Evaluation of the Physical and Oxidative Stabilities of Fish Oil-in-Water-in-Olive Oil Double Emulsions (O1/W/O2) Stabilized with Whey Protein Hydrolysate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzymatic Hydrolysis
2.3. Emulsions Preparation and Sampling
2.4. Microstructure of Simple O1/W and Double O1/W/O2 Emulsions
2.5. Physical Stability of Emulsions
2.5.1. Zeta Potential
2.5.2. Droplet Size Distribution
2.5.3. Turbiscan Stability Index
2.6. Oxidative Stability of Emulsions
2.6.1. Peroxide Value (PV)
2.6.2. p-Anisidine Value (AV)
2.6.3. Statistical Analysis
3. Results and Discussion
3.1. Physical Stability of Emulsions
3.1.1. Physical Stability of Simple O1/W Emulsions
3.1.2. Physical Stability of Double O1/W/O2 Emulsions
3.2. Oxidative Stability of Emulsions
3.2.1. Oxidative Stability of Simple O1/W Emulsion
3.2.2. Oxidative Stability of Double O1/W/O2 Emulsions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calder, P.C. Health Benefits of Omega-3 Fatty Acids. In Omega-3 Delivery Systems; Academic Press: Cambridge, MA, USA, 2021; pp. 25–53. [Google Scholar] [CrossRef]
- Jacobsen, C.; García-Moreno, P.J.; Yesiltas, B.; Sørensen, A.D.M. Lipid Oxidation and Traditional Methods for Evaluation. In Omega-3 Delivery Systems Production, Physical Characterization and Oxidative Stability; Academic Press: Cambridge, MA, USA, 2021; pp. 183–200. [Google Scholar] [CrossRef]
- Mozuraityte, R.; Kotsoni, E.; Cropotova, J.; Rustad, T. Low-Fat (<50%) Oil-in-Water Emulsions. In Omega-3 Delivery Systems Production, Physical Characterization and Oxidative Stability; Academic Press: Cambridge, MA, USA, 2021; pp. 241–254. [Google Scholar] [CrossRef]
- Ghelichi, S.; Hajfathalian, M.; García-Moreno, P.J.; Yesiltas, B.; Moltke-Sørensen, A.-D.; Jacobsen, C. Food Enrichment with Omega-3 Polyunsaturated Fatty Acids. In Omega-3 Delivery Systems; Academic Press: Cambridge, MA, USA, 2021; pp. 395–425. [Google Scholar] [CrossRef]
- O’Dwyer, S.P.; O’Beirne, D.; Ní Eidhin, D.; Hennessy, A.A.; O’Kennedy, B.T. Formation, Rheology and Susceptibility to Lipid Oxidation of Multiple Emulsions (O/W/O) in Table Spreads Containing Omega-3 Rich Oils. LWT Food Sci. Technol. 2013, 51, 484–491. [Google Scholar] [CrossRef]
- Dwyer, S.P.O.; O’Beirne, D.; Ní Eidhin, D.; O’Kennedy, B.T. Effects of Green Tea Extract and α-Tocopherol on the Lipid Oxidation Rate of Omega-3 Oils, Incorporated into Table Spreads, Prepared Using Multiple Emulsion Technology. J. Food Sci. 2012, 77, N58–N65. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Martín, E.; Gharsallaoui, A.; Pérez-Palacios, T.; Ruiz Carrascal, J.; Antequera Rojas, T. Volatile Compounds and Physicochemical Characteristics during Storage of Microcapsules from Different Fish Oil Emulsions. Food Bioprod. Process. 2015, 96, 52–64. [Google Scholar] [CrossRef]
- Muschiolik, G.; Dickinson, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Fernández, A.G.; Román-Guerrero, A.; Jiménez-Alvarado, R.; Lobato-Calleros, C.; Alvarez-Ramirez, J.; Vernon-Carter, E.J. Stabilization of Oil-in-Water-in-Oil (O1/W/O2) Pickering Double Emulsions by Soluble and Insoluble Whey Protein Concentrate-Gum Arabic Complexes Used as Inner and Outer Interfaces. J. Food Eng. 2018, 221, 35–44. [Google Scholar] [CrossRef]
- Panagopoulou, E.; Evageliou, V.; Kopsahelis, N.; Ladakis, D.; Koutinas, A.; Mandala, I. Stability of Double Emulsions with PGPR, Bacterial Cellulose and Whey Protein Isolate. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 522, 445–452. [Google Scholar] [CrossRef]
- Berton-Carabin, C.C.; Ropers, M.H.; Genot, C. Lipid Oxidation in Oil-in-Water Emulsions: Involvement of the Interfacial Layer. Compr. Rev. Food Sci. Food Saf. 2014, 13, 945–977. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation. J. Agric. Food Chem. 2018, 66, 20–25. [Google Scholar] [CrossRef]
- Mitrus, O.; Zuraw, M.; Losada-Barreiro, S.; Bravo-Díaz, C.; Paiva-Martins, F. Targeting Antioxidants to Interfaces: Control of the Oxidative Stability of Lipid-Based Emulsions. J. Agric. Food Chem. 2019, 67, 3266–3274. [Google Scholar] [CrossRef]
- García-Moreno, P.J.; Gregersen, S.; Nedamani, E.R.; Olsen, T.H.; Marcatili, P.; Overgaard, M.T.; Andersen, M.L.; Hansen, E.B.; Jacobsen, C. Identification of Emulsifier Potato Peptides by Bioinformatics: Application to Omega-3 Delivery Emulsions and Release from Potato Industry Side Streams. Sci. Rep. 2020, 10, 690. [Google Scholar] [CrossRef] [Green Version]
- Rahmani-Manglano, N.E.; González-Sánchez, I.; García-Moreno, P.J.; Espejo-Carpio, F.J.; Jacobsen, C.; Guadix, E.M. Development of Fish Oil-Loaded Microcapsules Containing Whey Protein Hydrolysate as Film-Forming Material for Fortification of Low-Fat Mayonnaise. Foods 2020, 9, 545. [Google Scholar] [CrossRef]
- Padial-Domínguez, M.; Espejo-Carpio, F.J.; García-Moreno, P.J.; Jacobsen, C.; Guadix, E.M. Protein Derived Emulsifiers with Antioxidant Activity for Stabilization of Omega-3 Emulsions. Food Chem. 2020, 329, 127148. [Google Scholar] [CrossRef] [PubMed]
- García-Moreno, P.J.; Pérez-Gálvez, R.; Morales-Medina, R.; Guadix, A.; Guadix, E.M. Discarded Species in the West Mediterranean Sea as Sources of Omega-3 PUFA. Eur. J. Lipid Sci. Technol. 2013, 115, 982–989. [Google Scholar] [CrossRef]
- García-Moreno, P.J.; Pérez-Gálvez, R.; Guadix, A.; Guadix, E.M. Influence of the Parameters of the Rancimat Test on the Determination of the Oxidative Stability Index of Cod Liver Oil. LWT Food Sci. Technol. 2013, 51, 303–308. [Google Scholar] [CrossRef]
- García-Moreno, P.J.; Guadix, A.; Guadix, E.M.; Jacobsen, C. Physical and Oxidative Stability of Fish Oil-in-Water Emulsions Stabilized with Fish Protein Hydrolysates. Food Chem. 2016, 203, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Drusch, S.; Serfert, Y.; Berger, A.; Shaikh, M.Q.; Rätzke, K.; Zaporojtchenko, V.; Schwarz, K. New Insights into the Microencapsulation Properties of Sodium Caseinate and Hydrolyzed Casein. Food Hydrocoll. 2012, 27, 332–338. [Google Scholar] [CrossRef]
- Ruiz-Álvarez, J.M.; del Castillo-Santaella, T.; Maldonado-Valderrama, J.; Guadix, A.; Guadix, E.M.; García-Moreno, P.J. PH Influences the Interfacial Properties of Blue Whiting (M. Poutassou) and Whey Protein Hydrolysates Determining the Physical Stability of Fish Oil-in-Water Emulsions. Food Hydrocoll. 2022, 122, 107075. [Google Scholar] [CrossRef]
- Carrera Sánchez, C.; Rodríguez Patino, J.M. Contribution of the Engineering of Tailored Interfaces to the Formulation of Novel Food Colloids. Food Hydrocoll. 2021, 119, 106838. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and techniques. In Food Emulsions: Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–676. [Google Scholar] [CrossRef]
- Díaz-Ruiz, R.; Laca, A.; Sánchez, M.; Fernández, M.R.; Matos, M.; Gutiérrez, G. Addition of Trans-Resveratrol-Loaded Highly Concentrated Double Emulsion to Yoghurts: Effect on Physicochemical Properties. Int. J. Mol. Sci. 2022, 23, 85. [Google Scholar] [CrossRef] [PubMed]
- Thanh Diep, T.; Phan Dao, T.; Vu, H.T.; Quoc Phan, B.; Ngoc Dao, D.; Huu Bui, T.; Truong, V.; Nguyen, V. Double Emulsion Oil-in Water-in Oil (O/W/O) Stabilized by Sodium Caseinate and k-Carrageenan. J. Dispers. Sci. Technol. 2018, 39, 1752–1757. [Google Scholar] [CrossRef]
- Ghelichi, S.; Hajfathalian, M.; Yesiltas, B.; Sørensen, A.D.M.; García-Moreno, P.J.; Jacobsen, C. Oxidation and oxidative stability in emulsions. Compr. Rev. Food Sci. Food Saf. 2023, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Ghelichi, S.; Sørensen, A.D.M.; García-Moreno, P.J.; Hajfathalian, M.; Jacobsen, C. Physical and Oxidative Stability of Fish Oil-in-Water Emulsions Fortified with Enzymatic Hydrolysates from Common Carp (Cyprinus Carpio) Roe. Food Chem. 2017, 237, 1048–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirmenstein, M.A.; Pierce, C.A.; Leraas, T.L.; Fariss, M.W. A Fluorescence Plate Reader Assay for Monitoring the Susceptibility of Biological Samples to Lipid Peroxidation. Anal. Biochem. 1998, 265, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Yesiltas, B.; García-Moreno, P.J.; Gregersen, S.; Olsen, T.H.; Jones, N.C.; Hoffmann, S.V.; Marcatili, P.; Overgaard, M.T.; Hansen, E.B.; Jacobsen, C. Antioxidant Peptides Derived from Potato, Seaweed, Microbial and Spinach Proteins: Oxidative Stability of 5% Fish Oil-in-Water Emulsions. Food Chem. 2022, 385, 132699. [Google Scholar] [CrossRef]
- Velasco, J.; Dobarganes, C. Oxidative Stability of Virgin Olive Oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- Jansson, T.; Rauh, V.; Danielsen, B.P.; Poojary, M.M.; Waehrens, S.S.; Bredie, W.L.P.; Sørensen, J.; Petersen, M.A.; Ray, C.A.; Lund, M.N. Green Tea Polyphenols Decrease Strecker Aldehydes and Bind to Proteins in Lactose-Hydrolyzed UHT Milk. J. Agric. Food Chem. 2017, 65, 10550–10561. [Google Scholar] [CrossRef]
- von Staszewski, M.; Pizones Ruiz-Henestrosa, V.M.; Pilosof, A.M.R. Green Tea Polyphenols-β-Lactoglobulin Nanocomplexes: Interfacial Behavior, Emulsification and Oxidation Stability of Fish Oil. Food Hydrocoll. 2014, 35, 505–511. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padial-Domínguez, M.; García-Moreno, P.J.; González-Beneded, R.; Guadix, A.; Guadix, E.M. Evaluation of the Physical and Oxidative Stabilities of Fish Oil-in-Water-in-Olive Oil Double Emulsions (O1/W/O2) Stabilized with Whey Protein Hydrolysate. Antioxidants 2023, 12, 762. https://doi.org/10.3390/antiox12030762
Padial-Domínguez M, García-Moreno PJ, González-Beneded R, Guadix A, Guadix EM. Evaluation of the Physical and Oxidative Stabilities of Fish Oil-in-Water-in-Olive Oil Double Emulsions (O1/W/O2) Stabilized with Whey Protein Hydrolysate. Antioxidants. 2023; 12(3):762. https://doi.org/10.3390/antiox12030762
Chicago/Turabian StylePadial-Domínguez, Marta, Pedro J. García-Moreno, Rubén González-Beneded, Antonio Guadix, and Emilia M. Guadix. 2023. "Evaluation of the Physical and Oxidative Stabilities of Fish Oil-in-Water-in-Olive Oil Double Emulsions (O1/W/O2) Stabilized with Whey Protein Hydrolysate" Antioxidants 12, no. 3: 762. https://doi.org/10.3390/antiox12030762
APA StylePadial-Domínguez, M., García-Moreno, P. J., González-Beneded, R., Guadix, A., & Guadix, E. M. (2023). Evaluation of the Physical and Oxidative Stabilities of Fish Oil-in-Water-in-Olive Oil Double Emulsions (O1/W/O2) Stabilized with Whey Protein Hydrolysate. Antioxidants, 12(3), 762. https://doi.org/10.3390/antiox12030762