Dis. 2010, 33, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Riecan, M.; Paluchova, V.; Lopes, M.; Brejchova, K.; Kuda, O. Branched and linear fatty acid esters of hydroxy fatty acids (FAHFA) relevant to human health. Pharmacol. Ther. 2022, 231, 107972. [Google Scholar] [CrossRef]
- Spickett, C.M. Formation of Oxidatively Modified Lipids as the Basis for a Cellular Epilipidome. Front. Endocrinol. 2020, 11, 602771. [Google Scholar] [CrossRef]
- Brenner, C.; Galluzzi, L.; Kepp, O.; Kroemer, G. Decoding cell death signals in liver inflammation. J. Hepatol. 2013, 59, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Norris, P.C.; Serhan, C.N. Metabololipidomic profiling of functional immunoresolvent clusters and eicosanoids in mammalian tissues. Biochem. Biophys. Res. Commun. 2018, 504, 553–561. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Nathan, C.; Ding, A. Nonresolving inflammation. Cell 2010, 140, 871–882. [Google Scholar] [CrossRef] [Green Version]
- Leamy, A.K.; Egnatchik, R.A.; Young, J.D. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog. Lipid Res. 2013, 52, 165–174. [Google Scholar] [CrossRef] [Green Version]
IFC0 (n = 19) | IFC1 (n = 42) | IFC2 (n = 19) | IFC3 (n = 10) | ANOVA p | |
---|---|---|---|---|---|
Age (years) | 54.8 ± 1.4 ab | 54.3 ± 1.1 a | 48.6 ± 1.2 b | 52.2 ± 1.5 ab | 0.030 |
Body Weight (Kg) | 88.7 ± 2.0 a | 92.1 ± 1.7 a | 93.8 ± 1.7 a | 95.8 ± 3.0 a | 0.196 |
BMI (Kg/m2) | 32.3 ± 0.5 a | 32.6 ± 0.5 a | 34.2 ± 0.6 a | 33.2 ± 0.8 a | 0.132 |
IFC(%) | 4.8 ± 0.2 a | 10.0 ± 0.4 b | 18.6 ± 1.0 c | 32.7 ± 2.1 d | <0.001 |
Systolic Blood Pressure (mmHg) | 132 ± 2.1 a | 135 ± 1.8 a | 138 ± 2.8 a | 143 ± 3.7 a | 0.107 |
Diastolic Blood Pressure (mmHg) | 79.5 ± 2.1 a | 81.0 ± 1.0 a | 81.6 ± 1.6 a | 86.7 ± 2.5 a | 0.078 |
Glucose (mg/dL) | 102 ± 3.6 a | 109 ± 4.0 a | 106 ± 2.8 a | 141 ± 13 b | <0.001 |
HbA1 c (%) | 5.7 ± 0.1 a | 5.9 ± 0.1 a | 5.8 ± 0.1 a | 6.6 ± 0.3 b | 0.002 |
Triglycerides (mg/dL) | 130 ± 8.6 a | 199 ± 18 b | 191 ± 22 ab | 218 ± 32 ab | 0.010 |
HDL cholesterol (mg/dL) | 48.7 ± 1.6 a | 43.1 ± 1.3 b | 42.6 ± 1.5 ab | 40.2 ± 1.9 b | 0.004 |
LDL cholesterol (mg/dL) | 133 ± 4 a | 126 ± 4 a | 135 ± 5 a | 115± 9 a | 0.161 |
Cholesterol (mg/dL) | 207 ± 6 a | 207 ± 5 a | 214 ± 6 a | 219 ± 21 a | 0.701 |
AST (U/L) | 25.4 ± 4.1 a | 24.8 ± 1.1 a | 26.4 ± 3.2 a | 28.4 ± 2.0 a | 0.790 |
ALT (U/L) | 27.1 ± 4.7 a | 28.3 ± 1.9 a | 42.0 ± 7.3 ab | 49.0 ± 7.7 b | 0.002 |
AST/ALT ratio | 1.06 ± 0.09 a | 0.99 ± 0.06 a | 0.78 ± 0.11 a | 0.75 ± 0.14 a | 0.097 |
GGT (U/L) | 26.5 ± 3.8 a | 35.8 ± 3.3 ab | 39.5 ± 5.6 ab | 51.0 ± 5.8 b | 0.010 |
Platelets (counts/nL) | 232 ± 8 a | 232 ± 7 a | 268 ± 19 a | 250 ± 58 a | 0.102 |
FIB-4 | 1.24 ± 0.14 a | 1.14 ± 0.07 a | 0.78 ± 0.09 a | 0.98 ± 0.12 a | 0.056 |
MDA (nM) | 1.21 ± 0.15 a | 1.67 ± 0.14 ab | 1.98 ± 0.21 b | 2.02 ± 0.38 ab | 0.038 |
IFC0 (n = 19) | IFC1 (n = 42) | IFC2 (n = 19) | IFC3 (n = 10) | ANOVA p | |
---|---|---|---|---|---|
AA (nM) | 67.7 ± 11.9 a | 105 ± 15 a | 187 ± 57.7 a | 765 ± 455 b | 0.002 |
EPA (nM) | 14.4 ± 4.86 a | 15.2 ± 4.3 a | 39.8 ± 23.8 a | 194 ± 131 b | 0.006 |
ETA (nM) | 0.98 ± 0.18 a | 1.76 ± 0.26 a | 1.91 ± 0.43 a | 13.5 ± 9.6 b | 0.008 |
17DoHE (nM) | 2.39 ± 1.14 a | 1.00 ± 0.20 a | 1.58 ± 0.73 a | 3.72± 1.89 a | 0.122 |
RvD2 (nM) | 3.19 ± 2.05 a | 3.02 ± 0.95 a | 1.18 ± 0.48 a | 3.68 ± 2.45 a | 0.689 |
MaR1 (nM) | 0.21 ± 0.08 ab | 0.11 ± 0.02 a | 0.17 ± 0.06 ab | 0.63 ± 0.41 b | 0.030 |
15HETE (nM) | 0.57 ± 0.19 a | 0.56 ± 0.09 a | 1.01 ± 0.45 a | 1.53 ± 0.56 a | 0.089 |
LXB4 (nM) | 18.8 ± 11.8 a | 9.24 ± 3.32 a | 24.1 ± 16.6 ab | 203 ± 163 b | 0.018 |
LTB4 (nM) | 0.57 ± 0.17 a | 1.68 ± 0.61 a | 2.60 ± 1.28 a | 3.46 ± 1.67 a | 0.263 |
PGF2α (nM) | 0.96 ± 0.51 a | 0.80 ± 0.45 a | 2.32 ± 1.2 ab | 12.1 ± 9.7 b | 0.023 |
3HMYR (nM) | 90.0 ± 47.9 ab | 113 ± 55.7 a | 183 ± 98.0 ab | 955 ± 746 b | 0.035 |
16HPAL (nM) | 69.0 ± 27.5 a | 63.5 ± 26.6 a | 77.4 ± 53.3 a | 785 ± 461 b | 0.001 |
12HEST (nM) | 59.3 ± 21.1 a | 41.0 ± 6.3 a | 140 ± 68.0 ab | 345 ± 163 b | 0.002 |
IFC (%) | MDA (nM) | ||
---|---|---|---|
AA (nM) | Cor. | 0.572 | 0.204 |
Sig. | 0.000 | 0.023 | |
EPA (nM) | Cor. | 0.424 | 0.163 |
Sig. | 0.002 | 0.109 | |
ETA (nM) | Cor. | 0.513 | 0.103 |
Sig. | 0.003 | 0.298 | |
15HETE (nM) | Cor. | 0.442 | 0.345 |
Sig. | 0.001 | 0.001 | |
17DoHE (nM) | Cor. | 0.488 | 0.140 |
Sig. | 0.000 | 0.202 | |
RvD2 (nM) | Cor. | 0.019 | 0.241 |
Sig. | 0.897 | 0.024 | |
MaR1 (nM) | Cor. | 0.307 | 0.446 |
Sig. | 0.032 | <0.001 | |
LXB4 (nM) | Cor. | 0.289 | 0.197 |
Sig. | 0.044 | 0.071 | |
LTB4 (nM) | Cor. | 0.231 | 0.239 |
Sig. | 0.110 | 0.028 | |
3HMYR (nM) | Cor. | 0.286 | 0.260 |
Sig. | 0.046 | 0.005 | |
16HPAL (nM) | Cor. | 0.239 | 0.262 |
Sig. | 0.050 | 0.013 | |
12HEST (nM) | Cor. | 0.438 | 0.307 |
Sig. | 0.002 | 0.001 | |
PGF2α (nM) | Cor. | 0.241 | 0.227 |
Sig. | 0.047 | 0.037 | |
MDA (nM) | Cor. | 0.222 | - |
Sig. | 0.023 | - |
AA (nM) | EPA (nM) | ETA (nM) | 15HETE (nM) | 17HDoHE (nM) | RvD2 (nM) | MaR1 (nM) | LXB4 (nM) | LTB4 (nM) | 3HMYR (nM) | 16HPAL (nM) | 12HEST (nM) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EPA (nM) | Cor | 0.962 ** | -- | ||||||||||
Sig | <0.001 | ||||||||||||
ETA (nM) | Cor | 0.963 ** | 0.930 ** | -- | |||||||||
Sig | <0.001 | <0.001 | |||||||||||
15HETE (nM) | Cor | 0.248 * | 0.159 | 0.118 | -- | ||||||||
Sig | 0.015 | 0.124 | 0.254 | ||||||||||
17HDoHE (nM) | Cor | 0.208 * | 0.164 | 0.124 | 0.805 ** | -- | |||||||
Sig | 0.043 | 0.113 | 0.232 | <0.001 | |||||||||
RvD2 (nM) | Cor | 0.121 | 0.093 | 0.051 | 0.191 | 0.137 | -- | ||||||
Sig | 0.247 | 0.275 | 0.625 | 0.065 | 0.187 | ||||||||
MaR1 (nM) | Cor | 0.236 * | 0.235 ** | 0.098 | 0.485 ** | 0.579 ** | 0.367 ** | -- | |||||
Sig | 0.021 | 0.022 | 0.346 | <0.001 | <0.001 | <0.001 | |||||||
LXB4 (nM) | Cor | 0.161 | 0.148 | 0.018 | 0.365 ** | 0.350 ** | 0.387 ** | 0.903 ** | -- | ||||
Sig | 0.119 | 0.153 | 0.864 | <0.001 | 0.001 | 0.001 | <0.001 | ||||||
LTB4 (nM) | Cor | 0.161 | 0.193 | 0.013 | 0.090 | 0.507 ** | 0.107 | 0.347 ** | 0.310 ** | -- | |||
Sig | 0.119 | 0.061 | 0.904 | 0.319 | <0.001 | 0.304 | 0.001 | 0.002 | |||||
3HMYR (nM) | Cor | 0.205 * | 0.195 | 0.033 | 0.364 ** | 0.335 ** | 0.445 ** | 0.870 ** | 0.949 ** | 0.337 ** | -- | ||
Sig | 0.046 | 0.058 | 0.750 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 | 0.001 | ||||
16HPAL (nM) | Cor | 0.694 ** | 0.707 ** | 0.590 ** | 0.226 * | 0.230 * | 0.425 ** | 0.730 ** | 0.708 ** | 0.226 ** | 0.793 ** | -- | |
Sig | <0.001 | <0.001 | <0.001 | 0.028 | 0.025 | <0.001 | <0.001 | <0.001 | 0.028 | <0.001 | |||
12HEST (nM) | Cor | 0.396 ** | 0.366 ** | 0.194 | 0.645 ** | 0.551 ** | 0.320 ** | 0.786 ** | 0.823 ** | 0.501 ** | 0.835 ** | 0.682 ** | -- |
Sig | <0.001 | <0.001 | 0.060 | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
PGF2α (nM) | Cor | 0.193 | 0.195 | 0.040 | 0.386 ** | 0.317 ** | 0.416 ** | 0.873 ** | 0.953 ** | 0.328 ** | 0.972 ** | 0.790 ** | 0.793 ** |
Sig | 0.061 | 0.058 | 0.703 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 |
Steatosis Grade | AUCROC | p | 95% Interval Confidence | Threshold (nM) | TPF (%) | FPF (%) | |
---|---|---|---|---|---|---|---|
12HEST (nM) | IFC0 vs. ≥IFC1 | 0.572 | 0.338 | 0.425–0.718 | |||
≤IFC1 vs. ≥IFC2 | 0.661 | 0.014 | 0.535–0.788 | 12.3 | 83 | 72 | |
≤IFC2 vs. IFC3 | 0.694 | 0.047 | 0.477–0.910 | 30 | 80 | 53 | |
IFC0 vs. IFC3 | 0.690 | 0.110 | 0.439–0.942 | ||||
PGF2α (nM) | IFC0 vs. ≥IFC1 | 0.572 | 0.338 | 0.422–0.722 | |||
≤IFC1 vs. ≥IFC2 | 0.581 | 0.215 | 0.441–0.721 | ||||
≤IFC2 vs. IFC3 | 0.748 | 0.011 | 0.537–0.958 | 0.675 | 80 | 14 | |
IFC0 vs. IFC3 | 0.731 | 0.050 | 0.494–0.968 | 0.665 | 78 | 16 | |
15HETE (nM) | IFC0 vs. ≥IFC1 | 0.579 | 0.292 | 0.430–0.728 | |||
≤IFC1 vs. ≥IFC2 | 0.552 | 0.430 | 0.415–0.688 | ||||
≤IFC2 vs. IFC3 | 0.689 | 0.050 | 0.484–0.895 | 0.675 | 80 | 14 | |
IFC0 vs. IFC3 | 0.696 | 0.099 | 0.464–0.927 | ||||
ETA (nM) | IFC0 vs. ≥IFC1 | 0.647 | 0.050 | 0.525–0.768 | 0.42 | 82 | 79 |
≤IFC1 vs. ≥IFC2 | 0.573 | 0.267 | 0.434–0.711 | ||||
≤IFC2 vs. IFC3 | 0.626 | 0.197 | 0.397–0.854 | ||||
IFC0 vs. IFC3 | 0.661 | 0.176 | 0.390–0.932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer, M.D.; Reynés, C.; Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Bouzas, C.; García, S.; Mateos, D.; Casares, M.; Gómez, C.; Ugarriza, L.; et al. Polyunsaturated and Saturated Oxylipin Plasma Levels Allow Monitoring the Non-Alcoholic Fatty Liver Disease Progression to Severe Stages. Antioxidants 2023, 12, 711. https://doi.org/10.3390/antiox12030711
Ferrer MD, Reynés C, Monserrat-Mesquida M, Quetglas-Llabrés M, Bouzas C, García S, Mateos D, Casares M, Gómez C, Ugarriza L, et al. Polyunsaturated and Saturated Oxylipin Plasma Levels Allow Monitoring the Non-Alcoholic Fatty Liver Disease Progression to Severe Stages. Antioxidants. 2023; 12(3):711. https://doi.org/10.3390/antiox12030711
Chicago/Turabian StyleFerrer, Miguel D., Clara Reynés, Margalida Monserrat-Mesquida, Magdalena Quetglas-Llabrés, Cristina Bouzas, Silvia García, David Mateos, Miguel Casares, Cristina Gómez, Lucía Ugarriza, and et al. 2023. "Polyunsaturated and Saturated Oxylipin Plasma Levels Allow Monitoring the Non-Alcoholic Fatty Liver Disease Progression to Severe Stages" Antioxidants 12, no. 3: 711. https://doi.org/10.3390/antiox12030711
APA StyleFerrer, M. D., Reynés, C., Monserrat-Mesquida, M., Quetglas-Llabrés, M., Bouzas, C., García, S., Mateos, D., Casares, M., Gómez, C., Ugarriza, L., Tur, J. A., Sureda, A., & Pons, A. (2023). Polyunsaturated and Saturated Oxylipin Plasma Levels Allow Monitoring the Non-Alcoholic Fatty Liver Disease Progression to Severe Stages. Antioxidants, 12(3), 711. https://doi.org/10.3390/antiox12030711