Distinct Effects of Seed Coat and Flower Colors on Metabolite Contents and Antioxidant Activities in Safflower Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Safflower Cultivation, Inspections, and Sample Preparation
2.3. Seed Crude Extract Preparation
2.4. Determination of TPC
2.5. Determination of Serotonin Derivative Contents
2.6. Antioxidant Capacity Assay
2.7. Determination of Total Oil Content
2.8. Analysis of Fatty Acids
2.9. Statistical Analysis
3. Results and Discussion
3.1. Morphological Traits
3.2. Diversity of Target Metabolite Content and Antioxidant Properties of 197 Safflower Accessions
3.3. Association of Metabolite Content and Antioxidant Activities with Seed Coat Color
3.4. Association of Metabolite Content and Antioxidant Properties with Flower Color
3.5. Pearson Correlation Analysis
3.6. PCA and HCPC Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zafari, M.; Ebadi, A.; Jahanbakhsh, S.; Sedghi, M. Safflower (Carthamus tinctorius) biochemical properties, yield and oil content affected by 24-epibrassinosteroid and genotype under drought stress. J. Agric. Food Chem. 2020, 68, 6040–6047. [Google Scholar] [CrossRef] [PubMed]
- Mihaela, P.; Josef, R.; Monica, N.; Rudolf, Z. Perspectives of safflower oil as biodiesel source for South Eastern Europe (comparative study: Safflower, soybean and rapeseed). Fuel 2013, 111, 114–119. [Google Scholar] [CrossRef]
- Ávila Casillas, E.; Ocho Espinoza, X.M.; Montoya Coronado, L.; Aguilera Molina, N.A.; Borbón Gracia, A.; Alvarado Padilla, J.I. Chey-ol: New variety of oleic safflower for northwest Mexico. Rev. Mex. Ciencias Agrícolas 2017, 8, 1209–1212. [Google Scholar]
- Erbas, S.; Tonguc, M.; Sanli, A. Variations in the agronomic and quality characteristics of domestic and foreign safflower (Carthamus tinctorius L.) genotypes. Turk. J. Field Crops. 2016, 21, 110–119. [Google Scholar] [CrossRef]
- Khalid, N.; Khan, R.S.; Hussain, M.I.; Farooq, M.; Ahmad, A.; Ahmed, I. A comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient-A review. Trends Food Sci. Technol. 2017, 66, 176–186. [Google Scholar] [CrossRef]
- Golkar, P.; Arzani, A.; Rezaei, A.M. Inheritance of flower color and spinelessness in safflower (Carthamus tinctorius L.). J. Genet. 2010, 89, 259–262. [Google Scholar] [CrossRef]
- Karami, S.; Sabzalian, M.R.; Rahimmalek, M.; Saeidi, G.; Ghasemi, S. Interaction of seed coat color and seed hardness: An effective relationship which can be exploited to enhance resistance to the safflower fly (Acanthiophilus helianthi) in Carthamus spp. Crop Prot. 2017, 98, 267–275. [Google Scholar] [CrossRef]
- Karami, S.; Sabzalian, M.R.; Rahimmalek, M. Seed polyphenolic profile, antioxidative activity, and fatty acids composition of wild and cultivated Carthamus species. Chem. Biodiversity 2018, 15, e1700562. [Google Scholar]
- Sabzalian, M.R.; Saeidi, G.; Mirlohi, A.; Hatami, B. Wild safflower species (Carthamus oxyacanthus): A possible source of resistance to the safflower fly (Acanthiophilus helianthi). Crop Prot. 2010, 29, 550–555. [Google Scholar] [CrossRef]
- Conte, R.; Gullich, L.M.; Bilibio, D.; Zanella, O.; Bender, J.P.; Carniel, N.; Priamo, W.L. Pressurized liquid extraction and chemical characterization of safflower oil: A comparison between methods. Food Chem. 2016, 213, 425–430. [Google Scholar] [CrossRef]
- Bhogaita, M.; Shukla, A.D.; Nalini, R.P. Recent advances in hybrid solar cells based on natural dye extracts from Indian plant pigment as sensitizers. Sol. Energy 2016, 137, 212–224. [Google Scholar] [CrossRef]
- Bielfeldt, S.; Blaak, J.; Staib, P.; Simon, I.; Wohlfart, R.; Manger, C.; Wilhelm, K.P. Observer-blind randomized controlled study of a cosmetic blend of safflower, olive and other plant oils in the improvement of scar and striae appearance. Int. J. Cosmet. Sci. 2018, 40, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Lee, S.M.; Lin, C.C.; Liu, C.Y.; Wu, M.C.; Shi, W.L. Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L. J. Biosci. Bioeng. 2013, 115, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; He, Z.; Ye, Y. Isocartormin, a novel quinochalcone C-glycoside from Carthamus tinctorius. Acta Pharm. Sin. B 2017, 7, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Rahamatalla, A.B.; Babiker, E.E.; Krishna, A.G.; El Tinay, A.H. Changes in fatty acids composition during seed growth and physicochemical characteristics of oil extracted from four safflower cultivars. Plant Foods Hum. Nutr. 2001, 56, 385–395. [Google Scholar] [CrossRef]
- Liu, L.; Guan, L.L.; Yang, Y.X. A review of fatty acids and genetic characterization of safflower (Carthamus tinctorius L.) seed oil. World J. Tradit. Chin. Med. 2016, 2, 48–52. [Google Scholar] [CrossRef]
- Assefa, A.D.; Sung, J.S.; Lee, M.C.; Hahn, B.S.; Noh, H.J.; Hur, O.S.; Ro, N.Y.; Hwang, A.J.; Kim, B.S.; Lee, J.E. Agro-morphological characters, total phenolic content, and fatty acid compositions of safflower genetic resources. Korean J. Med. Crop Sci. 2021, 29, 17–27. [Google Scholar] [CrossRef]
- Sung, J.S.; Jeong, Y.J.; Kim, D.J.; Assefa, A.D.; Jeon, Y.A.; Hur, O.S.; Ro, N.Y.; Ko, H.C.; Ok, H.C.; Rhee, J.H.; et al. Oil compositions and antioxidant properties of safflower germplasm collected from east Asia. Korean J. Med. Crop Sci. 2018, 26, 32–41. [Google Scholar] [CrossRef]
- Feldman, E.B. Assorted monounsaturated fatty acids promote healthy hearts. Am. J. Clin. Nutr. 1999, 70, 953–954. [Google Scholar] [CrossRef]
- Teres, S.; Barceló-Coblijn, G.; Benet, M.; Alvarez, R.; Bressani, R.; Halver, J.E.; Escriba, P.V. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc. Natl. Acad. Sci. USA 2008, 105, 13811–13816. [Google Scholar] [CrossRef]
- Downing, D.T.; Stewart, M.E.; Wertz, P.W.; Strauss, J.S. Essential fatty acids and acne. J. Am. Acad. Dermatol. 1986, 14, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Rimm, E.B.; Giovannucci, E.L.; Spiegelman, D.; Meir, S.; Willett, W.C. Dietary fat and risk of coronary heart disease in men: Cohort follow up study in the United States. BMJ 1996, 313, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Wolk, A.; Colditz, G.A.; Hennekens, C.H.; Willett, W.C. Dietary intake of α-linolenic acid and risk of fatal ischemic heart disease among women. Am. J. Clin. Nutr 1999, 69, 890–897. [Google Scholar] [CrossRef]
- De Lorgeril, M.; Renaud, S.; Salen, P.; Monjaud, I.; Mamelle, N.; Martin, J.L.; Guidollet, J.; Touboul, P.; Delaye, J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994, 343, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Santhakumar, A.B.; Battino, M.; Alvarez-Suarez, J.M. Dietary polyphenols: Structures, bioavailability and protective effects against atherosclerosis. Food Chem. Toxicol. 2018, 113, 49–65. [Google Scholar] [CrossRef]
- Hügel, H.M.; Jackson, N. Polyphenols for the prevention and treatment of dementia diseases. Neural Regener. Res. 2015, 10, 1756. [Google Scholar] [CrossRef]
- Katsuda, S.I.; Suzuki, K.; Koyama, N.; Takahashi, M.; Miyake, M.; Hazama, A.; Takazawa, K. Safflower seed polyphenols (N-(p-coumaroyl)serotonin and N-feruloylserotonin) ameliorate atherosclerosis and distensibility of the aortic wall in Kurosawa and Kusanagi-hypercholesterolemic (KHC) rabbits. Hypertens. Res. 2009, 32, 944–949. [Google Scholar] [CrossRef]
- Koyama, N.; Kuribayashi, K.; Seki, T.; Kobayashi, K.; Furuhata, Y.; Suzuki, K.; Arisaka, H.; Nakano, T.; Amino, Y.; Ishii, K. Serotonin derivatives, major safflower (Carthamus tinctorius L.) seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. J. Agric. Food Chem. 2006, 54, 4970–4976. [Google Scholar] [CrossRef]
- Lu, W.; Shi, Y.; Wang, R.; Su, D.; Tang, M.; Liu, Y.; Li, Z. Antioxidant activity and healthy benefits of natural pigments in fruits: A review. Int. J. Mol. Sci. 2021, 22, 4945. [Google Scholar] [CrossRef]
- Kim, J.; Assefa, A.D.; Song, J.; Mani, V.; Park, S.; Lee, S.K.; Lee, K.; Kim, D.G.; Hahn, B.S. Assessment of metabolic profiles in florets of Carthamus species using ultra-performance liquid chromatography-mass spectrometry. Metabolites 2020, 10, 440. [Google Scholar] [CrossRef] [PubMed]
- Tayebeh, B.; Soraya, K.; Khaneghah, A.M. Antioxidant and antibacterial activity of ethanolic extract of safflower with contrasting seed coat colors. Qual. Assur. Saf. Crops Foods 2021, 13, 94–100. [Google Scholar] [CrossRef]
- Salem, N.; Msaada, K.; Hamdaoui, G.; Limam, F.; Marzouk, B. Variation in phenolic composition and antioxidant activity during flower development of safflower (Carthamus tinctorius L.). J. Agric. Food Chem. 2011, 59, 4455–4463. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007, 46, 207–219. [Google Scholar] [CrossRef]
- Assefa, A.D.; Jeong, Y.J.; Kim, D.J.; Jeon, Y.A.; Lee, J.R.; Ko, H.C.; Baek, H.J.; Sung, J.S. Assessing phenolic content and antioxidant potential diversity in Allium plants using multivariate data analysis. Hortic. Environ. Biotechnol. 2018, 59, 759–773. [Google Scholar] [CrossRef]
- Li, W.; Yoo, E.; Lee, S.; Noh, H.J.; Hwang, S.J.; Desta, K.T.; Lee, G.A. Evaluation of agricultural traits, phytochemical contents, and antioxidant activities in the leaves of amaranth accessions of nine species. Plants 2022, 11, 1758. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of total phenolics. Curr. Protoc. Food Anal. Chem. 2002, 6, I1.1.1–I1.1.8. [Google Scholar]
- Jung, Y.J.; Assefa, A.D.; Lee, J.E.; Lee, H.S.; Rhee, J.H.; Sung, J.S. Analysis of antioxidant activity and serotonin derivatives in safflower (Carthamus tinctorius L.) germplasm collected from five countries. Korean J. Pant Res. 2019, 32, 423–432. [Google Scholar]
- Piao, X.-M.; Jang, E.-K.; Chung, J.-W.; Lee, G.-A.; Lee, H.-S.; Sung, J.-S.; Jeon, Y.-A.; Lee, J.-R.; Kim, Y.-G.; Lee, S.-Y. Variation in antioxidant activity and polyphenol content in tomato stems and leaves. Plant Breed. Biotechnol. 2013, 1, 366–373. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Houmanat, K.; Mazouz, H.; El Fechtali, M.; Nabloussi, A. Evaluation and pooling of safflower (Carthamus tinctorius L.) accessions from different world origins using agro-morphological traits. Int. J. Adv. Res. 2017, 5, 926–934. [Google Scholar] [CrossRef] [PubMed]
- Sabzalian, M.R.; Saeidi, G.; Mirlohi, A. Oil content and fatty acid composition in seeds of three safflower species. J. Am. Oil Chem. Soc. 2008, 85, 717–721. [Google Scholar] [CrossRef]
- Matthaus, B.; Özcan, M.M.; Al Juhaimi, F.Y. Fatty acid composition and tocopherol profiles of safflower (Carthamus tinctorius L.) seed oils. Nat. Prod. Res. 2015, 29, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Ladd, S.L.; Knowles, P.F. Inheritance of stearic scid in the seed oil of Safflower (Carthamus tinctorius L.). Crop Sci. 1970, 10, 525–527. [Google Scholar] [CrossRef]
- Raie, M.Y.; Muhammad, D.; Khan, S.A. Studies of safflower seed oils. Fette Seifen Anstrichm. 1985, 87, 282–283. [Google Scholar] [CrossRef]
- Kanu, P.J. Biochemical analysis of black and white sesame seeds from China. Am. J. Biochem. Mol. Biol. 2011, 1, 145–157. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, Y.S.; Kim, S.T.; Yoon, W.B.; Han, W.Y.; Kang, I.K.; Choung, M.G. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds. Food Chem. 2017, 214, 248–258. [Google Scholar] [CrossRef]
- Shen, Y.; Jin, L.; Xiao, P.; Lu, Y.; Bao, J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J. Cereal Sci. 2009, 49, 106–111. [Google Scholar] [CrossRef]
- Thaddi, B.N.; Nallamilli, M.N. Estimation of total bioactive compounds in pigmented and non-pigmented genotypes of sorghum (Sorghum bicolor (L.) Moench). Int. J. Adv. Res. Sci. Technol. 2014, 3, 86–92. [Google Scholar]
- Pu, Z.-J.; Yue, S.-J.; Zhou, G.-S.; Yan, H.; Shi, X.-Q.; Zhu, Z.-H.; Huang, S.-L.; Peng, G.-P.; Chen, Y.-Y.; Bai, J.-Q.; et al. The comprehensive evaluation of safflowers in different producing areas by combined analysis of color, chemical compounds, and biological activity. Molecules 2019, 24, 3381. [Google Scholar] [CrossRef]
- Xu, M.; Du, C.; Zhang, N.; Shi, X.; Wu, Z.; Qiao, Y. Color spaces of safflower (Carthamus tinctorius L.) for quality assessment. J. Tradit. Chin. Med. Sci. 2016, 3, 168–175. [Google Scholar] [CrossRef]
- Pu, Z.-J.; Zhang, S.; Tang, Y.-P.; Shi, X.-Q.; Tao, H.-J.; Yan, H.; Chen, J.-Q.; Yue, S.-J.; Chen, Y.-Y.; Zhu, Z.-H.; et al. Study on changes in pigment composition during the blooming period of safflower based on plant metabolomics and semi-quantitative analysis. J. Sep. Sci. 2021, 44, 4082–4091. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; von Witzke-Ehbrecht, S.; Maass, B.L.; Becker, H.C. Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in safflower (Carthamus tinctorius). Genet. Resour. Crop Evol. 2009, 56, 19–30. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, X.-R.; Wood, C.C.; Green, A.G.; Singh, S.P.; Liu, L.; Liu, Q. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biol. 2013, 13, 5. [Google Scholar] [CrossRef]
- López, A.; Montaño, A.; García, P.; Garrido, A. Fatty acid profile of table olives and its multivariate characterization using unsupervised (PCA) and supervised (DA) chemometrics. J. Agric. Food Chem. 2006, 54, 6747–6753. [Google Scholar] [CrossRef]
- Grosjean, P.; Ibanez, F.; Etienne, M. Pastecs: Package for analysis of space-time ecological series. R Package Version 2014, 1, 1–3. [Google Scholar]
Parameter | Maximum | Minimum | Mean | CV (%) |
---|---|---|---|---|
TO (%) | 38.37 | 10.15 | 20.54 | 20.85 |
PA (%) | 8.38 | 5.13 | 6.26 | 8.68 |
SA (%) | 5.31 | 1.87 | 2.58 | 14.02 |
OA (%) | 25.55 | 8.09 | 12.02 | 16.00 |
LA (%) | 84.19 | 65.66 | 79.06 | 2.82 |
LNA (%) | 0.21 | 0.00 | 0.10 | 42.79 |
TSFA (%) | 11.09 | 7.21 | 8.83 | 7.38 |
TUFA (%) | 92.79 | 88.91 | 91.18 | 0.72 |
US | 12.86 | 8.01 | 10.38 | 8.03 |
CS (mg/g) | 62.01 | 0.20 | 15.84 | 67.45 |
FS (mg/g) | 42.80 | 0.04 | 13.46 | 61.05 |
TPC (µg·GAE/mg·DE) | 147.13 | 21.95 | 72.96 | 34.13 |
ABTS (µg·TE/mg·DE) | 304.38 | 23.59 | 135.28 | 37.94 |
DPPH (µg·AAE/mg·DE) | 888.30 | 193.40 | 430.10 | 27.49 |
Parameter | Values | Red | White | Yellow | p-Value |
---|---|---|---|---|---|
TO (%) | Range | 10.15–38.37 | 13.67–23.51 | 10.58–34.67 | NS |
Mean | 19.42 a | 19.12 a | 20.86 a | ||
CV (%) | 24.82 | 26.20 | 19.61 | ||
PA (%) | Range | 5.49–7.49 | 5.42–6.39 | 5.13–8.38 | ‧ |
Mean | 6.42 a | 5.90 a | 6.22 a | ||
CV (%) | 8.88 | 8.31 | 8.52 | ||
SA (%) | Range | 1.98–3.28 | 2.11–3.19 | 1.87–5.31 | NS |
Mean | 2.53 a | 2.52 a | 2.59 a | ||
CV (%) | 10.67 | 23.41 | 14.67 | ||
OA (%) | Range | 10.08–17.12 | 8.09–10.82 | 8.35–25.55 | * |
Mean | 12.41 a | 9.52 b | 11.96 a | ||
CV (%) | 13.13 | 14.39 | 16.47 | ||
LA (%) | Range | 72.72–81.71 | 80.42–84.19 | 65.66–83.47 | * |
Mean | 78.54 b | 81.93 a | 79.14 b | ||
CV (%) | 2.69 | 2.44 | 2.81 | ||
LNA (%) | Range | 0.04–0.21 | 0.10–0.19 | 0.00–0.21 | ** |
Mean | 0.12 ab | 0.14 a | 0.10 b | ||
CV (%) | 29.17 | 35.71 | 40.00 | ||
TSFA (%) | Range | 7.65–10.19 | 7.53–9.08 | 7.21–11.09 | NS |
Mean | 8.94 a | 8.42 a | 8.81 a | ||
CV (%) | 7.83 | 9.50 | 7.26 | ||
TUFA (%) | Range | 89.82–92.39 | 90.92–92.47 | 88.91–92.79 | NS |
Mean | 91.07 a | 91.58 a | 91.20 a | ||
CV (%) | 0.77 | 0.87 | 0.70 | ||
US | Range | 8.81–12.07 | 10.01–12.28 | 8.01–12.86 | NS |
Mean | 10.25 a | 10.96 a | 10.41 a | ||
CV (%) | 8.49 | 10.77 | 7.88 | ||
CS (mg/g) | Range | 1.41–40.18 | 5.92–11.62 | 0.20–62.01 | NS |
Mean | 15.97 a | 8.50 a | 15.94 a | ||
CV (%) | 56.29 | 34.00 | 70.01 | ||
FS (mg/g) | Range | 1.38–33.62 | 8.57–11.55 | 0.04–42.80 | NS |
Mean | 13.79 a | 10.16 a | 13.44 a | ||
CV (%) | 49.82 | 14.76 | 64.21 | ||
TPC (µg·GAE/mg·DE) | Range | 37.63–143.30 | 39.74–105.65 | 21.95–147.13 | NS |
Mean | 76.14 a | 80.46 a | 71.96 a | ||
CV (%) | 34.82 | 44.23 | 33.84 | ||
ABTS (µg·TE/mg·DE) | Range | 38.38–250.99 | 80.69–143.86 | 23.59–304.38 | NS |
Mean | 133.86 a | 122.08 a | 135.92 a | ||
CV (%) | 37.05 | 29.37 | 38.43 | ||
DPPH (µg·AAE/mg·DE) | Range | 265.23–703.93 | 276.40–348.82 | 193.43–888.29 | NS |
Mean | 421.26 ab | 312.25 b | 434.77 a | ||
CV (%) | 21.30 | 11.60 | 28.70 |
TO | PA | SA | OA | LA | LNA | TSFA | TUFA | US | CS | FS | TPC | ABTS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PA | −0.32 *** | ||||||||||||
SA | −0.18 ** | 0.00 | |||||||||||
OA | −0.35 *** | 0.32 *** | 0.11 | ||||||||||
LA | 0.41 *** | −0.53 *** | −0.25 *** | −0.96 *** | |||||||||
LNA | −0.37 *** | 0.55 *** | −0.18 * | 0.13 | −0.24 *** | ||||||||
TSFA | −0.37 *** | 0.83 *** | 0.55 *** | 0.33 *** | −0.58 *** | 0.36 *** | |||||||
TUFA | 0.37 *** | −0.84 *** | −0.54 *** | −0.32 *** | 0.58 *** | −0.37 *** | −1.00 *** | ||||||
US | 0.35 *** | −0.83 *** | −0.55 *** | −0.33 *** | 0.58 *** | −0.34 *** | −0.99 *** | 0.99 *** | |||||
CS | 0.11 | −0.29 *** | −0.03 | −0.14 | 0.20 ** | −0.14 * | −0.25 *** | 0.26 *** | 0.24 *** | ||||
FS | 0.14 | −0.25 *** | −0.03 | −0.13 | 0.18 * | −0.10 | −0.22 ** | 0.22 ** | 0.21 ** | 0.85 *** | |||
TPC | 0.08 | −0.25 *** | 0.03 | −0.11 | 0.16 * | −0.17 * | −0.19 ** | 0.19 ** | 0.20 ** | 0.36 *** | 0.33 *** | ||
ABTS | 0.35 *** | −0.40 *** | 0.04 | −0.26 *** | 0.32 *** | −0.47 *** | −0.31 *** | 0.32 *** | 0.31 *** | 0.58 *** | 0.54 *** | 0.33 *** | |
DPPH | 0.26 *** | −0.30 *** | 0.10 | −0.09 | 0.14 * | −0.42 *** | −0.20 ** | 0.20 ** | 0.19 ** | 0.60 *** | 0.56 *** | 0.14 * | 0.67 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Yoo, E.; Sung, J.; Lee, S.; Hwang, S.; Lee, G.-A. Distinct Effects of Seed Coat and Flower Colors on Metabolite Contents and Antioxidant Activities in Safflower Seeds. Antioxidants 2023, 12, 961. https://doi.org/10.3390/antiox12040961
Li W, Yoo E, Sung J, Lee S, Hwang S, Lee G-A. Distinct Effects of Seed Coat and Flower Colors on Metabolite Contents and Antioxidant Activities in Safflower Seeds. Antioxidants. 2023; 12(4):961. https://doi.org/10.3390/antiox12040961
Chicago/Turabian StyleLi, Weilan, Eunae Yoo, Jungsook Sung, Sookyeong Lee, Sojeong Hwang, and Gi-An Lee. 2023. "Distinct Effects of Seed Coat and Flower Colors on Metabolite Contents and Antioxidant Activities in Safflower Seeds" Antioxidants 12, no. 4: 961. https://doi.org/10.3390/antiox12040961
APA StyleLi, W., Yoo, E., Sung, J., Lee, S., Hwang, S., & Lee, G. -A. (2023). Distinct Effects of Seed Coat and Flower Colors on Metabolite Contents and Antioxidant Activities in Safflower Seeds. Antioxidants, 12(4), 961. https://doi.org/10.3390/antiox12040961