Nutritional Improvements of Sourdough Breads Made with Freeze-Dried Functional Adjuncts Based on Probiotic Lactiplantibacillus plantarum subsp. plantarum and Pomegranate Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Media
2.2. Fermentation of Pomegranate Juice
2.3. Freeze-Drying
2.4. Sourdough Breadmaking
2.5. Analysis
2.5.1. Microbial Cell Counts and Monitoring of Bread Spoilage
2.5.2. Organic Acids
2.5.3. pH and Total Titratable Acidity (TTA)
2.5.4. Specific Loaf Volume
2.5.5. Total Phenolic Content (TPC)
2.5.6. Antioxidant Capacity (AC)
2.5.7. Phytic Acid
2.5.8. Sensory Evaluation
2.5.9. Statistical Analysis
3. Results
3.1. Viable Cell Counts in the Sourdoughs
3.2. Sourdough Bread Quality Characteristics
3.3. TPC and AC
3.4. Phytic Acid Content
3.5. Resistance to Spoilage
3.6. Sensory Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plessas, S. Innovations in Sourdough Bread Making. Fermentation 2021, 7, 29. [Google Scholar] [CrossRef]
- Kazakos, S.; Mantzourani, I.; Plessas, S. Quality Characteristics of Novel Sourdough Breads Made with Functional Lacticaseibacillus paracasei SP5 and Prebiotic Food Matrices. Foods 2022, 11, 3226. [Google Scholar] [CrossRef]
- Akamine, I.T.; Mansoldo, F.R.P.; Vermelho, A.B. Probiotics in the Sourdough Bread Fermentation: Current Status. Fermentation 2023, 9, 90. [Google Scholar] [CrossRef]
- Calvert, M.D.; Madden, A.A.; Nichols, L.M.; Haddad, N.M.; Lahne, J.; Dunn, R.R.; McKenney, E.A. A review of sourdough starters: Ecology, practices, and sensory quality with applications for baking and recommendations for future research. Peer J. 2021, 9, e11389. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jian, C.; Salonen, A.; Dong, M.; Yang, Z. Designing healthier bread through the lens of the gut microbiota. Trends Food Sci. Technol. 2023, 134, 13–28. [Google Scholar] [CrossRef]
- Bender, D.; Schönlechner, R. Innovative approaches towards improved gluten-free bread properties. J. Cereal Sci. 2020, 91, 102904. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel insights on the functional/nutritional features of the sourdough fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef]
- Angelino, D.; Cossu, M.; Marti, A.; Zanoletti, M.; Chiavaroli, L.; Brighenti, F.; Del Rio, D.; Martini, D. Bioaccessibility and bioavailability of phenolic compounds in bread: A review. Food Funct. 2017, 8, 2368–2393. [Google Scholar] [CrossRef]
- Betoret, E.; Rosell, C.M. Enrichment of bread with fruits and vegetables: Trends and strategies to increase functionality. Cereal Chem. 2020, 97, 9–19. [Google Scholar] [CrossRef]
- Mateo Anson, N.; Aura, A.-M.; Selinheimo, E.; Mattila, I.; Poutanen, K.; Van Den Berg, R.; Havenaar, R.; Bast, A.; Haenen, G.R. Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo. J. Nutr. 2011, 141, 137–143. [Google Scholar] [CrossRef]
- Van Hung, P.; Maeda, T.; Miyatake, K.; Morita, N. Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Food Res. Int. 2009, 42, 185–190. [Google Scholar] [CrossRef]
- Astiz, V.; Guardianelli, L.M.; Salinas, M.V.; Brites, C.; Puppo, M.C. High β-Glucans Oats for Healthy Wheat Breads: Physicochemical Properties of Dough and Breads. Foods 2023, 12, 170. [Google Scholar] [CrossRef] [PubMed]
- Alu’datt, M.H.; Rababah, T.; Ereifej, K.; Alli, I.; Alrababah, M.A.; Almajwal, A.; Masadeh, N.; Alhamad, M.N. Effects of barley flour and barley protein isolate on chemical, functional, nutritional and biological properties of Pita bread. Food Hydrocoll. 2012, 26, 135–143. [Google Scholar] [CrossRef]
- Das, L.; Raychaudhuri, U.; Chakraborty, R. Supplementation of common white bread by coriander leaf powder. Food Sci. Biotechnol. 2012, 21, 425–433. [Google Scholar] [CrossRef]
- Peng, M.; Tabashsum, Z.; Anderson, M.; Truong, A.; Houser, A.K.; Padilla, J.; Akmel, A.; Bhatti, J.; Rahaman, S.O.; Biswas, D. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1908–1933. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Sivam, A.S.; Waterhouse, G.I. Functional breads enhanced with fruit-derived polyphenol antioxidants and dietary fibers. In Bread Consumption and Health; Silva, M.T.P., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2012; pp. 59–102. [Google Scholar]
- Yoon, M.-H.; Jo, J.-E.; Kim, D.-M.; Kim, K.-H.; Yook, H.-S. Quality characteristics of bread containing various levels of flowering cherry (Prunus serrulata L. var. spontanea Max. wils.) fruit powder. J. Korean Soc. Food Sci. Nutr. 2010, 39, 1340–1345. [Google Scholar] [CrossRef]
- Filipčev, B.; Šimurina, O.; Bodroža-Solarov, M. Combined effect of xylanase, ascorbic and citric acid in regulating the quality of bread made from organically grown spelt cultivars. J. Food Qual. 2014, 37, 185–195. [Google Scholar] [CrossRef]
- Gül, H.; Şen, H. Effects of pomegranate seed flour on dough rheology and bread quality. CyTA-J. Food 2017, 15, 622–628. [Google Scholar] [CrossRef]
- Issaoui, M.; Nesrine, M.; Flamini, G.; Delgado, A. Enrichment of white flour with spices positively impacts safety and consumer acceptance of bread. Int. J. Food Sci. Technol. 2021, 56, 3166–3178. [Google Scholar] [CrossRef]
- Meral, R.; Erim Köse, Y. The effect of bread-making process on the antioxidant activity and phenolic profile of enriched breads. Qual. Assur. Saf. Crops Foods 2019, 11, 171–181. [Google Scholar] [CrossRef]
- Zare, M.; Goli, A.H.; Karimifar, M.; Tarrahi, M.J.; Rezaei, A.; Amani, R. Effect of bread fortification with pomegranate peel powder on glycemic indicators, antioxidant status, inflammation and mood in patients with type 2 diabetes: Study protocol for a randomized, triple-blind, and placebo-controlled trial. J. Diabetes Metab. Disord. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Kazakos, S.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Bekatorou, A.; Plessas, S. Potential of the probiotic Lactobacillus plantarum ATCC 14917 strain to produce functional fermented pomegranate juice. Foods 2019, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Plessas, S.; Mantzourani, I.; Bekatorou, A. Evaluation of Pediococcus pentosaceus SP2 as starter culture on sourdough bread making. Foods 2020, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, I.; Plessas, S.; Odatzidou, M.; Alexopoulos, A.; Galanis, A.; Bezirtzoglou, E.; Bekatorou, A. Effect of a novel Lactobacillus paracasei starter on sourdough bread quality. Food Chem. 2019, 271, 259–265. [Google Scholar] [CrossRef]
- Mantzourani, I.; Terpou, A.; Alexopoulos, A.; Bezirtzoglou, E.; Plessas, S. Assessment of ready-to-use freeze-dried immobilized biocatalysts as innovative starter cultures in sourdough bread making. Foods 2019, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Plessas, S.; Alexopoulos, A.; Bekatorou, A.; Mantzourani, I.; Koutinas, A.A.; Bezirtzoglou, E. Examination of freshness degradation of sourdough bread made with kefir through monitoring the aroma volatile composition during storage. Food Chem. 2011, 124, 627–633. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Rodrigues, S. Prebiotic in fruit juice: Processing challenges, advances, and perspectives. Curr. Opin. Food Sci. 2018, 22, 55–61. [Google Scholar] [CrossRef]
- Plamada, D.; Vodnar, D.C. Polyphenols—Gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients 2022, 14, 137. [Google Scholar] [CrossRef]
- Alkandari, D.; Sarfraz, H.; Sidhu, J.S. Development of a functional food (pan bread) using amla fruit powder. J. Food Sci. Technol. 2019, 56, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
- Çetin Babaoğlu, H.; Arslan Tontul, S.; Akin, N. Fiber enrichment of sourdough bread by inulin rich Jerusalem artichoke powder. J. Food Process. Preserv. 2021, 45, e15928. [Google Scholar] [CrossRef]
- Rusinek, R.; Gawrysiak-Witulska, M.; Siger, A.; Oniszczuk, A.; Ptaszyńska, A.A.; Knaga, J.; Malaga-Toboła, U.; Gancarz, M. Effect of supplementation of flour with fruit fiber on the volatile compound profile in bread. Sensors 2021, 21, 2812. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, R.; de las Rivas, B.; López de Felipe, F.; Reverón, I.; Santamaría, L.; Esteban-Torres, M.; Curiel, J.A.; Rodríguez, H.; Landete, J.M. Chapter 4—Biotransformation of phenolics by Lactobacillus plantarum in fermented foods. In Fermented Foods Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2017; pp. 63–83. [Google Scholar] [CrossRef]
- Plessas, S. Advancements in the use of fermented fruit juices by lactic acid bacteria as functional foods: Prospects and challenges of Lactiplantibacillus (Lpb.) plantarum subsp. plantarum application. Fermentation 2022, 8, 6. [Google Scholar] [CrossRef]
- Pejcz, E.; Lachowicz-Wiśniewska, S.; Nowicka, P.; Wojciechowicz-Budzisz, A.; Spychaj, R.; Gil, Z. Effect of inoculated lactic acid fermentation on the fermentable saccharides and polyols, polyphenols and antioxidant activity changes in wheat sourdough. Molecules 2021, 26, 4193. [Google Scholar] [CrossRef]
- Fang, L.; Wang, W.; Dou, Z.; Chen, J.; Meng, Y.; Cai, L.; Li, Y. Effects of mixed fermentation of different lactic acid bacteria and yeast on phytic acid degradation and flavor compounds in sourdough. LWT 2023, 174, 114438. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Functional ingredients from agri-food waste: Effect of inclusion thereof on phenolic compound content and bioaccessibility in bakery products. Antioxidants 2020, 9, 1216. [Google Scholar] [CrossRef]
- Bunzel, M.; Schendel, R.R. Determination of (total) phenolics and antioxidant capacity in food and ingredients. In Food Analysis. Food Science Text Series; Nielsen, S.S., Ed.; Springer: Cham, Switzerland, 2017; p. 459. [Google Scholar]
- Nielsen, M.M.; Damstrup, M.L.; Thomsen, A.D.; Rasmussen, S.K.; Hansen, Å. Phytase activity and degradation of phytic acid during rye bread making. Eur. Food Res. Technol. 2007, 225, 173–181. [Google Scholar] [CrossRef]
- Yildirim, R.M.; Arici, M. Effect of the fermentation temperature on the degradation of phytic acid in whole-wheat sourdough bread. LWT 2019, 112, 108224. [Google Scholar] [CrossRef]
- Leenhardt, F.; Levrat-Verny, M.A.; Chanliaud, E.; Rémésy, C. Moderate decrease of pH by sourdough fermentation is sufficient to reduce phytate content of whole wheat flour through endogenous phytase activity. J. Agric. Food Chem. 2005, 12, 98–102. [Google Scholar] [CrossRef]
- Bartkiene, E.; Gruzauskas, R.; Ruzauskas, M.; Zokaityte, E.; Starkute, V.; Klupsaite, D.; Vadopalas, L.; Badaras, S.; Özogul, F. Changes in the microbial community and biogenic amine content in rapeseed meal during fermentation with an antimicrobial combination of lactic acid bacteria strains. Fermentation 2022, 8, 136. [Google Scholar] [CrossRef]
Sourdough | Log cfu/g | |
---|---|---|
LAB | Yeasts | |
Freeze-dried L. plantarum | ||
L1 | 8.9 ± 0.2 a2 | 7.5 ± 0.3 a1 |
L2 | 9.4 ± 0.1 b2 | 7.7 ± 0.2 a1 |
L3 | 9.9 ± 0.2 c2 | 7.5 ± 0.1 a1 |
Freeze-dried pomegranate juice fermented by L. plantarum | ||
L4 | 9.8 ± 0.1 c1 | 7.9 ± 0.3 a1 |
L5 | 10.5 ± 0.1 d1 | 7.9 ± 0.1 a1 |
L6 | 11.1 ± 0.1 e1 | 7.5 ± 0.2 a1 |
Freeze-dried L. plantarum and freeze-dried pomegranate juice | ||
L7 | 8.9 ± 0.1 a2 | 7.6 ± 0.3 a1 |
L8 | 9.3 ± 0.1 b2 | 7.7 ± 0.2 a1 |
L9 | 10.1 ± 0.2 c2 | 7.6 ± 0.1 a1 |
Control | 8.7 ± 0.2 a | 7.7 ± 0.1 a1 |
Sourdough Bread | pH | TTA (mL NaOH 0.1 M) | SLV (cm3/g) | Organic Acids (g/kg Bread) | |||||
---|---|---|---|---|---|---|---|---|---|
Lactic | Acetic | Formic | Propionic | n-Valeric | Caproic | ||||
Freeze-dried L. plantarum (LP; 1–3%) | |||||||||
LP1 (1%) | 4.79 ± 0.02 d | 5.85 ± 0.05 b | 2.45 ± 0.05 a | 2.13 ± 0.05 a | 0.59 ± 0.02 b | 0.07 ± 0.01 a | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 0.03 ± 0.01 a |
LP2 (2%) | 4.66 ± 0.03 c | 7.22 ± 0.07 c | 2.52 ± 0.05 a | 2.54 ± 0.07 b | 0.78 ± 0.03 c | 0.08 ± 0.01 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a | 0.03 ± 0.01 a |
LP3 (3%) | 4.53 ± 0.02 b | 9.83 ± 0.05 d | 2.51 ± 0.07 a | 2.89 ± 0.07 c | 0.92 ± 0.02 d | 0.11 ± 0.01 b | 0.10 ± 0.01 b | 0.07 ± 0.01 a | 0.03 ± 0.01 a |
Freeze-dried L. plantarum (LP; 1–3%) and freeze-dried pomegranate juice (PO; 6%) | |||||||||
LP1PO | 4.78 ± 0.03 d | 5.82 ± 0.05 b | 2.42 ± 0.05 a | 2.15 ± 0.04 a | 0.54 ± 0.02 b | 0.06 ± 0.02 a | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 0.03 ± 0.01 a |
LP2PO | 4.68 ± 0.02 c | 7.19 ± 0.05 c | 2.50 ± 0.04 a | 2.51 ± 0.05 b | 0.76 ± 0.02 c | 0.09 ± 0.01 a | 0.04 ± 0.01 a | 0.05 ± 0.01 a | 0.03 ± 0.01 a |
LP3PO | 4.55 ± 0.02 b | 9.85 ± 0.05 d | 2.50 ± 0.05 a | 2.75 ± 0.05 c | 0.89 ± 0.04 d | 0.12 ± 0.01 b | 0.09 ± 0.02 b | 0.08 ± 0.03 a | 0.03 ± 0.01 a |
Freeze-dried pomegranate juice fermented by L. plantarum (POLP; 2–6%) | |||||||||
POLP1 (2%) | 4.83 ± 0.03 d | 5.53 ± 0.07 a | 2.44 ± 0.07 a | 2.10 ± 0.05 a | 0.55 ± 0.02 b | 0.06 ± 0.01 a | 0.004 ± 0.01 a | 0.03 ± 0.01 b | 0.03 ± 0.01 a |
POLP2 (4%) | 4.56 ± 0.02 b | 7.93 ± 0.05 e | 2.53 ± 0.05 a | 2.62 ± 0.07 b | 0.81 ± 0.02 c | 0.11 ± 0.01 b | 0.011 ± 0.01 b | 0.10 ± 0.01 b | 0.03 ± 0.01 a |
POLP3 (6%) | 4.39 ± 0.02 a | 9.95 ± 0.05 f | 2.50 ± 0.07 a | 3.02 ± 0.05 d | 0.95 ± 0.03 d | 0.15 ± 0.01 c | 0.012 ± 0.01 b | 0.12 ± 0.01 b | 0.07 ± 0.01 b |
Control | 4.75 ± 0.03 c | 6.10 ± 0.08 c | 2.55 ± 0.04 a | 2.18 ± 0.05 a | 0.77 ± 0.02 a | 0.07 ± 0.01 a | 0.03 ± 0.01 a | 0.04 ± 0.01 a | 0.03 ± 0.01 a |
Sourdough Bread | TPC (mg GAE/100 g) | AC | |
---|---|---|---|
ABTS (mg TE/100 g) | DPPH (μmol TE/g) | ||
Freeze-dried L. plantarum (LP; 1–3%) | |||
LP1 (1%) | 49.0 ± 8.2 a1 | 174.7± 7.3 a1 | 3.0± 0.2 a2 |
LP2 (2%) | 63.8± 3.5 b2 | 184.8± 5.5 a3 | 3.2± 0.1 a3 |
LP3 (3%) | 73.4± 4.5 c3 | 199.6± 6.4 b2 | 3.7± 0.2 a3 |
Freeze-dried L. plantarum (LP; 1–3%) and freeze-dried pomegranate juice (PO; 6%) | |||
LP1PO | 54.4 ± 1.7 a1 | 180.1± 3.9 a1 | 3.2± 0.1 a2 |
LP2PO | 78.3± 4.1 c1 | 195.8± 3.1 b2 | 3.7± 0.1 a2 |
LP3PO | 90.1± 4.6 d2 | 202.4± 4.9 b2 | 4.1± 0.1 b2 |
Freeze-dried pomegranate juice fermented by L. plantarum (POLP; 2–6%) | |||
POLP1 (2%) | 54.7± 4.1 a1 | 185.4± 5.3 a1 | 3.5± 0.1 a1 |
POLP2 (4%) | 85.8± 3.5 d1 | 214.9± 5.1 c1 | 4.4± 0.1 c1 |
POLP3 (6%) | 102.4± 4.3 e1 | 231.5± 4.2 d1 | 4.7± 0.1 d1 |
Control | 52.8± 5.1 a | 182.7± 6.1 a | 3.2± 0.1 a |
Sourdough Bread | Aroma | Taste | Appearance | Overall Quality |
---|---|---|---|---|
Freeze-dried L. plantarum (LP; 1–3%) | ||||
LP1 (1%) | 8.4 ± 0.1 a | 8.4 ± 0.1 a | 8.5 ± 0.1 a | 8.5 ± 0.1 a |
LP2 (2%) | 8.8 ± 0.1 b | 8.8 ± 0.1 b | 8.9 ± 0.1 b | 8.8 ± 0.1 b |
LP3 (3%) | 8.8 ± 0.1 b | 8.9 ± 0.1 b | 8.8 ± 0.1 b | 8.8 ± 0.1 b |
Freeze-dried L. plantarum (LP; 1–3%) and freeze-dried pomegranate juice (PO; 6%) | ||||
LP1PO | 8.5 ± 0.1 a | 8.5 ± 0.1 a | 8.5 ± 0.1 a | 8.5 ± 0.1 a |
LP2PO | 8.8 ± 0.1 b | 8.7 ± 0.1 b | 8.8 ± 0.1 b | 8.8 ± 0.1 b |
LP3PO | 8.8 ± 0.1 b | 8.9 ± 0.1 b | 8.9 ± 0.1 b | 8.8 ± 0.1 b |
Freeze-dried pomegranate juice fermented by L. plantarum (POLP; 2–6%) | ||||
POLP1 (2%) | 8.3 ± 0.1 a | 8.6 ± 0.1 a | 8.5 ± 0.1 a | 8.5 ± 0.1 a |
POLP2 (4%) | 8.7 ± 0.1 b | 8.9 ± 0.1 b | 8.9 ± 0.1 b | 8.8 ± 0.1 b |
POLP3 (6%) | 9.1 ± 0.1 b | 9.2 ± 0.1 c | 8.9 ± 0.1 b | 9.0 ± 0.1 b |
Control | 8.9 ± 0.1 b | 8.9 ± 0.1 b | 8.9 ± 0.1 b | 8.9 ± 0.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plessas, S.; Mantzourani, I.; Alexopoulos, A.; Alexandri, M.; Kopsahelis, N.; Adamopoulou, V.; Bekatorou, A. Nutritional Improvements of Sourdough Breads Made with Freeze-Dried Functional Adjuncts Based on Probiotic Lactiplantibacillus plantarum subsp. plantarum and Pomegranate Juice. Antioxidants 2023, 12, 1113. https://doi.org/10.3390/antiox12051113
Plessas S, Mantzourani I, Alexopoulos A, Alexandri M, Kopsahelis N, Adamopoulou V, Bekatorou A. Nutritional Improvements of Sourdough Breads Made with Freeze-Dried Functional Adjuncts Based on Probiotic Lactiplantibacillus plantarum subsp. plantarum and Pomegranate Juice. Antioxidants. 2023; 12(5):1113. https://doi.org/10.3390/antiox12051113
Chicago/Turabian StylePlessas, Stavros, Ioanna Mantzourani, Athanasios Alexopoulos, Maria Alexandri, Nikolaos Kopsahelis, Vasiliki Adamopoulou, and Argyro Bekatorou. 2023. "Nutritional Improvements of Sourdough Breads Made with Freeze-Dried Functional Adjuncts Based on Probiotic Lactiplantibacillus plantarum subsp. plantarum and Pomegranate Juice" Antioxidants 12, no. 5: 1113. https://doi.org/10.3390/antiox12051113
APA StylePlessas, S., Mantzourani, I., Alexopoulos, A., Alexandri, M., Kopsahelis, N., Adamopoulou, V., & Bekatorou, A. (2023). Nutritional Improvements of Sourdough Breads Made with Freeze-Dried Functional Adjuncts Based on Probiotic Lactiplantibacillus plantarum subsp. plantarum and Pomegranate Juice. Antioxidants, 12(5), 1113. https://doi.org/10.3390/antiox12051113