Hemodialysis Serum Stimulates the TXNIP-eNOS-STAT3 Inflammatory Pathway In Vitro
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Ethics
2.3. Malnutrition–Inflammation Score
2.4. Blood Samples
2.5. Endothelial Cell Culture
2.6. HUVEC Treatment
2.7. STRING Database
2.8. RNA Extraction and Reverse Transcription (RT)
2.9. Real-Time Polymerase Chain Reaction (PCR)
2.10. HUVEC Protein Extraction
2.11. SDS-PAGE and Immunoblotting
2.12. Human IL-8 Assay
2.13. Statistical Analysis
3. Results
3.1. Study Sample
3.2. The Effect of HD Serum on TXNIP, eNOS and IL-8 mRNA Expression
3.3. The Effect of HD Serum on TXNIP, eNOS, STAT3, SOCS3, SIRT1 and IL-8 Protein Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CKD | Chronic kidney disease |
eNOS | Endothelial nitric oxide synthase |
ESKD | End-stage kidney disease |
HD | Hemodialysis |
HUVEC | Human umbilical vein endothelial cells |
IL-8 | Interleukin 8 |
NO | Nitric oxide |
SIRT1 | Sirtuin 1 |
SOCS3 | Suppressor of cytokine signaling 3 |
STAT3 | Signal transducer and activator of transcription 3 |
TXNIP | Thioredoxin-interacting protein |
References
- Sundström, J.; Bodegard, J.; Bollmann, A.; Vervloet, M.G.; Mark, P.B.; Karasik, A.; Taveira-Gomes, T.; Botana, M.; Birkeland, K.I.; Thuresson, M.; et al. Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: The CaReMe CKD study. Lancet Reg. Health Eur. 2022, 20, 100438. [Google Scholar] [CrossRef]
- Grams, M.E.; Yang, W.; Rebholz, C.M.; Wang, X.; Porter, A.C.; Inker, L.A.; Horwitz, E.; Sondheimer, J.H.; Hamm, L.L.; He, J.; et al. Risks of Adverse Events in Advanced CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2017, 70, 337–346. [Google Scholar] [CrossRef]
- Podkowińska, A.; Formanowicz, D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants 2020, 9, 752. [Google Scholar] [CrossRef] [PubMed]
- Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J. Clin. Med. 2020, 9, 2359. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Ikizler, T.; Block, G.; Avram, M.M.; Kopple, J.D. Malnutrition-inflammation complex syndrome in dialysis patients: Causes and consequences. Am. J. Kidney Dis. 2003, 42, 864–881. [Google Scholar] [CrossRef] [PubMed]
- Rambod, M.; Bross, R.; Zitterkoph, J.; Benner, D.; Pithia, J.; Colman, S.; Kovesdy, C.P.; Kopple, J.D.; Kalantar-Zadeh, K. Association of Malnutrition-Inflammation Score with quality of life and mortality in hemodialysis patients: A 5-year prospective cohort study. Am. J. Kidney Dis. 2009, 53, 298–309. [Google Scholar] [CrossRef]
- Maraj, M.; Kuśnierz-Cabala, B.; Dumnicka, P.; Gala-Błądzińska, A.; Gawlik, K.; Pawlica-Gosiewska, D.; Ząbek-Adamska, A.; Mazur-Laskowska, M.; Ceranowicz, P.; Kuźniewski, M. Malnutrition, Inflammation, Atherosclerosis Syndrome (MIA) and Diet Recommendations among End-Stage Renal Disease Patients Treated with Maintenance Hemodialysis. Nutrients 2018, 10, 69. [Google Scholar] [CrossRef]
- Gross, M.-L.; Meyer, H.-P.; Ziebart, H.; Rieger, P.; Wenzel, U.; Amann, K.; Berger, I.; Adamczak, M.; Schirmacher, P.; Ritz, E. Calcification of coronary intima and media: Immunohistochemistry, backscatter imaging, and x-ray analysis in renal and nonrenal patients. Clin. J. Am. Soc. Nephrol. 2007, 2, 121–134. [Google Scholar] [CrossRef]
- Jourde-Chiche, N.; Dou, L.; Cerini, C.; Dignat-George, F.; Brunet, P. Vascular incompetence in dialysis patients--protein-bound uremic toxins and endothelial dysfunction. Semin. Dial. 2011, 24, 327–337. [Google Scholar] [CrossRef]
- Kawashima, S.; Yokoyama, M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arter. Thromb. Vasc. Biol. 2004, 24, 998–1005. [Google Scholar] [CrossRef]
- Wang, R.; Guob, Y.; Li, L.; Luo, M.; Peng, L.; Lv, D.; Cheng, Z.; Xue, Q.; Wang, L.; Huang, J. Role of thioredoxin-interacting protein in mediating endothelial dysfunction in hypertension. Genes Dis. 2020, 9, 753–765. [Google Scholar] [CrossRef]
- He, Q.; Li, Y.; Zhang, W.; Chen, J.; Deng, W.; Liu, Q.; Liu, Y.; Liu, D. Role and mechanism of TXNIP in ageing-related renal fibrosis. Mech. Ageing Dev. 2021, 196, 111475. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Lv, J.; Yang, W.; Xu, B.; Wang, Z.; Yu, Z.; Wu, J.; Yang, Y.; Han, Y. Targeted inhibition of STAT3 as a potential treatment strategy for atherosclerosis. Theranostics 2019, 9, 6424–6442. [Google Scholar] [CrossRef]
- Zitman-Gal, T.; Green, J.; Pasmanik-Chor, M.; Oron-Karni, V.; Bernheim, J. Endothelial pro-atherosclerotic response to extracellular diabetic-like environment: Possible role of thioredoxin-interacting protein. Nephrol. Dial. Transplant. 2010, 25, 2141–2149. [Google Scholar] [CrossRef] [PubMed]
- Einbinder, Y.; Ohana, M.; Benchetrit, S.; Zehavi, T.; Nacasch, N.; Bernheim, J.; Zitman-Gal, T. Glucagon-like peptide-1 and vitamin D: Anti-inflammatory response in diabetic kidney disease in db/db mice and in cultured endothelial cells. Diabetes Metab. Res. Rev. 2016, 32, 805–815. [Google Scholar] [CrossRef]
- Zitman-Gal, T.; Einbinder, Y.; Ohana, M.; Katzav, A.; Kartawy, A.; Benchetrit, S. Effect of liraglutide on the Janus kinase/signal transducer and transcription activator (JAK/STAT) pathway in diabetic kidney disease in db/db mice and in cultured endothelial cells. J. Diabetes 2019, 11, 656–664. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kopple, J.D.; Humphreys, M.H.; Block, G. Comparing outcome predictability of markers of malnutrition-inflammation complex syndrome in haemodialysis patients. Nephrol. Dial. Transplant. 2004, 19, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef]
- Cohen-Hagai, K.; Nacasch, N.; Sternschuss, A.; Ohana, M.; Wolach, B.; Benchetrit, S.; Gavrieli, R.; Zitman-Gal, T. Malnutrition and inflammation in hemodialysis patients: Comparative Evaluation of Neutrophil Reactive Oxygen Formation. Nutrition 2020, 78, 110793. [Google Scholar] [CrossRef]
- Vanhoutte, P.M.; Zhao, Y.; Xu, A.; Leung, S.W.S. Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator. Circ. Res. 2016, 119, 375–396. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, N.; Haseeb, M.; Kim, M.S.; Choi, S. Role of Thioredoxin-Interacting Protein in Diseases and Its Therapeutic Outlook. Int. J. Mol. Sci. 2021, 22, 2754. [Google Scholar] [CrossRef] [PubMed]
- Tsubaki, H.; Tooyama, I.; Walker, D.G. Thioredoxin-Interacting Protein (TXNIP) with Focus on Brain and Neurodegenerative Diseases. Int. J. Mol. Sci. 2020, 21, 9357. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiao, X.; Ma, Y.; Liu, Y.; Zhang, L.; He, Y.; Chen, Y. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem. Biophys. Res. Commun. 2016, 481, 63–70. [Google Scholar] [CrossRef]
- Lam, Y.T.; Tan, R.P.; Michael, P.; Yang, N.; Dunn, L.L.; Cooke, J.P.; Celermajer, D.S.; Wise, S.G.; Ng, M.K.C. Endothelial thioredoxin interacting protein (TXNIP) modulates endothelium-dependent vasorelaxation in hyperglycemia. Microvasc. Res. 2022, 143, 104396. [Google Scholar] [CrossRef]
- Ng, I.H.; Yeap, Y.Y.; Ong, L.S.; Jans, D.A.; Bogoyevitch, M.A. Oxidative stress impairs multiple regulatory events to drive persistent cytokine-stimulated STAT3 phosphorylation. Biochim. Biophys. Acta 2014, 1843, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Tang, S.; Li, X. Sirtuins in Metabolic and Epigenetic Regulation of Stem Cells. Trends Endocrinol. Metab. 2019, 30, 177–188. [Google Scholar] [CrossRef]
- Nogueiras, R.; Habegger, K.M.; Chaudhary, N.; Finan, B.; Banks, A.S.; Dietrich, M.O.; Horvath, T.L.; Sinclair, D.A.; Pfluger, P.T.; Tschöop, M.H. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol. Rev. 2012, 92, 1479–1514. [Google Scholar] [CrossRef]
- Hirabayashi, T.; Nakanishi, R.; Tanaka, M.; Nisa, B.U.; Maeshige, N.; Kondo, H.; Fujino, H. Reduced metabolic capacity in fast and slow skeletal muscle via oxidative stress and the energy-sensing of AMPK/SIRT1 in malnutrition. Physiol. Rep. 2021, 9, e14763. [Google Scholar] [CrossRef]
- Auciello, F.R.; Ross, F.A.; Ikematsu, N.; Hardie, D.G. Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. FEBS Lett. 2014, 588, 3361–3366. [Google Scholar] [CrossRef]
- Chen, Z.; Shentu, T.-P.; Wen, L.; Johnson, D.A.; Shyy, J.Y.-J. Regulation of SIRT1 by oxidative stress-responsive miRNAs and a systematic approach to identify its role in the endothelium. Antioxid. Redox Signal. 2013, 19, 1522–1538. [Google Scholar] [CrossRef]
- Liang, D.; Zhuo, Y.; Guo, Z.; He, L.; Wang, X.; He, Y.; Li, L.; Dai, H. SIRT1/PGC-1 pathway activation triggers autophagy/mitophagy and attenuates oxidative damage in intestinal epithelial cells. Biochimie 2020, 170, 10–20. [Google Scholar] [CrossRef]
- Nie, Y.; Erion, D.M.; Yuan, Z.; Dietrich, M.; Shulman, G.I.; Horvath, T.L.; Gao, Q. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat. Cell Biol. 2009, 11, 492–500. [Google Scholar] [CrossRef]
- Bernier, M.; Paul, R.K.; Martin-Montalvo, A.; Scheibye-Knudsen, M.; Song, S.; He, H.-J.; Armour, S.M.; Hubbard, B.P.; Bohr, V.A.; Wang, L.; et al. Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein. J. Biol. Chem. 2011, 286, 19270–19279. [Google Scholar] [CrossRef]
- Li, L.; Wei, W.; Zhang, Y.; Tu, G.; Zhang, Y.; Yang, J.; Xing, Y. SirT1 and STAT3 protect retinal pigmented epithelium cells against oxidative stress. Mol. Med. Rep. 2015, 12, 2231–2238. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, P.; Artioli, L.; Magagnoli, L.; Barassi, A.; Alvarez, J.-C.; Massy, Z.A.; Galassi, A.; Cozzolino, M. The Role of Uremic Retention Solutes in the MIA Syndrome in Hemodialysis Subjects. Blood Purif. 2022, 52, 41–53. [Google Scholar] [CrossRef]
- Rosner, M.H.; Reis, T.; Husain-Syed, F.; Vanholder, R.; Hutchison, C.; Stenvinkel, P.; Blankestijn, P.J.; Cozzolino, M.; Juillard, L.; Kashani, K.; et al. Classification of uremic toxins and their role in kidney failure. Clin. J. Am. Soc. Nephrol. 2021, 16, 1918–1928. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Oliveira, V.; Foresto-Neto, O.; Watanabe, I.K.M.; Zatz, R.; Câmara, N.O.S. Inflammation in Renal Diseases: New and Old Players. Front. Pharmacol. 2019, 10, 1192. [Google Scholar] [CrossRef] [PubMed]
- Zambom, F.F.F.; Oliveira, K.C.; Foresto-Neto, O.; Faustino, V.D.; Ávila, V.F.; Albino, A.H.; Arias, S.C.A.; Volpini, R.A.; Malheiros, D.M.A.C.; Camara, N.O.S.; et al. Pathogenic role of innate immunity in a model of chronic NO inhibition associated with salt overload. Am. J. Physiol. Physiol. 2019, 317, F1058–F1067. [Google Scholar] [CrossRef]
Characteristic | Median [IQR] |
---|---|
Age (years) | 67.8 [57.1–78.5] |
Male sex | 27 (90) |
Body mass index | 27.6 [23.6–31.3] |
Malnutrition–inflammation score (MIS) | 5 [2.75–7] |
Dialysis vintage (months) | 22 [2–43.5] |
Weekly dialysis hours | 12 [12–12] |
Ischemic heart disease | 12 (40) |
Heart failure | 7 (23) |
Hypertension | 28 (93) |
Diabetes mellitus | 19 (63) |
Chronic lung disease | 7 (23) |
Previous stroke | 6 (20) |
Active/past malignancy | 5 (17) |
Atrial fibrillation | 6 (20) |
Peripheral vascular disease | 5 (17) |
Left ventricular hypertrophy | 12 (40) |
Active smoking | 10 (33) |
Baseline laboratory values | |
Serum creatinine (mg/dL) | 6.42 [5.3–8.6] |
Serum urea (mg/dL) | 115 [98–146] |
Albumin (gr/dL) | 3.8 [3.5–4.1] |
Total cholesterol (mg/dL) | 153 [128–183] |
Calcium (mg/dL) | 8.6 [8.3–8.9] |
Phosphorus (mg/dL) | 5.2 [4.4–6] |
Parathyroid hormone (pg/mL) | 285 [170–580] |
Hemoglobin A1C (%) | 6.1 [5.5–6.75] |
Glucose (mg/dL) | 111 [100–156] |
C-reactive protein (mg/L) | 1.1 [0.6–2.5] |
White blood cells (K/µL) | 6.6 [5.7–8.5] |
Platelets (K/µL) | 188 [151–225] |
Hemoglobin (g/dL) | 11.1 [10–11.5] |
Transferrin saturation index | 0.25 [0.19–0.29] |
Iron (µg/dL) | 64 [49–72] |
Transferrin (mg/dL) | 166 [158–199] |
Ferritin (µg/L) | 684 [319–880] |
B12 (ng/L) | 508 [436–895] |
Folic acid (µg/L) | 20 [4–20] |
25(OH) VitD (nmol/L) | 52.3 [32.6–66.3] |
kt/v | 1.32 [1.18–1.53] |
Normalized protein catabolic rate (g/kg/day) | 0.89 [0.76–1.11] |
Urea reduction ratio | 68.3 [64.5–74.2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen-Hagai, K.; Kashua, H.; Benchetrit, S.; Zitman-Gal, T. Hemodialysis Serum Stimulates the TXNIP-eNOS-STAT3 Inflammatory Pathway In Vitro. Antioxidants 2023, 12, 1109. https://doi.org/10.3390/antiox12051109
Cohen-Hagai K, Kashua H, Benchetrit S, Zitman-Gal T. Hemodialysis Serum Stimulates the TXNIP-eNOS-STAT3 Inflammatory Pathway In Vitro. Antioxidants. 2023; 12(5):1109. https://doi.org/10.3390/antiox12051109
Chicago/Turabian StyleCohen-Hagai, Keren, Hadil Kashua, Sydney Benchetrit, and Tali Zitman-Gal. 2023. "Hemodialysis Serum Stimulates the TXNIP-eNOS-STAT3 Inflammatory Pathway In Vitro" Antioxidants 12, no. 5: 1109. https://doi.org/10.3390/antiox12051109
APA StyleCohen-Hagai, K., Kashua, H., Benchetrit, S., & Zitman-Gal, T. (2023). Hemodialysis Serum Stimulates the TXNIP-eNOS-STAT3 Inflammatory Pathway In Vitro. Antioxidants, 12(5), 1109. https://doi.org/10.3390/antiox12051109