Total Phenolic and Total Flavonoid Content, Individual Phenolic Compounds and Antioxidant Activity in Sweet Rowanberry Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Samples
2.2. Experimental Area
2.3. Chemicals and Reagents
2.4. Extraction Methods
2.5. Analysis of Total Phenolic (TPC) and Total Flavonoid (TFC) Content
2.6. Analysis of Total Anthocyanin Content (AC)
2.7. Analysis of Vitamins C and E
2.8. Determination of Phenolic Compounds Using HPLC
2.9. Determination of Antioxidant Activity Using DPPH and PCL
2.10. Statistical Analysis
3. Results
3.1. Determination of Total Polyphenolic (TPC), Total Flavonoid (TFC) and Anthocyanin Content (AC)
3.2. Determination of Individual Phenolic Compounds by HPLC
3.2.1. Total Contents of Phenolic Compounds by RP–HPLC
3.2.2. Individual Phenolic Compounds by RP–HPLC
3.3. Determination of Phenolic Acids
3.4. Influence of Individual Phenolic Compounds on Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Anthocyanin Content (AC)
3.5. Determination of Vitamin C and E
3.6. Antioxidant Activity by DPPH, ACW and ACL
3.7. Influence of Various Factors on Antioxidant Activity
3.7.1. Influence of the Method of Antioxidant Activity (AOA) Detection
3.7.2. Influence of Total Phenolic Content (TPC)
3.7.3. Influence of Total Flavonoid Content (TFC)
3.7.4. Influence of Anthocyanin Content (AC)
3.7.5. Influence of Vitamins C and E
3.7.6. Influence of Flavonols and Flavanols
3.7.7. Influence of Phenolic Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson–Jones, E.B.; Briggs, D.; Smith, A.G. The origin of intermediate species of the genus Sorbus. Theor. Appl. Genet. 2002, 105, 953–963. [Google Scholar] [CrossRef]
- Uhrinova, V.; Zozomova–Lihova, J.; Bernatova, D.; Paule, J.; Paule, L.; Gömör, D. Origin and genetic differentiation of pink–flowered Sorbus hybrids in the Western Carpathians. Ann. Bot. 2017, 120, 271–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hukkanen, A.T.; Pölönen, S.S.; Kärenlampi, S.O.; Kokko, H.I. Antioxidant capacity and phenolic content of sweet rowanberries. J. Agric. Food Chem. 2006, 54, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Sarv, V.; Venskutonis, P.R.; Bhat, R. The Sorbus spp.—Underutilised Plants for Foods and Nutraceuticals: Review on Polyphenolic Phytochemicals and Antioxidant Potential. Antioxidants 2020, 9, 813. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, V.V.; Savel’ev, N.I.; Goncharov, N.P.I.V. Michurin’s work on expansion of the plant horticulture assortment and improvement of food quality. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2015, 69, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Mlcek, J.; Rop, O.; Jurikova, T.; Sochor, J.; Fisera, M.; Balla, S.; Baron, M.; Hrabe, J. Bioactive compounds in sweet rowanberry fruits of interspecific rowan crosses. Cent. Eur. J. Biol. 2014, 9, 1078–1086. [Google Scholar] [CrossRef]
- Rengarten, G.A.; Sorokopudov, V.N. Selection of rows as a decorative culture in Russia and in European countries. Vestn. KrasGAU Agron. 2019, 6, 9–15. [Google Scholar]
- Kylli, P.; Nohynek, L.; Puupponen–Pimiä, R.; Westerlund–Wikström, B.; McDougall, G.; Stewart, D.; Heinonen, M. Rowanberry phenolics: Compositional analysis and bioactivities. J. Agric. Food Chem. 2010, 58, 11985–11992. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Presler, A.; Michel, P. Profiling of phenolic compounds and antioxidant activity of dry extracts from the selected Sorbus species. Molecules 2012, 17, 3093–3113. [Google Scholar] [CrossRef]
- Šavikin, K.P.; Zdunić, G.M.; Krstić–Milošević, D.B.; Šircelj, H.J.; Stešević, D.D.; Pljevljakušić, D.S. Sorbus aucuparia and Sorbus aria as a Source of Antioxidant Phenolics, Tocopherols, and Pigments. Chem. Biodivers. 2017, 14, e1700329. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Nowak, S.; Michel, P.; Banaszczak, P.; Kicel, A. Assessment of the content of phenolics and antioxidant action of inflorescences and leaves of selected species from the genus Sorbus sensu stricto. Molecules 2010, 15, 8769–8783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattila, P.; Hellström, J.; Törrönen, R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef] [PubMed]
- Jurikova, T.; Sochor, J.; Mlcek, J.; Balla, S.; Klejdus, B.; Baron, M.; Ercisli, S.; Ozturk Yilmaz, S. Polyphenolic profile of interspecific crosses of rowan (Sorbus aucuparia L.). Ital. J. Food Sci. 2014, 26, 317–324. [Google Scholar]
- Fomenko, S.E.; Kushnerova, N.F.; Sprygin, V.G.; Drugova, E.S.; Mmot, T.V. Chemical Composition and biological action of rowanberry extract. Russ. J. Bioorganic Chem. 2016, 42, 764–769. [Google Scholar] [CrossRef]
- Berna, E.; Kampuse, S.; Straumite, E. The suitability of different rowanberry cultivars for production of fruit marmalade. In Proceedings of the Annual 18th International Scientific Conference “Research for Rural Development”, Jelgava, Latvia, 16–18 May 2012; pp. 109–116. [Google Scholar]
- Minařík, P. Influencing the yield and quality of winter wheat using stabilized nitrogen fertilizers with sulphur. Diploma Thesis, Mendel University in Brno, Faculty of Agronomy, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Brno, Czech Republic, 2016. [Google Scholar]
- Orsavová, J.; Hlaváčová, I.; Mlček, J.; Snopek, L.; Mišurcová, L. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva–crispa L.) fruits. Food Chem. 2019, 284, 323–333. [Google Scholar] [CrossRef]
- Sytařová, I.; Orsavová, J.; Snopek, L.; Mlček, J.; Byczyňski, L.; Mišurcová, L. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chem. 2020, 310, 125784. [Google Scholar] [CrossRef]
- Lee, M.T.; Lin, W.C.; Yu, B.; Lee, T.T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australasian J. Anim. Sci. 2016, 30, 299–308. [Google Scholar] [CrossRef]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing: Pacific Grove, CA, USA, 1996; p. 634. [Google Scholar]
- Sarv, V.; Venskutonis, P.R.; Rätsep, R.; Aluvee, A.; Kazernavičiute, R.; Bhat, R. Antioxidants Characterization of the Fruit, Juice, and Pomace of Sweet Rowanberry (Sorbus aucuparia L.) Cultivated in Estonia. Antioxidants 2021, 10, 1779. [Google Scholar] [CrossRef]
- Jabłońska–Ryś, E.; Zalewska–Korona, M.; Kalbarczyk, J. Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. J. Fruit Ornam. Plant Research. 2009, 17, 115–120. [Google Scholar]
- Termentzi, A.; Kefalas, P.; Kokkalou, E. Antioxidant activities of various extracts and fractions of Sorbus domestica fruits at different maturity stages. Food Chem. 2006, 98, 599–608. [Google Scholar] [CrossRef]
- Kivrak, I.; Kivrak, S. Antioxidant properties, phenolic profile and nutritional value for Sorbus umbellata fruits from Turkey. Austin J. Nutr. Food Sci. 2014, 2, 1–6. [Google Scholar]
- Paulovicsová, B.; Turianice, I.; Juriková, T.; Baloghová, M.; Matuškovič, J. Antioxidant properties of selected less common fruit species. Lucr. Științifice-Zooteh. Și Biotehnol. 2009, 42, 608–614. [Google Scholar]
- Zymone, K.; Raudone, L.; Raudonis, R.; Marksa, M.; Ivanauskas, L.; Janulis, V. Phytochemical profiling of fruit powders of twenty Sorbus L. Cultivars. Molecules 2018, 23, 2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampuss, K.; Kampuse, S.; Berna, E.; Kruma, Z.; Krasnova, I.; Drudze, I. A Biochemical composition and antiradical activity of rowanberry (Sorbus L.) cultivars and hybrids with different Rosaceae L. cultivars. Agron. Vestís 2009, 12, 59. [Google Scholar]
- Tahirović, A.; Mehić, E.; Kjosevski, N.; Bašić, N. Phenolics content and antioxidant activity of three Sorbus species. Bull. Chem. Technol. Bosnia Herzeg. 2019, 53, 15–21. [Google Scholar]
- Raudonis, R.; Raudone, L.; Gaivelyte, K.; Viškelis, P.; Janulis, V. Phenolic and antioxidant profiles of rowan (Sorbus L.) fruits. Nat. Prod. Res. 2014, 28, 1231–1240. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Michel, P. Antioxidant activity of inflorescences, leaves and fruits of three Sorbus species in relation to their polyphenolic composition. Nat. Prod. Res. 2009, 23, 1507–1521. [Google Scholar] [CrossRef]
- Rop, O.; Mlček, J.; Kramářová, D.; Juriková, T. Selected cultivars of cornelian cherry (Cornus mas L.) as a new food source for human nutrition. Afr. J. Biotechnol. 2010, 9, 1205–1210. [Google Scholar]
- Mrkonjić, Z.; Nađpal, J.; Beara, I.; Šibul, F.; Knežević, P.; Lesjak, M.; Mimica–Dukić, M. Fresh fruits and jam of Sorbus domestica L. and Sorbus intermedia (Ehrh.) Pers. 2019. phenolic profiles, antioxidant action and antimicrobial activity. Bot. Serbica 2019, 43, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Isaikina, N.V.; Kalinkina, G.I.; Razina, T.G.; Zueva, E.P.; Rybalkina, O.Y.; Ulirich, A.V.; Fedorova, E.P.; Shilova, A.B. Sorbus aucuparia L. fruit is a source of the drug for increasing the efficiency of tumor chemotherapy. Russ. J. Bioorganic Chem. 2018, 44, 899–905. [Google Scholar] [CrossRef]
- Termentzi, A.; Kefalas, P.; Kokkalou, E. 2008. LC–DAD–MS (ESI+) analysis of the phenolic content of Sorbus domestica fruits in relation to their maturity stage. Food Chem. 2008, 106, 1234–1245. [Google Scholar] [CrossRef]
- Mikulic–Petkovsek, M.; Krska, B.; Kiprovski, B.; Veberic, R. 2017. Bioactive components and antioxidant capacity of fruits from nine Sorbus genotypes. J. Food Sci. 2017, 82, 647–658. [Google Scholar] [PubMed]
- Mrkonjić, Z.O.; Nadpal, J.D.; Beara, I.N.; Sabo, V.S.A.; Cetojević–Simin, D.D.; Mimica–Dukić, N.M.; Lesjak, M.M. Phenolic profiling and bioactivities of fresh fruits and jam of Sorbus species. J. Serb. Chem. Soc. 2017, 82, 651–664. [Google Scholar] [CrossRef] [Green Version]
- Bobinaitė, R.; Grootaert, C.; Van Camp, J.; Šarkinas, A.; Liaudanskas, M.; Žvikas, V.; Viškelis, P.; Rimantas Venskutonis, P. Chemical composition, antioxidant, antimicrobial and antiproliferative activities of the extracts isolated from the pomace of rowanberry (Sorbus aucuparia L.). Food Res. Int. 2020, 136, 109310. [Google Scholar] [CrossRef]
- Piir, R.; Niiberg, T. Rowan in Garden and Kitchen Pihlakas Aias ja Köögis; Maahele Raamat: Tallin, Estonia, 2003. [Google Scholar]
- Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkanen, H.M.; Törrönen, A.R. Content of the Flavonols Quercetin, Myricetin, and Kaempferol in 25 edible Berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [Google Scholar] [CrossRef]
- Ozolina, U.; Kampuse, S. Comparison of bioactive compounds of cultivated sweet rowanberry, chokeberry and blackcurrant juice residues. In Proceedings of the 14th International Scientific Conference Students on Their Way to Science (Undergraduate, Graduate, Post–Graduate Students) Collection of Abstracts, Jelgava, Latvia, 26 April 2019; pp. 57–58. [Google Scholar]
- Hasbal, G.; Tugba, Y.O.; Can, A. Antioxidant and antiacetylcholinesterase activities of Sorbus torminalis (L.) Crantz (wild service tree) fruits. J. Food Drug Anal. 2015, 23, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Gil–izquierdo, A.; Mellethin, A. Identification and quantitation of flavonols in rowanberry (Sorbus aucuparia L.) juice. Eur. Food Res. Technol. 2001, 213, 12–17. [Google Scholar]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef]
Cultivar | Origin/Breeding Background | Description |
---|---|---|
‘Alaja Krupnaja’ | Russia S. aucuparia × Pyrus sp. × S. aucuparia var. moravic | Round, bright red-brown colored fruits with mildly bitter taste, 0.6 g, August–September |
‘Granatnaja’ | Russia S. aucuparia × Crataegus sanguinea = Sorbocrataegus miczurinii | Round, dark red or brown fruits with sweet and sour taste, 1.7 g, August–September |
‘Granatina’ | Slovakia S. aucuparia × Crataegus sanguinea × Crateagus laevigata | Dark red fruit of medium size, sweet–sour taste, 1.2 g, August–September |
‘Businka’ | Russia Seedling of Kubovaja (S. aucuparia) | Large, long fruit (1 cm, 1.5 g) yellow-red or dark red color with a taste reminiscent of blueberry, September–October |
‘Discolor’ | China | Round fruit with a color varying from red to creamy yellow turning to pink, Ø 0.7–1 cm, 3 g, sweet–sour taste, September–October |
‘Titan’ | Russia ‘Burka’ × (Sorbus aucuparia) × (Malus sp.) × (Pyrus sp.) | Round-shaped fruit, dark red or violet, without typical aroma, 2 g, suitable for processing, September–October |
‘Koncentra’ | Germany | Round-shaped fruit, orange, with a sour taste due to the significant content of vitamin C, September–October |
Žabčice | Long-Term Average | 2014 |
---|---|---|
Temperature [°C] | 9.2 | 11.2 |
Precipitation [mm] | 480 | 577 |
Sorbus—Cultivars | Total Phenolic Content (TPC) [g GA kg−1] | Total Flavonoid Content (TFC) [g RU kg−1] | Anthocyanins (AC) [mg COG 100 g−1] | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
‘Alaja Krupnaja’ | 15.66 a | 0.16 | 17.28 a | 0.49 | 1.19 a | 0.18 |
‘Granatnaja’ | 8.81 b | 0.09 | 26.69 b | 0.12 | 51.38 b | 0.16 |
‘Granatina’ | 14.75 c | 0.08 | 26.85 b | 0.17 | 32.52 c | 1.02 |
‘Businka’ | 16.31 d | 0.02 | 21.22 c | 0.06 | 36.35 d | 1.44 |
‘Discolor’ | 12.63 e | 0.02 | 22.81 d | 0.06 | 5.50 e | 0.08 |
‘Koncentra’ | 10.56 f | 0.02 | 15.04 e | 0.11 | 5.36 f | 0.18 |
‘Titan’ | 9.00 b | 0.02 | 18.29 f | 0.08 | 50.20 g | 1.04 |
Flavonoids [mg kg−1] | Sorbus—Cultivars | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘A. Krupnaja’ | ‘Granatnaja’ | ‘Granatina’ | ‘Businka’ | ‘Discolor’ | ‘Koncentra’ | ‘Titan’ | ||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Flavonols | ||||||||||||||
quercetin | 2.4 a | 0.0 | nd | nd | nd | nd | nd | nd | ||||||
rutin | 71.1 a | 0.3 | 33.1 b | 0.3 | 50.8 c | 0.6 | 13.7 d | 1.5 | 33.9 e | 0.0 | 9.8 f | 0.3 | 10.6 f | 0.9 |
kaempferol | nd | nd | nd | nd | nd | nd | nd | |||||||
Flavanols | ||||||||||||||
epigallocatechin | 423.4 a | 0.4 | 533.1 b | 0.5 | 610.0 c | 9.0 | 625.4 d | 1.8 | 244.3 e | 8.1 | 1167.5 f | 4.6 | 458.4 g | 6.4 |
epicatechin | 4.2 a | 0.2 | 17.7 b | 1.5 | 10.3 c | 0.0 | 6.8 d | 0.1 | 31.1 e | 0.0 | 3.3 f | 0.1 | 9.6 g | 0.2 |
catechin | 165.5 a | 3.2 | 583.1 b | 6.0 | 633.6 c | 1.9 | 560.5 d | 4.9 | 23.4 e | 0.1 | 497.7 f | 1.2 | 475.6 g | 0.8 |
Stilbenes | ||||||||||||||
resveratrol | 3.3 a | 0.1 | 0.9 b | 0.0 | 1.1 c | 0.0 | 0.8 d | 0.0 | nd | 0.8 d | 0.0 | 0.5 e | 0.0 | |
Total content | ||||||||||||||
Flavonols | 73.5 a | 0.3 | 33.1 b | 0.3 | 50.8 c | 0.6 | 13.7 d | 1.5 | 33.9 e | 0.0 | 9.8 f | 0.3 | 10.6 f | 0.9 |
Flavanols | 593.1 a | 3.7 | 1135.4 b | 8.0 | 1253.8 c | 10.9 | 1192.7 d | 6.9 | 298.8 e | 8.2 | 1668.6 f | 5.8 | 943.6 g | 7.4 |
Phenolic acids [mg kg−1] | Sorbus—Cultivars | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘A. Krupnaja’ | ‘Granatnaja’ | ‘Granatina’ | ‘Businka’ | ‘Discolor’ | ‘Koncentra’ | ‘Titan’ | ||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Derivates of benzoic acid | ||||||||||||||
gallic | 2.6 a | 0.0 | 6.2 b | 0.1 | 7.2 c | 0.1 | 6.5 d | 0.0 | 1.6 e | 0.0 | 16.7 f | 0.2 | 1.6 e | 0.0 |
vanillic | 37.8 a | 0.3 | nd | nd | nd | nd | nd | nd | ||||||
syringic | 18.6 a | 0.5 | 19.5 a | 0.4 | 44.3 b | 0.2 | 22.7 c | 0.2 | 2.4 d | 0.2 | 3.9 e | 0.1 | 0.6 f | 0.0 |
protocatechuic | 44.3 a | 0.1 | 39.3 b | 0.8 | 52.1 c | 0.2 | 41.1 b | 0.2 | 11.9 d | 0.0 | 32.8 e | 0.1 | 47.0 f | 0.4 |
protocatechuic ethyl ester | 6.3 a | 0.1 | 4.4 b | 0.2 | 5.5 c | 0.1 | 8.4 d | 0.1 | 2.4 e | 0.0 | 0.7 f | 0.1 | 9.0 g | 0.0 |
4–hydroxybenzoic | 41.0 a | 0.3 | 22.1 b | 0.1 | 28.7 c | 0.5 | 21.5 d | 0.0 | 6.9 e | 0.0 | 2.6 f | 0.1 | 9.6 g | 0.1 |
ellagic | 0.9 a | 0.1 | 14.8 b | 0.2 | 16.8 c | 0.0 | 6.4 d | 0.6 | 31.6 e | 0.2 | 3.1 f | 0.0 | 2.3 g | 0.0 |
Derivates of cinnamic acid | ||||||||||||||
t–cinnamic | 0.9 a | 0.0 | nd | nd | nd | nd | nd | nd | ||||||
hydroxycinnamic | nd | nd | nd | nd | nd | nd | nd | |||||||
caffeic | 1803.6 a | 6.6 | 667.4 b | 3.3 | 428.6 c | 9.5 | 275.4 d | 0.8 | 226.7 e | 8.2 | 56.1 f | 0.1 | 51.8 g | 1.3 |
ferullic | 115.8 a | 0.2 | 7.1 b | 0.2 | 9.1 c | 0.9 | 8.7 c,d | 0.4 | nd | 7.9 c,e | 0.3 | 4.3 f | 0.1 | |
chlorogenic | 1383.1 a | 7.4 | 1961.8 b | 30.0 | 2271.9 c | 25.0 | 1767.8 d | 13.4 | 189.7 e | 5.4 | 2277.4 c | 25.4 | 2375.2 f | 38.6 |
neochlorogenic | 1312.2 a | 6.9 | 3627.5 b | 60.7 | 4069.8 c | 11.3 | 2955.0 d | 12.8 | 43.6 e | 0.9 | 2239.3 f | 11.9 | 3816.0 g | 9.4 |
p–coumaric | 2.4 a | 0.0 | 3.9 b | 0.1 | 5.8 c | 0.0 | 2.7 d | 0.0 | 2.8 d | 0.1 | 6.3 e | 0.1 | 13.6 f | 0.2 |
sinapic | 7.1 a | 0.1 | 24.8 b | 0.1 | 61.8 c | 1.0 | 26.4 d | 0.9 | 5.2 e | 0.1 | 6.4 f | 0.3 | 4.1 g | 0.2 |
Total content | ||||||||||||||
Derivates of benzoic acid | 151.4 a | 1.4 | 106.3 b | 1.7 | 154.7 c | 1.1 | 106.6 b | 1.1 | 56.8 d | 0.5 | 59.7 e | 0.5 | 70.8 f | 0.5 |
Derivates of cinnamic acid | 4625.1 a | 21.2 | 6292.4 b | 94.3 | 6847.1 c | 47.6 | 5036.2 d | 28.3 | 467.9 e | 14.7 | 4593.4 f | 38.1 | 6265.1 b | 48.1 |
TPC | TFC | AC | |
---|---|---|---|
TPC | – | 0.0293 | −0.4034 |
Flavonols | |||
RU | 0.4853 | 0.2540 | −0.3693 |
Flavanols | |||
EGC | −0.1541 | −0.4116 | −0.1275 |
EC | −0.2442 | 0.5484 | 0.0217 |
C | −0.1802 | 0.2846 | 0.6988 |
FLAVAN | −0.1964 | −0.1054 | 0.2776 |
Stilbenes | |||
RES | 0.5324 | – | – |
TPC | |||
---|---|---|---|
Derivates of benzoic acid | Derivates of cinnamic acid | ||
GA | −0.1277 | HCA | – |
VA | 0.3074 | CA | 0.4222 |
SI | 0.5514 | FEA | 0.4735 |
PC | 0.1356 | CHA | −0.2836 |
PCEE | 0.2504 | NCHA | −0.2543 |
HB | 0.5977 | PCA | −0.5892 |
EL | −0.0218 | SA | 0.3555 |
DBA | 0.990 | DCA | −0.1457 |
Sorbus—Cultivars | Vitamin C [g kg−1] | Vitamin E [mg kg−1] | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
‘Alaja Krupnaja’ | 7.89 a | 0.04 | 1.42 a | 0.01 |
‘Granatnaja’ | 6.12 b | 0.00 | 4.13 b | 0.01 |
‘Granatina’ | 6.41 c | 0.01 | 4.41 c | 0.02 |
‘Businka’ | 6.72 d | 0.01 | 4.77 d | 0.02 |
‘Discolor’ | 5.16 e | 0.03 | 4.49 e | 0.03 |
‘Koncentra’ | 6.85 f | 0.01 | 4.26 f | 0.01 |
‘Titan’ | 4.87 g | 0.10 | 3.96 g | 0.04 |
Sorbus—Cultivars | DPPH [g Trolox kg−1] | ACW [g AC kg−1] | ACL [g Trolox kg−1] | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
‘Alaja Krupnaja’ | 8.61 a | 0.13 | 156.87 a | 0.26 | 15.11 a | 0.26 |
‘Granatnaja’ | 14.98 b | 0.12 | 93.35 b | 0.63 | 20.70 b | 0.47 |
‘Granatina’ | 12.49 c | 0.03 | 124.89 c | 0.81 | 23.32 c | 0.53 |
‘Businka’ | 16.16 d | 0.05 | 131.67 d | 0.64 | 16.59 d | 0.35 |
‘Discolor’ | 3.32 e | 0.01 | 61.70 e | 0.96 | 19.62 e | 0.23 |
‘Koncentra’ | 9.34 f | 0.00 | 92.79 b | 0.65 | 22.11 c | 0.73 |
‘Titan’ | 10.47 g | 0.01 | 63.59 f | 0.58 | 15.90 f | 0.26 |
DPPH | ACW | ACL | |
---|---|---|---|
DPPH | – | ||
ACW | 0.3987 | – | |
ACL | 0.0232 | −0.1965 | – |
TPC | 0.0596 | 0.7671 | −0.2162 |
TFC | 0.3279 | −0.0290 | 0.4488 |
AC | 0.7132 | −0.2227 | −0.0214 |
vitamin C | 0.2399 | 0.9024 | −0.0789 |
vitamin E | 0.2389 | −0.5352 | 0.5221 |
DPPH | ACW | ACL | |
---|---|---|---|
Flavonols | |||
RU | −0.2054 | 0.6032 | −0.0595 |
Flavanols | |||
EGC | 0.2852 | 0.1069 | 0.4562 |
EC | −0.4512 | −0.6050 | 0.2042 |
C | 0.8624 | 0.1369 | 0.3741 |
FLAVAN | 0.6155 | 0.1255 | 0.4885 |
Stilbenes | |||
RES | −0.1611 | 0.7169 | −0.6560 |
DPPH | ACW | ACL | |
---|---|---|---|
Derivates of benzoic acid | |||
GA | 0.2357 | 0.0914 | 0.6063 |
VA | 0.2893 | 0.3439 | 0.5961 |
SI | 0.5412 | 0.6681 | 0.3461 |
PC | 0.6812 | 0.5314 | −0.1143 |
PCEE | 0.4838 | 0.2687 | −0.6782 |
HB | 0.3201 | 0.8541 | −0.2809 |
EL | −0.4118 | −0.4447 | 0.4468 |
DBA | 0.4083 | 0.8478 | −0.0392 |
Derivates of cinnamic acid | |||
CA | −0.0403 | 0.7160 | −0.3978 |
FEA | −0.5284 | 0.7032 | −0.5167 |
CHA | 0.6697 | 0.1488 | 0.1845 |
NCHA | 0.8014 | 0.0771 | 0.2026 |
PCA | 0.0230 | −0.5179 | −0.0912 |
SA | 0.5326 | 0.3869 | 0.5476 |
DCA | 0.7865 | 0.3289 | 0.0877 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orsavová, J.; Juríková, T.; Bednaříková, R.; Mlček, J. Total Phenolic and Total Flavonoid Content, Individual Phenolic Compounds and Antioxidant Activity in Sweet Rowanberry Cultivars. Antioxidants 2023, 12, 913. https://doi.org/10.3390/antiox12040913
Orsavová J, Juríková T, Bednaříková R, Mlček J. Total Phenolic and Total Flavonoid Content, Individual Phenolic Compounds and Antioxidant Activity in Sweet Rowanberry Cultivars. Antioxidants. 2023; 12(4):913. https://doi.org/10.3390/antiox12040913
Chicago/Turabian StyleOrsavová, Jana, Tunde Juríková, Růžena Bednaříková, and Jiří Mlček. 2023. "Total Phenolic and Total Flavonoid Content, Individual Phenolic Compounds and Antioxidant Activity in Sweet Rowanberry Cultivars" Antioxidants 12, no. 4: 913. https://doi.org/10.3390/antiox12040913
APA StyleOrsavová, J., Juríková, T., Bednaříková, R., & Mlček, J. (2023). Total Phenolic and Total Flavonoid Content, Individual Phenolic Compounds and Antioxidant Activity in Sweet Rowanberry Cultivars. Antioxidants, 12(4), 913. https://doi.org/10.3390/antiox12040913