Prevention of Chronic Morbidities in Extremely Premature Newborns with LISA-nCPAP Respiratory Therapy and Adjuvant Perinatal Strategies
Abstract
:1. Introduction
- cardiopulmonary transition
- angiogenesis
- antioxidants
- nephrogenesis and renal function
- glucose metabolism
- inflammation.
2. Less Invasive Surfactant Administration (LISA) Combined with Nasal Continuous Positive Airway Pressure (nCPAP) Respiratory Therapy in Clinical Practice
2.1. Timing and Thresholds of Treatment
2.2. Premedication for LISA-nCPAP
2.3. LISA-nCPAP Support in Extremely Preterm Infants Born before 27 Weeks of Gestation
3. Optimized Perinatal Cardiopulmonary Transition Supports the Success of LISA-nCPAP Respiratory Therapy
3.1. Physiology of Cardiopulmonary Transition
3.1.1. Fetal Circulation
3.1.2. Postnatal (Adult-Type) Circulation
3.2. Clinically Relevant Cardiovascular Outcomes with the Use of LISA-nCPAP
4. Interaction of NIV/LISA-nCPAP Therapy with Angiogenesis and Organ Development
4.1. Angiogenesis in the Perinatal Age
4.2. Agiogenesis and Vascular Growth Factors
4.3. Oxygen Therapy
4.4. Oxidative Stress in Organ Development
4.5. Antioxidants
5. Nephrogenesis and Kidney Function in Preterm Infants: The Lung–Kidney Interaction
5.1. Nephrogenesis in Preterm Newborns
5.2. Acute Renal Injury: The Kidney–Lung Interplay in Premature Infants
6. Glucose Metabolism and Endocrine Characteristics of Premature Newborns Affecting LISA-nCPAP Efficacy
6.1. Glucose Metabolism in Premature Infants
6.2. Corticosteroid Treatment in Premature Newborns: Relation to LISA-nCPAP
6.3. Thyroid Function: Hormone Substitution
7. Inflammatory Characteristics in Extremely Immature Newborns
7.1. Postpartum Immune Response Is Balanced by Breast Milk
7.2. Immune-Regulating Molecules of Breast Milk
8. Rediscovering Old Drugs
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Morgan, A.S.; Mendonça, M.; Thiele, N.; David, A.L. Management and outcomes of extreme preterm birth. BMJ 2022, 376, e055924. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Kamitsuka, M.; Clark, R.H.; Kelleher, A.S.; Spitzer, A.R. Etiologies of NICU deaths. Pediatrics 2015, 135, e59–e65. [Google Scholar] [CrossRef] [PubMed]
- Siffel, C.; Kistler, K.D.; Lewis, J.F.M.; Sarda, S.P. Global incidence of bronchopulmonary dysplasia among extremely preterm infants: A systematic literature review. J. Matern. Fetal Neonatal Med. 2021, 34, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Siffel, C.; Hirst, A.K.; Sarda, S.P.; Kuzniewicz, M.W.; Li, D.K. The clinical burden of extremely preterm birth in a large medical records database in the United States: Mortality and survival associated with selected complications. Early Hum. Dev. 2022, 171, 105613. [Google Scholar] [CrossRef]
- Taner, A.; Tekle, S.; Hothorn, T.; Adams, M.; Bassler, D.; Gerth-Kahlert, C. Higher incidence of retinopathy of prematurity in extremely preterm infants associated with improved survival rates. Acta Paediatr. 2020, 109, 2033–2039. [Google Scholar] [CrossRef]
- Buyuktiryaki, M.; Alarcon-Martinez, T.; Simsek, G.K.; Canpolat, F.E.; Tayman, C.; Oguz, S.S.; Kutman, H.G.K. Five-year single center experience on surfactant treatment in preterm infants with respiratory distress syndrome: LISA vs. INSURE. Early Hum. Dev. 2019, 135, 32–36. [Google Scholar] [CrossRef]
- Lau, C.S.M.; Chamberlain, R.S.; Sun, S. Less Invasive Surfactant Administration Reduces the Need for Mechanical Ventilation in Preterm Infants: A Meta-Analysis. Glob. Pediatr. Health 2017, 4, 2333794x17696683. [Google Scholar] [CrossRef]
- Herting, E.; Kribs, A.; Härtel, C.; von der Wense, A.; Weller, U.; Hoehn, T.; Vochem, M.; Möller, J.; Wieg, C.; Roth, B.; et al. Two-year outcome data suggest that less invasive surfactant administration (LISA) is safe. Results from the follow-up of the randomized controlled AMV (avoid mechanical ventilation) study. Eur. J. Pediatr. 2020, 179, 1309–1313. [Google Scholar] [CrossRef]
- Langhammer, K.; Roth, B.; Kribs, A.; Göpel, W.; Kuntz, L.; Miedaner, F. Treatment and outcome data of very low birth weight infants treated with less invasive surfactant administration in comparison to intubation and mechanical ventilation in the clinical setting of a cross-sectional observational multicenter study. Eur. J. Pediatr. 2018, 177, 1207–1217. [Google Scholar] [CrossRef]
- Aldana-Aguirre, J.C.; Pinto, M.; Featherstone, R.M.; Kumar, M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F17–F23. [Google Scholar] [CrossRef]
- Morley, C.J.; Davis, P.G.; Doyle, L.W.; Brion, L.P.; Hascoet, J.M.; Carlin, J.B.; Investigators, C.T. Nasal CPAP or intubation at birth for very preterm infants. N. Engl. J. Med. 2008, 358, 700–708. [Google Scholar] [CrossRef]
- Support Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network; Finer, N.N.; Carlo, W.A.; Walsh, M.C.; Rich, W.; Gantz, M.G.; Laptook, A.R.; Yoder, B.A.; Faix, R.G.; Das, A.; et al. Early CPAP versus surfactant in extremely preterm infants. N. Engl. J. Med. 2010, 362, 1970–1979. [Google Scholar] [CrossRef]
- Dunn, M.S.; Kaempf, J.; de Klerk, A.; de Klerk, R.; Reilly, M.; Howard, D.; Ferrelli, K.; O’Conor, J.; Soll, R.F.; Vermont Oxford Network, D.R.M.S.G. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics 2011, 128, e1069–e1076. [Google Scholar] [CrossRef]
- Dargaville, P.A.; Aiyappan, A.; De Paoli, A.G.; Dalton, R.G.; Kuschel, C.A.; Kamlin, C.O.; Orsini, F.; Carlin, J.B.; Davis, P.G. Continuous positive airway pressure failure in preterm infants: Incidence, predictors and consequences. Neonatology 2013, 104, 8–14. [Google Scholar] [CrossRef]
- Dargaville, P.A.; Gerber, A.; Johansson, S.; De Paoli, A.G.; Kamlin, C.O.; Orsini, F.; Davis, P.G.; Australian and New Zealand Neonatal Network. Incidence and Outcome of CPAP Failure in Preterm Infants. Pediatrics 2016, 138, e20153985. [Google Scholar] [CrossRef]
- Kakkilaya, V.; Wagner, S.; Mangona, K.L.M.; Steven Brown, L.; Jubran, I.; He, H.; Savani, R.C.; Kapadia, V.S. Early predictors of continuous positive airway pressure failure in preterm neonates. J. Perinatol. 2019, 39, 1081–1088. [Google Scholar] [CrossRef]
- Bahadue, F.L.; Soll, R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst. Rev. 2012, 11, CD001456. [Google Scholar] [CrossRef]
- Verder, H.; Agertoft, L.; Albertsen, P.; Christensen, N.C.; Curstedt, T.; Ebbesen, F.; Greisen, G.; Hobolth, N.; Holm, V.; Jacobsen, T.; et al. Surfactant treatment of newborn infants with respiratory distress syndrome primarily treated with nasal continuous positive air pressure. A pilot study. Ugeskr. Laeger 1992, 154, 2136–2139. [Google Scholar]
- Kribs, A.; Pillekamp, F.; Hunseler, C.; Vierzig, A.; Roth, B. Early administration of surfactant in spontaneous breathing with nCPAP: Feasibility and outcome in extremely premature infants (postmenstrual age </=27 weeks). Paediatr. Anaesth 2007, 17, 364–369. [Google Scholar] [CrossRef]
- Vento, M.; Bohlin, K.; Herting, E.; Roehr, C.C.; Dargaville, P.A. Surfactant Administration via Thin Catheter: A Practical Guide. Neonatology 2019, 116, 211–226. [Google Scholar] [CrossRef]
- Wright, C.J.; Glaser, K.; Speer, C.P.; Härtel, C.; Roehr, C.C. Noninvasive Ventilation and Exogenous Surfactant in Times of Ever Decreasing Gestational Age: How Do We Make the Most of These Tools? J. Pediatr. 2022, 247, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Härtel, C.; Herting, E.; Humberg, A.; Hanke, K.; Mehler, K.; Keller, T.; Mauer, I.; Frieauff, E.; Meyer, S.; Thome, U.H.; et al. Association of Administration of Surfactant Using Less Invasive Methods with Outcomes in Extremely Preterm Infants Less Than 27 Weeks of Gestation. JAMA Netw. Open 2022, 5, e2225810. [Google Scholar] [CrossRef] [PubMed]
- Kakkilaya, V.; Gautham, K.S. Should less invasive surfactant administration (LISA) become routine practice in US neonatal units? Pediatr. Res. 2022, 93, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- Oncel, M.Y.; Erdeve, O. A national survey on use of less invasive surfactant administration in Turkey. Turk. J. Pediatr. 2020, 62, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Boix, H.; Camba, F.; Comunas, J.J.; Castillo, F. Less Invasive Surfactant Administration in Spain: A Survey Regarding Its Practice, the Target Population, and Premedication Use. Am. J. Perinatol. 2020, 37, 277–280. [Google Scholar] [CrossRef]
- Klotz, D.; Porcaro, U.; Fleck, T.; Fuchs, H. European perspective on less invasive surfactant administration-a survey. Eur. J. Pediatr. 2017, 176, 147–154. [Google Scholar] [CrossRef]
- Kurepa, D.; Perveen, S.; Lipener, Y.; Kakkilaya, V. The use of less invasive surfactant administration (LISA) in the United States with review of the literature. J. Perinatol. 2019, 39, 426–432. [Google Scholar] [CrossRef]
- Jeffreys, E.; Hunt, K.; Dassios, T.; Greenough, A. UK survey of less invasive surfactant administration. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F567. [Google Scholar] [CrossRef]
- Szczapa, T.; Hozejowski, R.; Krajewski, P.; Study, G. Implementation of less invasive surfactant administration in clinical practice-Experience of a mid-sized country. PLoS ONE 2020, 15, e0235363. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Read, B.; Miller, M.; da Silva, O. Impact of Catheter Choice on Procedural Success of Minimally Invasive Surfactant Therapy. Am. J. Perinatol. 2021. [Google Scholar] [CrossRef]
- Auer-Hackenberg, L.; Brandner, J.; Hofstätter, E.; Stroicz, P.; Hager, T.; Eichhorn, A.; Schütz, S.; Feldner, R.; Wald, M. A pilot study of evaluation of semi-rigid and flexible catheters for less invasive surfactant administration in preterm infants with respiratory distress syndrome-a randomized controlled trial. BMC Pediatr. 2022, 22, 637. [Google Scholar] [CrossRef]
- Rigo, V.; Debauche, C.; Maton, P.; Broux, I.; Van Laere, D. Rigid catheters reduced duration of less invasive surfactant therapy procedures in manikins. Acta Paediatr. 2017, 106, 1091–1096. [Google Scholar] [CrossRef]
- Fabbri, L.; Klebermass-Schrehof, K.; Aguar, M.; Harrison, C.; Gulczynska, E.; Santoro, D.; Di Castri, M.; Rigo, V. Five-country manikin study found that neonatologists preferred using the LISAcath rather than the Angiocath for less invasive surfactant administration. Acta Paediatr. 2018, 107, 780–783. [Google Scholar] [CrossRef]
- Gopel, W.; Kribs, A.; Ziegler, A.; Laux, R.; Hoehn, T.; Wieg, C.; Siegel, J.; Avenarius, S.; von der Wense, A.; Vochem, M.; et al. Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): An open-label, randomised, controlled trial. Lancet 2011, 378, 1627–1634. [Google Scholar] [CrossRef]
- Kribs, A.; Roll, C.; Gopel, W.; Wieg, C.; Groneck, P.; Laux, R.; Teig, N.; Hoehn, T.; Bohm, W.; Welzing, L.; et al. Nonintubated Surfactant Application vs Conventional Therapy in Extremely Preterm Infants: A Randomized Clinical Trial. JAMA Pediatr. 2015, 169, 723–730. [Google Scholar] [CrossRef]
- Olivier, F.; Nadeau, S.; Belanger, S.; Julien, A.S.; Masse, E.; Ali, N.; Caouette, G.; Piedboeuf, B. Efficacy of minimally invasive surfactant therapy in moderate and late preterm infants: A multicentre randomized control trial. Paediatr. Child Health 2017, 22, 120–124. [Google Scholar] [CrossRef]
- Dargaville, P.A.; Kamlin, C.O.F.; Orsini, F.; Wang, X.; De Paoli, A.G.; Kanmaz Kutman, H.G.; Cetinkaya, M.; Kornhauser-Cerar, L.; Derrick, M.; Ozkan, H.; et al. Effect of Minimally Invasive Surfactant Therapy vs Sham Treatment on Death or Bronchopulmonary Dysplasia in Preterm Infants with Respiratory Distress Syndrome: The OPTIMIST-A Randomized Clinical Trial. JAMA 2021, 326, 2478–2487. [Google Scholar] [CrossRef]
- Kanmaz, H.G.; Erdeve, O.; Canpolat, F.E.; Mutlu, B.; Dilmen, U. Surfactant administration via thin catheter during spontaneous breathing: Randomized controlled trial. Pediatrics 2013, 131, e502–e509. [Google Scholar] [CrossRef]
- Mirnia, K.; Heidarzadeh, M.; Hosseini, M.B.; Sadeghnia, A.; Balila, M.; Ghojazadeh, M. Comparison outcome of surfactant administration via tracheal catheterization during spontaneous breathing with INSURE. Med. J. Islamic World Acad. Sci. 2013, 21, 143–148. [Google Scholar] [CrossRef]
- Mohammadizadeh, M.; Ardestani, A.G.; Sadeghnia, A.R. Early administration of surfactant via a thin intratracheal catheter in preterm infants with respiratory distress syndrome: Feasibility and outcome. J. Res. Pharm. Pract. 2015, 4, 31–36. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, G.; Wu, M.; Ma, L.; Zhu, J. A pilot study of less invasive surfactant administration in very preterm infants in a Chinese tertiary center. BMC Pediatr. 2015, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Cheng, T.T.; Guan, R.L.; Liang, H.; Lu, W.N.; Zhang, J.H.; Liu, M.Y.; Yu, X.; Liang, J.; Sun, L.; et al. Effects of different surfactant administrations on cerebral autoregulation in preterm infants with respiratory distress syndrome. J. Huazhong Univ. Sci. Technol. Med. Sci. 2016, 36, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Mosayebi, Z.; Kadivar, M.; Taheri-Derakhsh, N.; Nariman, S.; Marashi, S.M.; Farsi, Z. A Randomized Trial Comparing Surfactant Administration Using InSurE Technique and the Minimally Invasive Surfactant Therapy in Preterm Infants (28 to 34 Weeks of Gestation) with Respiratory Distress Syndrome. J. Compr. Pediatr. 2017, 8, e60724. [Google Scholar] [CrossRef]
- Choupani, R.; Mashayekhy, G.; Hmidi, M.; Kheiri, S.; Khalili Dehkordi, M. A Comparative Study of the Efficacy of Surfactant Administration through a Thin Intratracheal Catheter and its Administration via an Endotracheal Tube in Neonatal Respiratory Distress Syndrome. Iran. J. Neonatol. 2018, 9, 33–40. [Google Scholar] [CrossRef]
- Halim, A.; Shirazi, H.; Riaz, S.; Gul, S.S.; Ali, W. Less invasive surfactant administration in preterm infants with respiratory distress syndrome. J. Coll. Physicians Surg. Pak. 2019, 29, 226–330. [Google Scholar] [CrossRef]
- Boskabadi, H.; Maamouri, G.; Gharaei Jomeh, R.; Zakerihamidi, M. Comparative study of the effect of the administration of surfactant through a thin endotracheal catheter into trachea during spontaneous breathing with intubation (intubation-surfactant-extubation method). J. Clin. Neonatol. 2019, 8, 227–231. [Google Scholar] [CrossRef]
- Jena, S.R.; Bains, H.S.; Pandita, A.; Verma, A.; Gupta, V.; Kallem, V.R.; Abdullah, M.; Kawdiya, A.; On Behalf of Sure, G. Surfactant therapy in premature babies: SurE or InSurE. Pediatr. Pulmonol. 2019, 54, 1747–1752. [Google Scholar] [CrossRef]
- Yang, G.; Hei, M.; Xue, Z.; Zhao, Y.; Zhang, X.; Wang, C. Effects of less invasive surfactant administration (LISA) via a gastric tube on the treatment of respiratory distress syndrome in premature infants aged 32 to 36 weeks. Medicine 2020, 99, e19216. [Google Scholar] [CrossRef]
- Han, T.; Liu, H.; Zhang, H.; Guo, M.; Zhang, X.; Duan, Y.; Sun, F.; Liu, X.; Zhang, X.; Zhang, M.; et al. Minimally Invasive Surfactant Administration for the Treatment of Neonatal Respiratory Distress Syndrome: A Multicenter Randomized Study in China. Front. Pediatr. 2020, 8, 182. [Google Scholar] [CrossRef]
- Gupta, B.K.; Saha, A.K.; Mukherjee, S.; Saha, B. Minimally invasive surfactant therapy versus InSurE in preterm neonates of 28 to 34 weeks with respiratory distress syndrome on non-invasive positive pressure ventilation-a randomized controlled trial. Eur. J. Pediatr. 2020, 179, 1287–1293. [Google Scholar] [CrossRef]
- Pareek, P.; Deshpande, S.; Suryawanshi, P.; Sah, L.K.; Chetan, C.; Maheshwari, R.; More, K. Less Invasive Surfactant Administration (LISA) vs. Intubation Surfactant Extubation (InSurE) in Preterm Infants with Respiratory Distress Syndrome: A Pilot Randomized Controlled Trial. J. Trop. Pediatr. 2021, 67, fmab086. [Google Scholar] [CrossRef]
- Anand, R.; Nangia, S.; Kumar, G.; Mohan, M.V.; Dudeja, A. Less invasive surfactant administration via infant feeding tube versus InSurE method in preterm infants: A randomized control trial. Sci. Rep. 2022, 12, 21955. [Google Scholar] [CrossRef]
- Isayama, T.; Iwami, H.; McDonald, S.; Beyene, J. Association of Noninvasive Ventilation Strategies with Mortality and Bronchopulmonary Dysplasia Among Preterm Infants: A Systematic Review and Meta-analysis. JAMA 2016, 316, 611–624. [Google Scholar] [CrossRef]
- Rigo, V.; Lefebvre, C.; Broux, I. Surfactant instillation in spontaneously breathing preterm infants: A systematic review and meta-analysis. Eur. J. Pediatr. 2016, 175, 1933–1942. [Google Scholar] [CrossRef]
- Barkhuff, W.D.; Soll, R.F. Novel Surfactant Administration Techniques: Will They Change Outcome? Neonatology 2019, 115, 411–422. [Google Scholar] [CrossRef]
- Abdel-Latif, M.E.; Davis, P.G.; Wheeler, K.I.; De Paoli, A.G.; Dargaville, P.A. Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst. Rev. 2021, 5, CD011672. [Google Scholar] [CrossRef]
- Bellos, I.; Fitrou, G.; Panza, R.; Pandita, A. Comparative efficacy of methods for surfactant administration: A network meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 474–487. [Google Scholar] [CrossRef]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2019 Update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef]
- Aguar, M.; Cernada, M.; Brugada, M.; Gimeno, A.; Gutierrez, A.; Vento, M. Minimally invasive surfactant therapy with a gastric tube is as effective as the intubation, surfactant, and extubation technique in preterm babies. Acta Paediatr. 2014, 103, e229–e233. [Google Scholar] [CrossRef]
- Janssen, L.C.; Van Der Spil, J.; van Kaam, A.H.; Dieleman, J.P.; Andriessen, P.; Onland, W.; Niemarkt, H.J. Minimally invasive surfactant therapy failure: Risk factors and outcome. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F636–F642. [Google Scholar] [CrossRef]
- Herting, E.; Härtel, C.; Göpel, W. Less invasive surfactant administration (LISA): Chances and limitations. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F655–F659. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Navarro, C.; Sánchez-Luna, M.; Zeballos-Sarrato, S.; González-Pacheco, N. Three-year perinatal outcomes of less invasive beractant administration in preterm infants with respiratory distress syndrome. J. Matern. Fetal Neonatal Med. 2020, 33, 2704–2710. [Google Scholar] [CrossRef] [PubMed]
- Kruczek, P.; Krajewski, P.; Hożejowski, R.; Szczapa, T. FiO(2) Before Surfactant, but Not Time to Surfactant, Affects Outcomes in Infants With Respiratory Distress Syndrome. Front. Pediatr. 2021, 9, 734696. [Google Scholar] [CrossRef] [PubMed]
- Kleijkers, L.M.P.; Van Der Spil, J.; Janssen, L.C.E.; Dieleman, J.P.; Andriessen, P.; van Kaam, A.H.; Onland, W.; Niemarkt, H.J. Short-Term Outcome after Repeated Less Invasive Surfactant Administration: A Retrospective Cohort Study. Neonatology 2022, 119, 719–726. [Google Scholar] [CrossRef]
- Balazs, G.; Balajthy, A.; Riszter, M.; Kovacs, T.; Szabo, T.; Belteki, G.; Balla, G. Incidence, predictors of success and outcome of LISA in very preterm infants. Pediatr. Pulmonol. 2022, 57, 1751–1759. [Google Scholar] [CrossRef]
- Mehler, K.; Broer, A.; Roll, C.; Göpel, W.; Wieg, C.; Jahn, P.; Teig, N.; Höhn, T.; Welzing, L.; Vochem, M.; et al. Developmental outcome of extremely preterm infants is improved after less invasive surfactant application: Developmental outcome after LISA. Acta Paediatr. 2021, 110, 818–825. [Google Scholar] [CrossRef]
- Suresh, G.K.; Soll, R.F. Overview of surfactant replacement trials. J. Perinatol. 2005, 25 (Suppl. 2), S40–S44. [Google Scholar] [CrossRef]
- Raimondi, F.; de Winter, J.P.; De Luca, D. Lung ultrasound-guided surfactant administration: Time for a personalized, physiology-driven therapy. Eur. J. Pediatr. 2020, 179, 1909–1911. [Google Scholar] [CrossRef]
- Bhatia, R.; Morley, C.J.; Argus, B.; Tingay, D.G.; Donath, S.; Davis, P.G. The stable microbubble test for determining continuous positive airway pressure (CPAP) success in very preterm infants receiving nasal CPAP from birth. Neonatology 2013, 104, 188–193. [Google Scholar] [CrossRef]
- Fiori, H.H.; Fiori, R.M. Why not use a surfactant test for respiratory distress syndrome? Neonatology 2015, 107, 312. [Google Scholar] [CrossRef]
- Verder, H.; Heiring, C.; Clark, H.; Sweet, D.; Jessen, T.E.; Ebbesen, F.; Björklund, L.J.; Andreasson, B.; Bender, L.; Bertelsen, A.; et al. Rapid test for lung maturity, based on spectroscopy of gastric aspirate, predicted respiratory distress syndrome with high sensitivity. Acta Paediatr. 2017, 106, 430–437. [Google Scholar] [CrossRef]
- Autilio, C.; Echaide, M.; Benachi, A.; Marfaing-Koka, A.; Capoluongo, E.D.; Pérez-Gil, J.; De Luca, D. A Noninvasive Surfactant Adsorption Test Predicting the Need for Surfactant Therapy in Preterm Infants Treated with Continuous Positive Airway Pressure. J. Pediatr. 2017, 182, 66–73.e61. [Google Scholar] [CrossRef]
- Raschetti, R.; Centorrino, R.; Letamendia, E.; Benachi, A.; Marfaing-Koka, A.; De Luca, D. Estimation of early life endogenous surfactant pool and CPAP failure in preterm neonates with RDS. Respir. Res. 2019, 20, 75. [Google Scholar] [CrossRef]
- Schousboe, P.; Verder, H.; Jessen, T.E.; Heiring, C.; Bender, L.; Ebbesen, F.; Dahl, M.; Eschen, C.; Fenger-Grøn, J.; Höskuldsson, A.; et al. Predicting respiratory distress syndrome at birth using fast test based on spectroscopy of gastric aspirates. 1. Biochemical part. Acta Paediatr. 2020, 109, 280–284. [Google Scholar] [CrossRef]
- Heiring, C.; Verder, H.; Schousboe, P.; Jessen, T.E.; Bender, L.; Ebbesen, F.; Dahl, M.; Eschen, C.; Fenger-Grøn, J.; Höskuldsson, A.; et al. Predicting respiratory distress syndrome at birth using a fast test based on spectroscopy of gastric aspirates: 2. Clinical part. Acta Paediatr. 2020, 109, 285–290. [Google Scholar] [CrossRef]
- Siew, M.L.; van Vonderen, J.J.; Hooper, S.B.; te Pas, A.B. Very Preterm Infants Failing CPAP Show Signs of Fatigue Immediately after Birth. PLoS ONE 2015, 10, e0129592. [Google Scholar] [CrossRef]
- Lavizzari, A.; Veneroni, C.; Beretta, F.; Ottaviani, V.; Fumagalli, C.; Tossici, M.; Colnaghi, M.; Mosca, F.; Dellacà, R.L. Oscillatory mechanics at birth for identifying infants requiring surfactant: A prospective, observational trial. Respir. Res. 2021, 22, 314. [Google Scholar] [CrossRef]
- Copetti, R.; Cattarossi, L.; Macagno, F.; Violino, M.; Furlan, R. Lung ultrasound in respiratory distress syndrome: A useful tool for early diagnosis. Neonatology 2008, 94, 52–59. [Google Scholar] [CrossRef]
- Capasso, L.; Pacella, D.; Migliaro, F.; Salomè, S.; Grasso, F.; Corsini, I.; De Luca, D.; Davis, P.G.; Raimondi, F. Can lung ultrasound score accurately predict surfactant replacement? A systematic review and meta-analysis of diagnostic test studies. Pediatr. Pulmonol. 2023, 58, 1427–1437. [Google Scholar] [CrossRef]
- Brat, R.; Yousef, N.; Klifa, R.; Reynaud, S.; Shankar Aguilera, S.; De Luca, D. Lung Ultrasonography Score to Evaluate Oxygenation and Surfactant Need in Neonates Treated with Continuous Positive Airway Pressure. JAMA Pediatr. 2015, 169, e151797. [Google Scholar] [CrossRef]
- Vardar, G.; Karadag, N.; Karatekin, G. The Role of Lung Ultrasound as an Early Diagnostic Tool for Need of Surfactant Therapy in Preterm Infants with Respiratory Distress Syndrome. Am. J. Perinatol. 2021, 38, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- De Martino, L.; Yousef, N.; Ben-Ammar, R.; Raimondi, F.; Shankar-Aguilera, S.; De Luca, D. Lung Ultrasound Score Predicts Surfactant Need in Extremely Preterm Neonates. Pediatrics 2018, 142, e20180463. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, F.; Migliaro, F.; Verdoliva, L.; Gragnaniello, D.; Poggi, G.; Kosova, R.; Sansone, C.; Vallone, G.; Capasso, L. Visual assessment versus computer-assisted gray scale analysis in the ultrasound evaluation of neonatal respiratory status. PLoS ONE 2018, 13, e0202397. [Google Scholar] [CrossRef] [PubMed]
- Raschetti, R.; Yousef, N.; Vigo, G.; Marseglia, G.; Centorrino, R.; Ben-Ammar, R.; Shankar-Aguilera, S.; De Luca, D. Echography-Guided Surfactant Therapy to Improve Timeliness of Surfactant Replacement: A Quality Improvement Project. J. Pediatr. 2019, 212, 137–143.e131. [Google Scholar] [CrossRef]
- De Luca, D.; Yousef, N. Pharmaceutical Expenditure Is Unchanged with Ultrasound-Guided Surfactant Administration. Am. J. Perinatol. 2022, 39, 562–566. [Google Scholar] [CrossRef]
- Rodriguez-Fanjul, J.; Jordan, I.; Balaguer, M.; Batista-Muñoz, A.; Ramon, M.; Bobillo-Perez, S. Early surfactant replacement guided by lung ultrasound in preterm newborns with RDS: The ULTRASURF randomised controlled trial. Eur. J. Pediatr. 2020, 179, 1913–1920. [Google Scholar] [CrossRef]
- Krajewski, P.; Szpecht, D.; Hożejowski, R. Premedication practices for less invasive surfactant administration—Results from a nationwide cohort study. J. Matern. Fetal Neonatal Med. 2022, 35, 4750–4754. [Google Scholar] [CrossRef]
- Roberts, C.T.; Halibullah, I.; Bhatia, R.; Green, E.A.; Kamlin, C.O.F.; Davis, P.G.; Manley, B.J. Outcomes after Introduction of Minimally Invasive Surfactant Therapy in Two Australian Tertiary Neonatal Units. J. Pediatr. 2021, 229, 141–146. [Google Scholar] [CrossRef]
- de Kort, E.; Kusters, S.; Niemarkt, H.; van Pul, C.; Reiss, I.; Simons, S.; Andriessen, P. Quality assessment and response to less invasive surfactant administration (LISA) without sedation. Pediatr. Res. 2020, 87, 125–130. [Google Scholar] [CrossRef]
- Moschino, L.; Ramaswamy, V.V.; Reiss, I.K.M.; Baraldi, E.; Roehr, C.C.; Simons, S.H.P. Sedation for less invasive surfactant administration in preterm infants: A systematic review and meta-analysis. Pediatr. Res. 2023, 93, 471–491. [Google Scholar] [CrossRef]
- Tribolet, S.; Hennuy, N.; Snyers, D.; Lefèbvre, C.; Rigo, V. Analgosedation before Less-Invasive Surfactant Administration: A Systematic Review. Neonatology 2022, 119, 137–150. [Google Scholar] [CrossRef]
- Dekker, J.; Lopriore, E.; van Zanten, H.A.; Tan, R.; Hooper, S.B.; Te Pas, A.B. Sedation during minimal invasive surfactant therapy: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F378–F383. [Google Scholar] [CrossRef]
- Dekker, J.; Lopriore, E.; Rijken, M.; Rijntjes-Jacobs, E.; Smits-Wintjens, V.; Te Pas, A. Sedation during Minimal Invasive Surfactant Therapy in Preterm Infants. Neonatology 2016, 109, 308–313. [Google Scholar] [CrossRef]
- Peterson, J.; den Boer, M.C.; Roehr, C.C. To Sedate or Not to Sedate for Less Invasive Surfactant Administration: An Ethical Approach. Neonatology 2021, 118, 639–646. [Google Scholar] [CrossRef]
- Descamps, C.S.; Chevallier, M.; Ego, A.; Pin, I.; Epiard, C.; Debillon, T. Propofol for sedation during less invasive surfactant administration in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F465. [Google Scholar] [CrossRef]
- Brotelande, C.; Milési, C.; Combes, C.; Durand, S.; Badr, M.; Cambonie, G. Premedication with ketamine or propofol for less invasive surfactant administration (LISA): Observational study in the delivery room. Eur. J. Pediatr. 2021, 180, 3053–3058. [Google Scholar] [CrossRef]
- Sk, H.; Saha, B.; Mukherjee, S.; Hazra, A. Premedication with Fentanyl for Less Invasive Surfactant Application (LISA): A Randomized Controlled Trial. J. Trop. Pediatr. 2022, 68, fmac019. [Google Scholar] [CrossRef]
- Härtel, C.; Paul, P.; Hanke, K.; Humberg, A.; Kribs, A.; Mehler, K.; Vochem, M.; Wieg, C.; Roll, C.; Herting, E.; et al. Less invasive surfactant administration and complications of preterm birth. Sci. Rep. 2018, 8, 8333. [Google Scholar] [CrossRef]
- Herting, E.; Härtel, C.; Göpel, W. Less invasive surfactant administration: Best practices and unanswered questions. Curr. Opin. Pediatr. 2020, 32, 228–234. [Google Scholar] [CrossRef]
- Arattu Thodika, F.M.S.; Ambulkar, H.; Williams, E.; Bhat, R.; Dassios, T.; Greenough, A. Outcomes following less-invasive-surfactant-administration in the delivery-room. Early Hum. Dev. 2022, 167, 105562. [Google Scholar] [CrossRef]
- De Luca, D.; Shankar-Aguilera, S.; Bancalari, E. LISA/MIST: Complex clinical problems almost never have easy solutions. Semin. Fetal Neonatal Med. 2021, 26, 101230. [Google Scholar] [CrossRef] [PubMed]
- Morton, S.U.; Brodsky, D. Fetal Physiology and the Transition to Extrauterine Life. Clin. Perinatol. 2016, 43, 395–407. [Google Scholar] [CrossRef]
- Hooper, S.B.; Polglase, G.R.; te Pas, A.B. A physiological approach to the timing of umbilical cord clamping at birth. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F355–F360. [Google Scholar] [CrossRef] [PubMed]
- Noori, S.; McCoy, M.; Anderson, M.P.; Ramji, F.; Seri, I. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J. Pediatr. 2014, 164, 264–270.e3. [Google Scholar] [CrossRef] [PubMed]
- Rabe, H.; Gyte, G.M.; Díaz-Rossello, J.L.; Duley, L. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst. Rev. 2019, 9, CD003248. [Google Scholar] [CrossRef]
- Noori, S.; Stavroudis, T.A.; Seri, I. Systemic and cerebral hemodynamics during the transitional period after premature birth. Clin. Perinatol. 2009, 36, 723–736. [Google Scholar] [CrossRef]
- Noori, S.; Seri, I. Hemodynamic antecedents of peri/intraventricular hemorrhage in very preterm neonates. Semin. Fetal Neonatal Med. 2015, 20, 232–237. [Google Scholar] [CrossRef]
- Bertini, G.; Coviello, C.; Gozzini, E.; Bianconi, T.; Bresci, C.; Leonardi, V.; Dani, C. Change of Cerebral Oxygenation during Surfactant Treatment in Preterm Infants: “LISA” versus “InSurE” Procedures. Neuropediatrics 2017, 48, 98–103. [Google Scholar] [CrossRef]
- Chang, H.Y.; Cheng, K.S.; Lung, H.L.; Li, S.T.; Lin, C.Y.; Lee, H.C.; Lee, C.H.; Hung, H.F. Hemodynamic Effects of Nasal Intermittent Positive Pressure Ventilation in Preterm Infants. Medicine 2016, 95, e2780. [Google Scholar] [CrossRef]
- Rey-Santano, C.; Mielgo, V.E.; Gomez-Solaetxe, M.A.; Salomone, F.; Gastiasoro, E.; Loureiro, B. Cerebral oxygenation associated with INSURE versus LISA procedures in surfactant-deficient newborn piglet RDS model. Pediatr. Pulmonol. 2019, 54, 644–654. [Google Scholar] [CrossRef]
- Kaelin, W.G., Jr. The von Hippel-Lindau protein, HIF hydroxylation, and oxygen sensing. Biochem. Biophys. Res. Commun. 2005, 338, 627–638. [Google Scholar] [CrossRef]
- Minton, J.E.; Coppinger, T.R.; Spaeth, C.W.; Martin, L.C. Poor reproductive response of anestrous Suffolk ewes to ram exposure is not due to failure to secrete luteinizing hormone acutely. J. Anim. Sci. 1991, 69, 3314–3320. [Google Scholar] [CrossRef]
- Aiello, L.P.; Pierce, E.A.; Foley, E.D.; Takagi, H.; Chen, H.; Riddle, L.; Ferrara, N.; King, G.L.; Smith, L.E. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl. Acad. Sci. USA 1995, 92, 10457–10461. [Google Scholar] [CrossRef]
- Hartnett, M.E. Pathophysiology and mechanisms of severe retinopathy of prematurity. Ophthalmology 2015, 122, 200–210. [Google Scholar] [CrossRef]
- Asahara, T.; Chen, D.; Takahashi, T.; Fujikawa, K.; Kearney, M.; Magner, M.; Yancopoulos, G.D.; Isner, J.M. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ. Res. 1998, 83, 233–240. [Google Scholar] [CrossRef]
- Sato, T.; Shima, C.; Kusaka, S. Vitreous levels of angiopoietin-1 and angiopoietin-2 in eyes with retinopathy of prematurity. Am. J. Ophthalmol. 2011, 151, 353–357.E1. [Google Scholar] [CrossRef]
- Brown, M.S.; Barón, A.E.; France, E.K.; Hamman, R.F. Association between higher cumulative doses of recombinant erythropoietin and risk for retinopathy of prematurity. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2006, 10, 143–149. [Google Scholar] [CrossRef]
- Chou, H.H.; Chung, M.Y.; Zhou, X.G.; Lin, H.C. Early Erythropoietin Administration does not Increase the Risk of Retinopathy in Preterm Infants. Pediatr. Neonatol. 2017, 58, 48–56. [Google Scholar] [CrossRef]
- Ley, D.; Hallberg, B.; Hansen-Pupp, I.; Dani, C.; Ramenghi, L.A.; Marlow, N.; Beardsall, K.; Bhatti, F.; Dunger, D.; Higginson, J.D.; et al. rhIGF-1/rhIGFBP-3 in Preterm Infants: A Phase 2 Randomized Controlled Trial. J. Pediatr. 2019, 206, 56–65.e58. [Google Scholar] [CrossRef]
- Alvarez-Fuente, M.; Moreno, L.; Lopez-Ortego, P.; Arruza, L.; Avila-Alvarez, A.; Muro, M.; Gutierrez, E.; Zozaya, C.; Sanchez-Helguera, G.; Elorza, D.; et al. Exploring clinical, echocardiographic and molecular biomarkers to predict bronchopulmonary dysplasia. PLoS ONE 2019, 14, e0213210. [Google Scholar] [CrossRef]
- Hellstrom, A.; Perruzzi, C.; Ju, M.; Engstrom, E.; Hard, A.L.; Liu, J.L.; Albertsson-Wikland, K.; Carlsson, B.; Niklasson, A.; Sjodell, L.; et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: Direct correlation with clinical retinopathy of prematurity. Proc. Natl. Acad. Sci. USA 2001, 98, 5804–5808. [Google Scholar] [CrossRef] [PubMed]
- Andresen, J.H.; Saugstad, O.D. Oxygen metabolism and oxygenation of the newborn. Semin. Fetal Neonatal Med. 2020, 25, 101078. [Google Scholar] [CrossRef] [PubMed]
- Chetty, A.; Andersson, S.; Lassus, P.; Nielsen, H.C. Insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) expression in human lung in RDS and BPD. Pediatr. Pulmonol. 2004, 37, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.; Dammann, C.; Nielsen, H.C.; Volpe, M.V. A Pathogenic Relationship of Bronchopulmonary Dysplasia and Retinopathy of Prematurity? A Review of Angiogenic Mediators in Both Diseases. Front. Pediatr. 2018, 6, 125. [Google Scholar] [CrossRef]
- Sun, M.; Wadehra, M.; Casero, D.; Lin, M.C.; Aguirre, B.; Parikh, S.; Matynia, A.; Gordon, L.; Chu, A. Epithelial Membrane Protein 2 (EMP2) Promotes VEGF-Induced Pathological Neovascularization in Murine Oxygen-Induced Retinopathy. Investig. Opthalmol. Vis. Sci. 2020, 61, 3. [Google Scholar] [CrossRef]
- Mariduena, J.; Ramagopal, M.; Hiatt, M.; Chandra, S.; Laumbach, R.; Hegyi, T. Vascular endothelial growth factor levels and bronchopulmonary dysplasia in preterm infants. J. Matern. Fetal Neonatal Med. 2022, 35, 1517–1522. [Google Scholar] [CrossRef]
- Fleck, B.W.; Reynolds, J.D.; Zhu, Q.; Lepore, D.; Marlow, N.; Stahl, A.; Li, J.; Weisberger, A.; Fielder, A.R. Time Course of Retinopathy of Prematurity Regression and Reactivation After Treatment with Ranibizumab or Laser in the RAINBOW Trial. Ophthalmol. Retin. 2022, 6, 628–637. [Google Scholar] [CrossRef]
- Huang, C.Y.; Huang, H.C.; Chen, M.H.; Lai, T.T.; Chou, H.C.; Chen, C.Y.; Yen, T.A.; Cardoso, W.V.; Tsao, P.N. Intravitreal Bevacizumab Is Associated with Prolonged Ventilatory Support in Preterm Infants with Bronchopulmonary Dysplasia. Chest 2022, 162, 1328–1337. [Google Scholar] [CrossRef]
- Nitkin, C.R.; Bamat, N.A.; Lagatta, J.; DeMauro, S.B.; Lee, H.C.; Patel, R.M.; King, B.; Slaughter, J.L.; Campbell, J.P.; Richardson, T.; et al. Pulmonary Hypertension in Preterm Infants Treated with Laser vs Anti-Vascular Endothelial Growth Factor Therapy for Retinopathy of Prematurity. JAMA Ophthalmol. 2022, 140, 1085–1094. [Google Scholar] [CrossRef]
- Northway, W.H., Jr.; Rosan, R.C.; Porter, D.Y. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N. Engl. J. Med. 1967, 276, 357–368. [Google Scholar] [CrossRef]
- Chess, P.R.; D’Angio, C.T.; Pryhuber, G.S.; Maniscalco, W.M. Pathogenesis of bronchopulmonary dysplasia. Semin. Perinatol. 2006, 30, 171–178. [Google Scholar] [CrossRef]
- Obst, S.; Herz, J.; Alejandre Alcazar, M.A.; Endesfelder, S.; Möbius, M.A.; Rüdiger, M.; Felderhoff-Müser, U.; Bendix, I. Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis. Oxidative Med. Cell. Longev. 2022, 2022, 5784146. [Google Scholar] [CrossRef]
- Ozsurekci, Y.; Aykac, K. Oxidative Stress Related Diseases in Newborns. Oxidative Med. Cell. Longev. 2016, 2016, 2768365. [Google Scholar] [CrossRef]
- Saugstad, O.D. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin. Neonatol. 2003, 8, 39–49. [Google Scholar] [CrossRef]
- Guzy, R.D.; Schumacker, P.T. Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 2006, 91, 807–819. [Google Scholar] [CrossRef]
- O’Donovan, D.J.; Fernandes, C.J. Free radicals and diseases in premature infants. Antioxid. Redox Signal. 2004, 6, 169–176. [Google Scholar] [CrossRef]
- Dylag, A.M.; Mayer, C.A.; Raffay, T.M.; Martin, R.J.; Jafri, A.; MacFarlane, P.M. Long-term effects of recurrent intermittent hypoxia and hyperoxia on respiratory system mechanics in neonatal mice. Pediatr. Res. 2017, 81, 565–571. [Google Scholar] [CrossRef]
- Cyr-Depauw, C.; Hurskainen, M.; Vadivel, A.; Mižíková, I.; Lesage, F.; Thébaud, B. Characterization of the innate immune response in a novel murine model mimicking bronchopulmonary dysplasia. Pediatr. Res. 2021, 89, 803–813. [Google Scholar] [CrossRef]
- Velten, M.; Heyob, K.M.; Rogers, L.K.; Welty, S.E. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure. J. Appl. Physiol. 2010, 108, 1347–1356. [Google Scholar] [CrossRef]
- Nold, M.F.; Mangan, N.E.; Rudloff, I.; Cho, S.X.; Shariatian, N.; Samarasinghe, T.D.; Skuza, E.M.; Pedersen, J.; Veldman, A.; Berger, P.J.; et al. Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia. Proc. Natl. Acad. Sci. USA 2013, 110, 14384–14389. [Google Scholar] [CrossRef]
- Twisselmann, N.; Pagel, J.; Künstner, A.; Weckmann, M.; Hartz, A.; Glaser, K.; Hilgendorff, A.; Göpel, W.; Busch, H.; Herting, E.; et al. Hyperoxia/Hypoxia Exposure Primes a Sustained Pro-Inflammatory Profile of Preterm Infant Macrophages Upon LPS Stimulation. Front. Immunol. 2021, 12, 762789. [Google Scholar] [CrossRef] [PubMed]
- Cannavò, L.; Perrone, S.; Viola, V.; Marseglia, L.; Di Rosa, G.; Gitto, E. Oxidative Stress and Respiratory Diseases in Preterm Newborns. Int. J. Mol. Sci. 2021, 22, 12504. [Google Scholar] [CrossRef] [PubMed]
- Windhorst, A.C.; Heydarian, M.; Schwarz, M.; Oak, P.; Förster, K.; Frankenberger, M.; Gonzalez Rodriguez, E.; Zhang, X.; Ehrhardt, H.; Hübener, C.; et al. Monocyte signature as a predictor of chronic lung disease in the preterm infant. Front. Immunol. 2023, 14, 1112608. [Google Scholar] [CrossRef] [PubMed]
- Osiak, W.; Wątroba, S.; Kapka-Skrzypczak, L.; Kurzepa, J. Two Faces of Heme Catabolic Pathway in Newborns: A Potential Role of Bilirubin and Carbon Monoxide in Neonatal Inflammatory Diseases. Oxidative Med. Cell. Longev. 2020, 2020, 7140496. [Google Scholar] [CrossRef] [PubMed]
- Kimble, A.; Robbins, M.E.; Perez, M. Pathogenesis of Bronchopulmonary Dysplasia: Role of Oxidative Stress from ‘Omics’ Studies. Antioxidants 2022, 11, 2380. [Google Scholar] [CrossRef]
- Ogihara, T.; Mino, M. Vitamin E and preterm infants. Free. Radic. Biol. Med. 2022, 180, 13–32. [Google Scholar] [CrossRef]
- Buhimschi, C.S.; Bahtiyar, M.O.; Zhao, G.; Abdelghany, O.; Schneider, L.; Razeq, S.A.; Dulay, A.T.; Lipkind, H.S.; Mieth, S.; Rogers, L.; et al. Antenatal N-acetylcysteine to improve outcomes of premature infants with intra-amniotic infection and inflammation (Triple I): Randomized clinical trial. Pediatr. Res. 2021, 89, 175–184. [Google Scholar] [CrossRef]
- Gáll, T.; Pethő, D.; Nagy, A.; Balla, G.; Balla, J. Therapeutic Potential of Carbon Monoxide (CO) and Hydrogen Sulfide (H(2)S) in Hemolytic and Hemorrhagic Vascular Disorders-Interaction between the Heme Oxygenase and H(2)S-Producing Systems. Int. J. Mol. Sci. 2020, 22, 47. [Google Scholar] [CrossRef]
- Marseglia, L.; Gitto, E.; Laschi, E.; Giordano, M.; Romeo, C.; Cannavò, L.; Toni, A.L.; Buonocore, G.; Perrone, S. Antioxidant Effect of Melatonin in Preterm Newborns. Oxidative Med. Cell. Longev. 2021, 2021, 6308255. [Google Scholar] [CrossRef]
- Manapurath, R.M.; Kumar, M.; Pathak, B.G.; Chowdhury, R.; Sinha, B.; Choudhary, T.; Chandola, N.; Mazumdar, S.; Taneja, S.; Bhandari, N.; et al. Enteral Low-Dose Vitamin A Supplementation in Preterm or Low Birth Weight Infants to Prevent Morbidity and Mortality: A Systematic Review and Meta-analysis. Pediatrics 2022, 150 (Suppl. 1), e2022057092L. [Google Scholar] [CrossRef]
- Palace, V.P.; Khaper, N.; Qin, Q.; Singal, P.K. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free. Radic. Biol. Med. 1999, 26, 746–761. [Google Scholar] [CrossRef]
- Tyson, J.E.; Wright, L.L.; Oh, W.; Kennedy, K.A.; Mele, L.; Ehrenkranz, R.A.; Stoll, B.J.; Lemons, J.A.; Stevenson, D.K.; Bauer, C.R.; et al. Vitamin A supplementation for extremely-low-birth-weight infants. National Institute of Child Health and Human Development Neonatal Research Network. N. Engl. J. Med. 1999, 340, 1962–1968. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, D.; Pang, G. The effects of early vitamin A supplementation on the prevention and treatment of bronchopulmonary dysplasia in premature infants: A systematic review and meta-analysis. Transl. Pediatr. 2021, 10, 3218–3229. [Google Scholar] [CrossRef]
- Rakshasbhuvankar, A.A.; Simmer, K.; Patole, S.K.; Stoecklin, B.; Nathan, E.A.; Clarke, M.W.; Pillow, J.J. Enteral Vitamin A for Reducing Severity of Bronchopulmonary Dysplasia: A Randomized Trial. Pediatrics 2021, 147, e2020009985. [Google Scholar] [CrossRef]
- Wardle, S.P.; Hughes, A.; Chen, S.; Shaw, N.J. Randomised controlled trial of oral vitamin A supplementation in preterm infants to prevent chronic lung disease. Arch. Dis. Child. Fetal Neonatal Ed. 2001, 84, F9–F13. [Google Scholar] [CrossRef]
- Gura, K.M.; Calkins, K.L.; Premkumar, M.H.; Puder, M. Use of Intravenous Soybean and Fish Oil Emulsions in Pediatric Intestinal Failure-Associated Liver Disease: A Multicenter Integrated Analysis Report on Extrahepatic Adverse Events. J. Pediatr. 2022, 241, 173–180. [Google Scholar] [CrossRef]
- Balla, J.; Nath, K.A.; Balla, G.; Juckett, M.B.; Jacob, H.S.; Vercellotti, G.M. Endothelial cell heme oxygenase and ferritin induction in rat lung by hemoglobin in vivo. Am. J. Physiol. 1995, 268, L321–L327. [Google Scholar] [CrossRef]
- Nakasone, R.; Ashina, M.; Abe, S.; Tanimura, K.; Van Rostenberghe, H.; Fujioka, K. The Role of Heme Oxygenase-1 Promoter Polymorphisms in Perinatal Disease. Int. J. Environ. Res. Public Health 2021, 18, 3520. [Google Scholar] [CrossRef]
- Dong, N.; Zhou, P.P.; Li, D.; Zhu, H.S.; Liu, L.H.; Ma, H.X.; Shi, Q.; Ju, X.L. Intratracheal administration of umbilical cord-derived mesenchymal stem cells attenuates hyperoxia-induced multi-organ injury via heme oxygenase-1 and JAK/STAT pathways. World J. Stem Cells 2022, 14, 556–576. [Google Scholar] [CrossRef]
- Szabó, M.; Vásárhelyi, B.; Balla, G.; Szabó, T.; Machay, T.; Tulassay, T. Acute postnatal increase of extracellular antioxidant defence of neonates: The role of iron metabolism. Acta Paediatr. 2001, 90, 1167–1170. [Google Scholar] [CrossRef]
- Hegyi, T.; Kleinfeld, A.; Huber, A.; Weinberger, B.; Memon, N.; Shih, W.; Carayannopoulos, M.; Oh, W. Unbound bilirubin measurements by a novel probe in preterm infants. J. Matern. Fetal Neonatal Med. 2019, 32, 2721–2726. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.M.; Gómez, A.H.; Abitbol, C.L.; Chandar, J.J.; Duara, S.; Zilleruelo, G.E. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 2004, 7, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Mañalich, R.; Reyes, L.; Herrera, M.; Melendi, C.; Fundora, I. Relationship between weight at birth and the number and size of renal glomeruli in humans: A histomorphometric study. Kidney Int. 2000, 58, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Bertram, J.F.; Douglas-Denton, R.N.; Diouf, B.; Hughson, M.D.; Hoy, W.E. Human nephron number: Implications for health and disease. Pediatr. Nephrol. 2011, 26, 1529–1533. [Google Scholar] [CrossRef] [PubMed]
- Charlton, J.R.; Springsteen, C.H.; Carmody, J.B. Nephron number and its determinants in early life: A primer. Pediatr. Nephrol. 2014, 29, 2299–2308. [Google Scholar] [CrossRef]
- Perico, N.; Askenazi, D.; Cortinovis, M.; Remuzzi, G. Maternal and environmental risk factors for neonatal AKI and its long-term consequences. Nat. Rev. Nephrol. 2018, 14, 688–703. [Google Scholar] [CrossRef]
- Vasarhelyi, B.; Tulassay, T.; Ver, A.; Dobos, M.; Kocsis, I.; Seri, I. Developmental changes in erythrocyte Na(+),K(+)-ATPase subunit abundance and enzyme activity in neonates. Arch. Dis. Child. Fetal Neonatal Ed. 2000, 83, F135–F138. [Google Scholar] [CrossRef]
- Gattineni, J.; Baum, M. Developmental changes in renal tubular transport-an overview. Pediatr. Nephrol. 2015, 30, 2085–2098. [Google Scholar] [CrossRef]
- Stritzke, A.; Thomas, S.; Amin, H.; Fusch, C.; Lodha, A. Renal consequences of preterm birth. Mol. Cell. Pediatr. 2017, 4, 2. [Google Scholar] [CrossRef]
- Goyal, S.; Banerjee, S. Fluid, electrolyte and early nutritional management in the preterm neonate with very low birth weight. Paediatr. Child Health 2021, 31, 7–17. [Google Scholar] [CrossRef]
- Jetton, J.G.; Boohaker, L.J.; Sethi, S.K.; Wazir, S.; Rohatgi, S.; Soranno, D.E.; Chishti, A.S.; Woroniecki, R.; Mammen, C.; Swanson, J.R.; et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): A multicentre, multinational, observational cohort study. Lancet Child Adolesc. Health 2017, 1, 184–194. [Google Scholar] [CrossRef]
- Basu, R.K.; Wheeler, D.S. Kidney-lung cross-talk and acute kidney injury. Pediatr. Nephrol. 2013, 28, 2239–2248. [Google Scholar] [CrossRef]
- Grigoryev, D.N.; Liu, M.; Hassoun, H.T.; Cheadle, C.; Barnes, K.C.; Rabb, H. The local and systemic inflammatory transcriptome after acute kidney injury. J. Am. Soc. Nephrol. 2008, 19, 547–558. [Google Scholar] [CrossRef]
- Dodd, O.J.; Hristopoulos, M.; Scharfstein, D.; Brower, R.; Hassoun, P.; King, L.S.; Becker, P.; Liu, M.; Wang, W.; Hassoun, H.T.; et al. Interactive effects of mechanical ventilation and kidney health on lung function in an in vivo mouse model. Am. J. Physiol. Lung Cell. Mol. Physiol. 2009, 296, L3–L11. [Google Scholar] [CrossRef]
- Hassoun, H.T.; Lie, M.L.; Grigoryev, D.N.; Liu, M.; Tuder, R.M.; Rabb, H. Kidney ischemia-reperfusion injury induces caspase-dependent pulmonary apoptosis. Am. J. Physiol. Renal Physiol. 2009, 297, F125–F137. [Google Scholar] [CrossRef]
- Hoke, T.S.; Douglas, I.S.; Klein, C.L.; He, Z.; Fang, W.; Thurman, J.M.; Tao, Y.; Dursun, B.; Voelkel, N.F.; Edelstein, C.L.; et al. Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J. Am. Soc. Nephrol. 2007, 18, 155–164. [Google Scholar] [CrossRef]
- Carmody, J.B.; Swanson, J.R.; Rhone, E.T.; Charlton, J.R. Recognition and reporting of AKI in very low birth weight infants. Clin. J. Am. Soc. Nephrol. 2014, 9, 2036–2043. [Google Scholar] [CrossRef]
- Gallo, D.; de Bijl-Marcus, K.A.; Alderliesten, T.; Lilien, M.; Groenendaal, F. Early Acute Kidney Injury in Preterm and Term Neonates: Incidence, Outcome, and Associated Clinical Features. Neonatology 2021, 118, 174–179. [Google Scholar] [CrossRef]
- Girardi, A.; Raschi, E.; Galletti, S.; Poluzzi, E.; Faldella, G.; Allegaert, K.; De Ponti, F. Drug-induced renal damage in preterm neonates: State of the art and methods for early detection. Drug Saf. 2015, 38, 535–551. [Google Scholar] [CrossRef]
- Askenazi, D.; Patil, N.R.; Ambalavanan, N.; Balena-Borneman, J.; Lozano, D.J.; Ramani, M.; Collins, M.; Griffin, R.L. Acute kidney injury is associated with bronchopulmonary dysplasia/mortality in premature infants. Pediatr. Nephrol. 2015, 30, 1511–1518. [Google Scholar] [CrossRef]
- Ronco, C.; Garzotto, F.; Brendolan, A.; Zanella, M.; Bellettato, M.; Vedovato, S.; Chiarenza, F.; Ricci, Z.; Goldstein, S.L. Continuous renal replacement therapy in neonates and small infants: Development and first-in-human use of a miniaturised machine (CARPEDIEM). Lancet 2014, 383, 1807–1813. [Google Scholar] [CrossRef] [PubMed]
- Branagan, A.; Costigan, C.S.; Stack, M.; Slagle, C.; Molloy, E.J. Management of Acute Kidney Injury in Extremely Low Birth Weight Infants. Front. Pediatr. 2022, 10, 867715. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, V.M.; Giunta, F.; Suter, P.M.; Slutsky, A.S. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 2000, 284, 43–44. [Google Scholar] [CrossRef] [PubMed]
- Starr, M.C.; Charlton, J.R.; Guillet, R.; Reidy, K.; Tipple, T.E.; Jetton, J.G.; Kent, A.L.; Abitbol, C.L.; Ambalavanan, N.; Mhanna, M.J.; et al. Advances in Neonatal Acute Kidney Injury. Pediatrics 2021, 148, e2021051220. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. North Am. 2013, 60, 49–74. [Google Scholar] [CrossRef]
- Vass, R.A.; Kemeny, A.; Dergez, T.; Ertl, T.; Reglodi, D.; Jungling, A.; Tamas, A. Distribution of bioactive factors in human milk samples. Int. Breastfeed. J. 2019, 14, 9. [Google Scholar] [CrossRef]
- Donor Human Milk for the High-Risk Infant: Preparation, Safety, and Usage Options in the United States. Pediatrics 2017, 139, e20163440. [CrossRef]
- Tyrala, E.E.; Chen, X.; Boden, G. Glucose metabolism in the infant weighing less than 1100 grams. J. Pediatr. 1994, 125, 283–287. [Google Scholar] [CrossRef]
- Fernández Martínez, M.D.M.; Llorente, J.L.G.; de Cabo, J.M.; López, M.A.V.; Porcel, M.; Rubio, J.D.D.; Perales, A.B. Monitoring the Frequency and Duration of Hypoglycemia in Preterm Infants and Identifying Associated Factors. Fetal Pediatr. Pathol. 2021, 40, 131–141. [Google Scholar] [CrossRef]
- Iglesias Platas, I.; Thió Lluch, M.; Pociello Almiñana, N.; Morillo Palomo, A.; Iriondo Sanz, M.; Krauel Vidal, X. Continuous glucose monitoring in infants of very low birth weight. Neonatology 2009, 95, 217–223. [Google Scholar] [CrossRef]
- Mitanchez-Mokhtari, D.; Lahlou, N.; Kieffer, F.; Magny, J.F.; Roger, M.; Voyer, M. Both relative insulin resistance and defective islet beta-cell processing of proinsulin are responsible for transient hyperglycemia in extremely preterm infants. Pediatrics 2004, 113, 537–541. [Google Scholar] [CrossRef]
- Sunehag, A.L. The role of parenteral lipids in supporting gluconeogenesis in very premature infants. Pediatr. Res. 2003, 54, 480–486. [Google Scholar] [CrossRef]
- Kairamkonda, V.R.; Khashu, M. Controversies in the management of hyperglycemia in the ELBW infant. Indian Pediatr. 2008, 45, 29–38. [Google Scholar]
- Yeh, T.F.; Lin, Y.J.; Hsieh, W.S.; Lin, H.C.; Lin, C.H.; Chen, J.Y.; Kao, H.A.; Chien, C.H. Early postnatal dexamethasone therapy for the prevention of chronic lung disease in preterm infants with respiratory distress syndrome: A multicenter clinical trial. Pediatrics 1997, 100, E3. [Google Scholar] [CrossRef]
- Turai, R.; Schandl, M.F.; Dergez, T.; Vass, R.A.; Kvárik, T.; Horányi, E.; Balika, D.; Mammel, B.; Gyarmati, J.; Fónai, F.; et al. Early and late complications of hyperglycemic extremely low birth-weight infants. Orv. Hetil. 2019, 160, 1270–1278. [Google Scholar] [CrossRef]
- Indrio, F.; Neu, J.; Pettoello-Mantovani, M.; Marchese, F.; Martini, S.; Salatto, A.; Aceti, A. Development of the Gastrointestinal Tract in Newborns as a Challenge for an Appropriate Nutrition: A Narrative Review. Nutrients 2022, 14, 1405. [Google Scholar] [CrossRef]
- Shamir, R.; Shehadeh, N. Insulin in human milk and the use of hormones in infant formulas. Nestle Nutr. Inst. Workshop Ser. 2013, 77, 57–64. [Google Scholar] [CrossRef]
- Shehadeh, N.; Gelertner, L.; Blazer, S.; Perlman, R.; Solovachik, L.; Etzioni, A. Importance of insulin content in infant diet: Suggestion for a new infant formula. Acta Paediatr. 2001, 90, 93–95. [Google Scholar] [CrossRef]
- Roberts, D.; Dalziel, S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2006, 3, CD004454. [Google Scholar] [CrossRef]
- Szabó, I.; Vizer, M.; Ertl, T. Fetal betamethasone treatment and neonatal outcome in preeclampsia and intrauterine growth restriction. Am. J. Obstet. Gynecol. 2003, 189, 1812–1813. [Google Scholar] [CrossRef]
- Waffarn, F.; Davis, E.P. Effects of antenatal corticosteroids on the hypothalamic-pituitary-adrenocortical axis of the fetus and newborn: Experimental findings and clinical considerations. Am. J. Obstet. Gynecol. 2012, 207, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Khalife, N.; Glover, V.; Taanila, A.; Ebeling, H.; Järvelin, M.R.; Rodriguez, A. Prenatal glucocorticoid treatment and later mental health in children and adolescents. PLoS ONE 2013, 8, e81394. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.W.; Ehrenkranz, R.A.; Halliday, H.L. Late (>7 days) postnatal corticosteroids for chronic lung disease in preterm infants. Cochrane Database Syst. Rev. 2014, 13, CD001145. [Google Scholar] [CrossRef]
- Laukkarinen, J.; Sand, J.; Saaristo, R.; Salmi, J.; Turjanmaa, V.; Vehkalahti, P.; Nordback, I. Is bile flow reduced in patients with hypothyroidism? Surgery 2003, 133, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Cosmi, E.V. Prenatal prevention of respiratory distress syndrome: New pharmacologic approaches. Early Hum. Dev. 1992, 29, 283–286. [Google Scholar] [CrossRef]
- Chopra, I.J.; Crandall, B.F. Thyroid hormones and thyrotropin in amniotic fluid. N. Engl. J. Med. 1975, 293, 740–743. [Google Scholar] [CrossRef]
- Vass, R.A.; Kiss, G.; Bell, E.F.; Miseta, A.; Bódis, J.; Funke, S.; Bokor, S.; Molnár, D.; Kósa, B.; Kiss, A.A.; et al. Thyroxine and Thyroid-Stimulating Hormone in Own Mother’s Milk, Donor Milk, and Infant Formula. Life 2022, 12, 584. [Google Scholar] [CrossRef]
- Vass, R.A.; Kiss, G.; Bell, E.F.; Roghair, R.D.; Miseta, A.; Bódis, J.; Funke, S.; Ertl, T. Breast Milk for Term and Preterm Infants-Own Mother’s Milk or Donor Milk? Nutrients 2021, 13, 424. [Google Scholar] [CrossRef]
- Escuder-Vieco, D.; Espinosa-Martos, I.; Rodríguez, J.M.; Fernández, L.; Pallás-Alonso, C.R. Effect of HTST and Holder Pasteurization on the Concentration of Immunoglobulins, Growth Factors, and Hormones in Donor Human Milk. Front. Immunol. 2018, 9, 2222. [Google Scholar] [CrossRef]
- Vass, R.A.; Roghair, R.D.; Bell, E.F.; Colaizy, T.T.; Johnson, K.J.; Schmelzel, M.L.; Walker, J.R.; Ertl, T. Pituitary Glycoprotein Hormones in Human Milk before and after Pasteurization or Refrigeration. Nutrients 2020, 12, 687. [Google Scholar] [CrossRef]
- Ng, S.M.; Turner, M.A.; Weindling, A.M. Neurodevelopmental Outcomes at 42 Months After Thyroxine Supplementation in Infants Below 28 Weeks’ Gestation: A Randomized Controlled Trial. Thyroid 2020, 30, 948–954. [Google Scholar] [CrossRef]
- Bugter, I.A.L.; Janssen, L.C.E.; Dieleman, J.; Kramer, B.W.; Andriessen, P.; Niemarkt, H.J. Introduction of less invasive surfactant administration (LISA), impact on diagnostic and therapeutic procedures in early life: A historical cohort study. BMC Pediatr. 2020, 20, 421. [Google Scholar] [CrossRef]
- Basha, S.; Surendran, N.; Pichichero, M. Immune responses in neonates. Expert Rev. Clin. Immunol. 2014, 10, 1171–1184. [Google Scholar] [CrossRef]
- Angelone, D.F.; Wessels, M.R.; Coughlin, M.; Suter, E.E.; Valentini, P.; Kalish, L.A.; Levy, O. Innate Immunity of the Human Newborn Is Polarized Toward a High Ratio of IL-6/TNF-α Production In Vitro and In Vivo. Pediatr. Res. 2006, 60, 205–209. [Google Scholar] [CrossRef]
- Roger, T.; Schneider, A.; Weier, M.; Sweep, F.C.; Le Roy, D.; Bernhagen, J.; Calandra, T.; Giannoni, E. High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates. Proc. Natl. Acad. Sci. USA 2016, 113, E997–E1005. [Google Scholar] [CrossRef]
- Melville, J.M.; Moss, T.J. The immune consequences of preterm birth. Front. Neurosci. 2013, 7, 79. [Google Scholar] [CrossRef]
- Peterson, L.S.; Hedou, J.; Ganio, E.A.; Stelzer, I.A.; Feyaerts, D.; Harbert, E.; Adusumelli, Y.; Ando, K.; Tsai, E.S.; Tsai, A.S.; et al. Single-Cell Analysis of the Neonatal Immune System Across the Gestational Age Continuum. Front. Immunol. 2021, 12, 714090. [Google Scholar] [CrossRef]
- Marchant, E.A.; Kan, B.; Sharma, A.A.; van Zanten, A.; Kollmann, T.R.; Brant, R.; Lavoie, P.M. Attenuated innate immune defenses in very premature neonates during the neonatal period. Pediatr. Res. 2015, 78, 492–497. [Google Scholar] [CrossRef]
- Chang, B.A.; Huang, Q.; Quan, J.; Chau, V.; Ladd, M.; Kwan, E.; McFadden, D.E.; Lacaze-Masmonteil, T.; Miller, S.P.; Lavoie, P.M. Early inflammation in the absence of overt infection in preterm neonates exposed to intensive care. Cytokine 2011, 56, 621–626. [Google Scholar] [CrossRef]
- Newburg, D.S.; Walker, W.A. Protection of the Neonate by the Innate Immune System of Developing Gut and of Human Milk. Pediatr. Res. 2007, 61, 2–8. [Google Scholar] [CrossRef]
- Goldman, A.S.; Goldblum, R.M.; Hanson, L.A. Anti-inflammatory systems in human milk. Adv. Exp. Med. Biol. 1990, 262, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.J.; Ajami, N.J.; O’Brien, J.L.; Hutchinson, D.S.; Smith, D.P.; Wong, M.C.; Ross, M.C.; Lloyd, R.E.; Doddapaneni, H.; Metcalf, G.A.; et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018, 562, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, C.P.; Wipf, P.; Yamaguchi, Y.; Fulton, W.B.; Kovler, M.; Niño, D.F.; Zhou, Q.; Banfield, E.; Werts, A.D.; Ladd, M.R.; et al. The human milk oligosaccharides 2′-fucosyllactose and 6′-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling. Pediatr. Res. 2020, 89, 91–101. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lawlor, N.T.; Newburg, D.S. Human Milk Components Modulate Toll-Like Receptor–Mediated Inflammation. Adv. Nutr. 2016, 7, 102–111. [Google Scholar] [CrossRef]
- Yu, H.; Dilbaz, S.; Coßmann, J.; Hoang, A.C.; Diedrich, V.; Herwig, A.; Harauma, A.; Hoshi, Y.; Moriguchi, T.; Landgraf, K.; et al. Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. J. Clin. Investig. 2019, 129, 2485–2499. [Google Scholar] [CrossRef]
- Altobelli, E.; Angeletti, P.M.; Verrotti, A.; Petrocelli, R. The Impact of Human Milk on Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1322. [Google Scholar] [CrossRef]
- Talamonti, E.; Pauter, A.M.; Asadi, A.; Fischer, A.W.; Chiurchiù, V.; Jacobsson, A. Impairment of systemic DHA synthesis affects macrophage plasticity and polarization: Implications for DHA supplementation during inflammation. Cell. Mol. Life Sci. 2017, 74, 2815–2826. [Google Scholar] [CrossRef]
- Gladine, C.; Zmojdzian, M.; Joumard-Cubizolles, L.; Verny, M.-A.; Comte, B.; Mazur, A. The omega-3 fatty acid docosahexaenoic acid favorably modulates the inflammatory pathways and macrophage polarization within aorta of LDLR−/− mice. Genes Nutr. 2014, 9, 424. [Google Scholar] [CrossRef]
- Kawano, A.; Ariyoshi, W.; Yoshioka, Y.; Hikiji, H.; Nishihara, T.; Okinaga, T. Docosahexaenoic acid enhances M2 macrophage polarization via the p38 signaling pathway and autophagy. J. Cell. Biochem. 2019, 120, 12604–12617. [Google Scholar] [CrossRef]
- Bartal, L.; Padeh, S.; Passwell, J.H. Lactoferrin inhibits prostaglandin E2 secretion by breast milk macrophages. Pediatr. Res. 1987, 21, 54–57. [Google Scholar] [CrossRef]
- Friedman, Z. Prostaglandins in breast milk. Endocrinol. Exp. 1986, 20, 285–291. [Google Scholar]
- Akisü, M.; Kültürsay, N.; Özkayin, N.; Çoker, I.; Hüseyinov, A. Platelet-Activating Factor Levels in Term and Preterm Human Milk. Neonatology 1998, 74, 289–293. [Google Scholar] [CrossRef]
- Furukawa, M.; Narahara, H.; Yasuda, K.; Johnston, J.M. Presence of platelet-activating factor-acetylhydrolase in milk. J. Lipid Res. 1993, 34, 1603–1609. [Google Scholar] [CrossRef]
- Moya, F.R.; Eguchi, H.; Zhao, B.; Furukawa, M.; Sfeir, J.; Osorio, M.; Ogawa, Y.; Johnston, J.M. Platelet-activating factor acetylhydrolase in term and preterm human milk: A preliminary report. J. Pediatr. Gastroenterol. Nutr. 1994, 19, 236–239. [Google Scholar] [CrossRef]
- Lu, J.; Pierce, M.; Franklin, A.; Jilling, T.; Stafforini, D.M.; Caplan, M. Dual Roles of Endogenous Platelet-Activating Factor Acetylhydrolase in a Murine Model of Necrotizing Enterocolitis. Pediatr. Res. 2010, 68, 225–230. [Google Scholar] [CrossRef]
- Du, Y.; Yang, M.; Wei, W.; Huynh, H.D.; Herz, J.; Saghatelian, A.; Wan, Y. Macrophage VLDL receptor promotes PAFAH secretion in mother’s milk and suppresses systemic inflammation in nursing neonates. Nat. Commun. 2012, 3, 1008. [Google Scholar] [CrossRef]
- Ciardelli, L.; Garofoli, F.; Stronati, M.; Mazzucchelli, I.; Avanzini, M.A.; Figar, T.; Gasparoni, A.; De Silvestri, A.; Sabatino, G.; Chirico, G. Human colostrum T lymphocytes and their effector cytokines actively aid the development of the newborn immune system. Int. J. Immunopathol. Pharmacol. 2008, 21, 781–786. [Google Scholar] [CrossRef]
- Panahipour, L.; Kochergina, E.; Kreissl, A.; Haiden, N.; Gruber, R. Milk modulates macrophage polarization in vitro. Cytokine X 2019, 1, 100009. [Google Scholar] [CrossRef]
- Garofalo, R.; Chheda, S.; Mei, F.; Palkowetz, K.H.; Rudloff, H.E.; Schmalstieg, F.C.; Rassin, D.K.; Goldman, A.S. Interleukin-10 in human milk. Pediatr. Res. 1995, 37, 444–449. [Google Scholar] [CrossRef]
- Meki, A.-R.M.A.; Saleem, T.H.; Al-Ghazali, M.H.; Sayed, A.A. Interleukins -6, -8 and -10 and tumor necrosis factor-alpha and its soluble receptor I in human milk at different periods of lactation. Nutr. Res. 2003, 23, 845–855. [Google Scholar] [CrossRef]
- Guo, M.-M.; Zhang, K.; Zhang, J.-H. Human Breast Milk–Derived Exosomal miR-148a-3p Protects Against Necrotizing Enterocolitis by Regulating p53 and Sirtuin 1. Inflammation 2022, 45, 1254–1268. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.C.; Stremmel, W.; Weiskirchen, R.; John, S.M.; Schmitz, G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021, 11, 851. [Google Scholar] [CrossRef] [PubMed]
- White, H.; Merritt, K.; Martin, K.; Lauer, E.; Rhein, L. Respiratory support strategies in the prevention of bronchopulmonary dysplasia: A single center quality improvement initiative. Front. Pediatr. 2022, 10, 1012655. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lv, S.; Sun, J.; Zhang, M.; Zhang, L.; Sun, Y.; Zhao, Z.; Wang, D.; Zhao, X.; Zhang, J. Caffeine reduces oxidative stress to protect against hyperoxia-induced lung injury via the adenosine A2A receptor/cAMP/PKA/Src/ERK1/2/p38MAPK pathway. Redox Rep. 2022, 27, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Lo, J.W.; Marlow, N.; Calvert, S.A.; Greenough, A.; Peacock, J.L. Postnatal dexamethasone, respiratory and neurodevelopmental outcomes at two years in babies born extremely preterm. PLoS ONE 2017, 12, e0181176. [Google Scholar] [CrossRef]
- Harris, C.; Bisquera, A.; Zivanovic, S.; Lunt, A.; Calvert, S.; Marlow, N.; Peacock, J.L.; Greenough, A. Postnatal dexamethasone exposure and lung function in adolescents born very prematurely. PLoS ONE 2020, 15, e0237080. [Google Scholar] [CrossRef]
- Onland, W.; Offringa, M.; van Kaam, A. Late (≥7 days) inhaled corticosteroids to reduce bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev. 2022, 12, CD002311. [Google Scholar] [CrossRef]
- Yuksel, B.; Greenough, A. Randomised trial of inhaled steroids in preterm infants with respiratory symptoms at follow up. Thorax 1992, 47, 910–913. [Google Scholar] [CrossRef]
- Boel, L.; Hixson, T.; Brown, L.; Sage, J.; Kotecha, S.; Chakraborty, M. Non-invasive respiratory support in preterm infants. Paediatr. Respir. Rev. 2022, 43, 53–59. [Google Scholar] [CrossRef]
- Felderhoff-Mueser, U.; Sifringer, M.; Polley, O.; Dzietko, M.; Leineweber, B.; Mahler, L.; Baier, M.; Bittigau, P.; Obladen, M.; Ikonomidou, C.; et al. Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann. Neurol. 2005, 57, 50–59. [Google Scholar] [CrossRef]
- Novitsky, A.; Tuttle, D.; Locke, R.G.; Saiman, L.; Mackley, A.; Paul, D.A. Prolonged early antibiotic use and bronchopulmonary dysplasia in very low birth weight infants. Am. J. Perinatol. 2015, 32, 43–48. [Google Scholar] [CrossRef]
- Hou, S.; Yu, Y.; Wu, Y.; Cao, Y.; Zhang, J.; Liu, Z.; Guo, C.; Chen, Y.; Sun, X.; Li, M.; et al. Association Between Antibiotic Overexposure and Adverse Outcomes in Very-Low-Birth-Weight Infants Without Culture-Proven Sepsis or Necrotizing Enterocolitis: A Multicenter Prospective Study. Indian J. Pediatr. 2022, 89, 785–792. [Google Scholar] [CrossRef]
- Yu, Q.; Li, M. Effects of transient receptor potential canonical 1 (TRPC1) on the mechanical stretch-induced expression of airway remodeling-associated factors in human bronchial epithelioid cells. J. Biomech. 2017, 51, 89–96. [Google Scholar] [CrossRef]
- Sudeep, K.C.; Kumar, J.; Ray, S.; Dutta, S.; Aggarwal, R.; Kumar, P. Oral Application of Colostrum and Mother’s Own Milk in Preterm Infants-A Randomized, Controlled Trial. Indian J. Pediatr. 2022, 89, 579–586. [Google Scholar] [CrossRef]
- Kieran, E.A.; Walsh, H.; O’Donnell, C.P. Survey of nasal continuous positive airways pressure (NCPAP) and nasal intermittent positive pressure ventilation (NIPPV) use in Irish newborn nurseries. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, F156. [Google Scholar] [CrossRef]
- Vendettuoli, V.; Bellù, R.; Zanini, R.; Mosca, F.; Gagliardi, L. Changes in ventilator strategies and outcomes in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2014, 99, F321–F324. [Google Scholar] [CrossRef]
- Lemyre, B.; Laughon, M.; Bose, C.; Davis, P.G. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst. Rev. 2016, 12, CD005384. [Google Scholar] [CrossRef]
- Oncel, M.Y.; Arayici, S.; Uras, N.; Alyamac-Dizdar, E.; Sari, F.N.; Karahan, S.; Canpolat, F.E.; Oguz, S.S.; Dilmen, U. Nasal continuous positive airway pressure versus nasal intermittent positive-pressure ventilation within the minimally invasive surfactant therapy approach in preterm infants: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F323–F328. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Zeng, L.; Gao, Y.; Zhao, W.; Han, T.; Tong, X. A multicenter, randomized controlled, non-inferiority trial, comparing nasal continuous positive airway pressure with nasal intermittent positive pressure ventilation as primary support before minimally invasive surfactant administration for preterm infants with respiratory distress syndrome (the NIV-MISA-RDS trial): Study protocol. Front. Pediatr. 2022, 10, 968462. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Design | Intervention | Comparator | Main Results |
---|---|---|---|---|
LISA vs. continuation of CPAP | ||||
Gopel et al., 2011 (AMV trial) [34] | 12 centers 26–28 weeks GA Various types of surfactant (poractant alfa, beractant, bovactant) Surfactant dose: 100 mg/kg Analgosedation: per physician decision | FiO2 > 0.3, CPAP ≥ 4 cmH2O Cologne method 4 Fr NGT LISA was allowed to be repeated if FiO2 > 0.4 Rescue intubation according to the judgment of physician (unclear tresholds) | Rescue intubation and surfactant according to the judgement of the attending physician (unclear tresholds) Extubation was recommended * | n = 220, LISA group n = 108 (65 LISA, 15 S-ETT per physician decision, 28 never received surfactant), comparator group n = 112 (72 S-ETT, 1 LISA per physician decision, 39 never received surfactant) ↓ need for MV on day 2 or 3 (28% vs. 46%, p = 0.008) ↓ need for MV during hospital stay (33% vs. 73%, p < 0.0001) ↓ median days on MV (0 vs. 2 days, p < 0.0001) ↓ need for O2 at 28 days (30% vs. 45%, p = 0.032) |
Dargaville et al., 2021 (OPTIMIST-A trial) [37] | 33 centers 25–28 weeks GA Double-blinded Surfactant criteria: FiO2 > 0.3, CPAP 5–8 cmH2O Surfactant: poractant alfa Surfactant dose: 200 mg/kg Premedication: atropin and sucrose per physician decision | Hobart method 16G vascular catheter or LISAcath LISA was not allowed to be repeated Rescue intubation if FiO2 ≥ 0.45 (or 0.4 per physician decision) or recurrent apnea or persistent respiratory acidosis | Sham treatment (only transient repositioning) Rescue intubation if FiO2 ≥ 0.45 (or 0.4 per physician decision) or recurrent apnea or persistent respiratory acidosis After intubation, surfactant could be administered according to clinical judgement. | n = 485 ↔ death or BPD (43.6% vs. 49.6% p = 0.1) ↓ death (10% vs. 7.8%, p = 0.51) ↓ BPD in survivors (37.3% vs. 45.3%, p = 0.03) ↓ PTX (4.6% vs. 10.2%, p = 0.005) ↓ CPAP failure (36.5% vs. 72.1%, p < 0.001) |
LISA vs. surfactant administration via ETT with extubation | ||||
Kribs et al., 2015 (NINSAPP trial) [35] | 13 centers 23–26 weeks GA Surfactant criteria: FiO2 > 0.3, CPAP cmH2O or Silverman score ≥ 5 Surfactant type: poractant alfa Surfactant dose: 100 mg/kg No premedication | Cologne method 4 Fr NGT | S-ETT then MV as per local standards Extubation criteria: FiO2 > 0.3 and MAP < 10 cmH2O | n = 211 ↔ survival without BPD (67.3% vs. 58.7%, p = 0.2) ↓ need for MV (74.8% vs. 99% ∆, p = 0.04) ↓ median duration of MV (5 days vs. 7 days, p = 0.031) ↓ PTX (4.8% vs. 12.6%, p = 0.04) ↓ IVH (10.3% vs. 22.1%, p = 0.02) ↑ survival without major complications (50.5% vs. 35.6%, p = 0.02). |
Olivier et al., 2017 [36] | 3 centers 32–36 weeks GA Surfactant type: beractant Surfactant dose: 100 mg/kg Fentanyl 1 µg/kg + atropin 20 µg/kg | FiO2 > 0.35, CPAP 6 cmH2O Cologne method 5 Fr NGT | Rescue intubation and surfactant according to the judgment of the attending physician (unclear tresholds), Extubation criteria was not reported (extubation was not routinely performed) | n = 45 ↓ primary outcome (need for MV or respiratory failure criteria or PTX requiring chest drain) (33% vs. 90%, p ≤ 0.001) |
LISA vs. INSURE | ||||
Kanmaz et al., 2012 (Take Care study) [38] | Single center <32 weeks GA Surrfactant criteria: FiO2 ≥ 0.4, CPAP 5–7 cmH2O Surfactant type: poractant alfa Surfactant dose: 100 mg/kg No premedication | Take Care method 5 Fr NGT (1 bolus in 30–60 s) | Double-lumen ETT During surfactant instillation (30 s), 20/5 cmH2O pressure PPV was performed with a T-piece device, then extubation to CPAP | n = 200 ↓ CPAP failure (30% vs. 45%, p = 0.02) ↓ mean duration of CPAP (78 h vs. 116 h, p = 0.002) ↓ mean duration of MV (35.6 h vs. 64.1 h, p = 0.006) ↓ BPD (10.3% vs. 20.2%, p = 0.005) |
Mirnia et al., 2013 [39] | 3 centers 27–32 weeks GA Surfactant criteria: FiO2 ≥ 0.3, CPAP 8–10 cmH2O Surfactant type: poractant alfa Surfactant dose: 100 mg/kg Atropin 5 µg/kg | Take Care method 5 Fr NGT (1 bolus in 1–3 min) | No detail reported | n = 136 ↔ CPAP failure (19% vs. 22%, p = 0.6) ↓ mortality (3% vs. 15.7%, p = 0.01) |
Mohammadizadeh et al., 2015 [40] | 2 centers ≤34 weeks GA and and BW 1000–1800 g Surfactant criteria: FiO2 > 0.3, CPAP 6 cmH2O and/or Silverman score >4 Surfactant type: poractant alfa Surfactant dose: 200 mg/kg Atropin 25 µg/kg | Cologne method 4 Fr NGT | 2.5–3.0 ETT Bolus injection then PPV with a T-piece device for at least 1 min or until SpO2 ≥87%, then extubation to CPAP | n = 38 ↔ CPAP failure (15.8% vs. 10.5%, p = 0.99) ↓ duration of O2 therapy (243.7 h vs. 476.8 h, p = 0.018) ↓ adverse events during surfactant administration (31.6% vs. 63.2%, p = 0.049) |
Bao et al., 2015 [41] | Single center 28–32 weeks GA Surfactant criteria: FiO2 > 0.3 for 28–29 weeks GA, FiO2 > 0.35 for 30–32 weeks GA, CPAP 7–8 cmH2O Surfactant type: poractant alfa Surfactant dose: 200 mg/kg No premedication | Hobart method 16G vascular catheter (5 boluses in 3–5 min) | Surfactant injection in 2–3 boluses in 3 min, brief MV (details not reported), then extubation to CPAP | n = 90 ↔ CPAP failure (17% vs. 23.3%, p = 0.44) ↓ duration of MV + CPAP (13.2 days vs. 15.9 days, p = 0.03) |
Li et al., 2016 [42] | Single center 27–31 weeks GA Surfactant criteria: RDS grade I-II on CXR Surfactant type: poractant alfa Surfactant dose: various doses No premedication | Cologne method | No detail reported | n = 40 Both LISA and INSURE caused a transient impairment in cerebral autoregulation, the duration of this effect was shorter in the LISA group (<5 min vs. 5–10 min) |
Mosayabi et al., 2017 [43] | Single center 28–34 weeks GA Surfactant criteria: FiO2 > 0.4, CPAP 5–8 cmH2O Surfactant type: poractant alfa Surfactant dose: 200 mg/kg No premedication | Take Care method 5 Fr NGT | Surfactant injection in 1–3 min, manual ventilation (bagging), then extubation to CPAP 3 min | n = 53 ↔ CPAP failure (38.3% vs. 36.8%, p = 0.827) |
Choupani et al., 2018 [44] | Single center GA or BW criteria not reported Surfactant criteria: FiO2 > 0.4, CPAP 6 cmH2O Surfactant type: poractant alfa Surfactant dose: 200 mg/kg No premedication | Hobart method 16G vascular catheter (small aliquots in 2–4 min) | Bolus injection, then PPV with a T-piece device for at least 1 min or until SpO2 ≥87%, then extubation to CPAP | n = 104 ↔ CPAP failure (15.4% vs. 25%, p = 0.222) ↓ incidence of hypoxia (SpO2 < 80%) during surfactant administration (11.5% vs. 28.8%, p = 0.028) |
Halim et al., 2019 [45] | Single center ≤34 weeks GA Surfactant criteria: FiO2 > 0.4, CPAP 5–7 cmH2O Surfactant type: beractant Surfactant dose: 100 mg/kg No premedication | Take Care method 6 Fr NGT | Bolus injection, then PPV with a T-piece device for 15–20 min, then extubation to CPAP | n = 100 ↓ need for MV at any time (30% vs. 60%, p = 0.003) ↓ median duration of MV (40 h vs. 71 h, p = 0.004) |
Boskadabi et al., 2019 [46] | Single center <32 weeks GA and and BW <1500 g Surfactant criteria: FiO2 > 0.4, CPAP 5–8 cmH2O Surfactant type: poractant alfa Surfactant dose: 200 mg/kg No premedication | Take Care method 5 Fr NGT | Bolus injection, bagging for 30–60 s, then extubation to CPAP | n = 40 ↓ CPAP failure (0% vs. 30%, p = 0.002) |
Jena et al., 2019 [47] | 3 centers ≤34 weeks GA Surfactant criteria: FiO2 > 0.3, CPAP 6 cmH2O Surfactant type: bovine lipid extract surfactant suspension Surfactant dose: 135 mg/kg No premedication | Hobart method 16G vascular catheter or Take Care method 6 Fr NGT based on individual preference | Bolus injection, then PPV with a T-piece device (no detail reported), then extubation to CPAP | n = 350 ↓ CPAP failure (19% vs. 40%, p < 0.01) ↓ duration of CPAP (4 days vs. 8 days, p < 0.01) ↓ duration of O2 therapy (6 days vs. 12 days, p < 0.01) ↓ BPD (3% vs. 17%, p < 0.01) |
Yang et al., 2020 [48] | Single center 32–36 weeks GA Surfactant criteria: FiO2 > 0.4, CPAP 6 cmH2O Surfactant type: poractant alfa Surfactant dose: 200 mg/kg No premedication | Cologne method 4 Fr NGT | Bolus injection then PPV (no detail reported), then extubation to CPAP | n = 97 ↔ need for MV (8.5% vs. 6%, p = 0.8) ↔ duration of MV (3.1 days vs. 3.3 days, p = 0.27) |
Han et al., 2020 [49] | 8 centers 25–31 weeks GA Surfactant criteria: FiO2 > 0.4, CPAP 6–8 cmH2O Surfactant type: calf pulmonary surfactant preparation Surfactant dose: 70–100 mg/kg No premedication | Modified Cologne method with 10 cm ophthalmic forceps 4 Fr NGT (in mini boluses over 1–5 min) | Bolus surfactant, MV as per local standards, then extubation if FiO2 < 0.3 and MAP < 8 cmH2O | n = 298 ↔ BPD (19.2% vs. 25.9%, p = 0.17) ↓ PDA (41.1% vs. 60.5%, p = 0.001) Subgroup analysis of <30 weeks GA (n = 51): ↓ BPD (29% vs. 70%, p = 0.004) |
Gupta et al., 2020 [50] | Single center 28–34 weeks GA Surfactant criteria: FiO2 > 0.3; NIPPV fr 40/min, PIP 12–15 cmH2O, PEEP 5–6 cmH2O Surfactant type: poractant alfa Surfactant doze: 200 mg/kg No premedication | Cologne method 5 Fr NGT (1 mL aliquots, each lasting for 10 s) | Bolus injection, bagging for 30–60 s, then extubation to NIPPV | n = 58 ↔ CPAP failure (10.34% vs. 20.69%, p = 0.47) |
Pareek et al., 2021 [51] | Single center 28–36 weeks GA Surfactant criteria: NIPPV (unclear tresholds) at least 2 of the following criteria: Silverman score ≥ 4 or FiO2 > 0.3 for <30 weeks GA and FiO2 > 0.4 for ≥30 weeks GA or > stage II RDS on CXR Surfactant type: not reported Surfactant dose: 100 mg/kg No premedication | Cologne or Take Care method based on individual preference 5 Fr NGT | Bolus injection, then PPV with a T-piece device (no detail reported), then extubation to the NIPPV | n = 40 ↔ CPAP failure (30% vs. 30%, p = 0.99) |
Anand et al., 2022 [52] | Single center 26–34 weeks GA Surfactant criteria: FiO2 > 0.3 within 6 h of life Surfactant type: beractant Surfactant dose: 100 mg/kg No premedication | Take Care method 8 Fr NGT | Injection in four equal aliquots, bagging between aliquots, then extubation to CPAP | n = 150 ↔ duration of respiratory support (120 h vs. 120 h p = 0.618) ↓ need for MV (9.5% vs. 25%, p = 0.017) ↓CPAP failure (17.5% vs. 38.1%, p = 0.005) |
Reference | Study Description | Results |
---|---|---|
Isayama et al., 2016 [53] | Network meta-analysis 30 RCTs, n = 5598 4 LISA studies, n = 637
| Compared to MV, LISA had the lower odds of
|
Rigo et al., 2016 [54] | 6 RCTs, n = 895
| Compared to S-ETT, LISA resulted in decreased risk of
|
Aldana-Aguirre et al., 2017 [10] | 6 RCTs, n = 895
| Compared to S-ETT, LISA reduced the risk of
|
Barkhuff et al., 2019 [55] | 7 RCTs, n = 895 (n = 940 for PTX)
| Compared to S-ETT, LISA resulted in a lower risk of
|
Abdel-Latif et al., 2021 [56] | 16 RCTs (n = 2164)
| Compared to S-ETT, LISA was associated with a lower risk of
|
Bellos et al., 2021 [57] | Network meta-analysis 16 RCTs and 20 observational studies (n = 13,234) | Compared with INSURE, LISA lowered the rates ofmortality (OR = 0.64, 95% CI 0.54–0.76; moderate quality of evidence)
|
Hormone | Preterm Milk | Donor Milk Row | Donor Milk HoP |
---|---|---|---|
Insulin, pg/mL | 1396 ± 302 (n = 26) | 1328 ± 178 * (n = 30) | 1152 ± 149 * (n = 30) |
TSH, nU/L | 18.4 ± 1.4 (n = 90) | 20.6 ± 3.3 ** (n = 44) | 5.4 ± 0.6 ** (n = 44) |
Thyroxine, nmol/L | 671.6 ± 61.2 (n = 90) | 640.1 ± 32.4 * (n = 44) | 506.1 ± 11.2 * (n = 44) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balázs, G.; Balajthy, A.; Seri, I.; Hegyi, T.; Ertl, T.; Szabó, T.; Röszer, T.; Papp, Á.; Balla, J.; Gáll, T.; et al. Prevention of Chronic Morbidities in Extremely Premature Newborns with LISA-nCPAP Respiratory Therapy and Adjuvant Perinatal Strategies. Antioxidants 2023, 12, 1149. https://doi.org/10.3390/antiox12061149
Balázs G, Balajthy A, Seri I, Hegyi T, Ertl T, Szabó T, Röszer T, Papp Á, Balla J, Gáll T, et al. Prevention of Chronic Morbidities in Extremely Premature Newborns with LISA-nCPAP Respiratory Therapy and Adjuvant Perinatal Strategies. Antioxidants. 2023; 12(6):1149. https://doi.org/10.3390/antiox12061149
Chicago/Turabian StyleBalázs, Gergely, András Balajthy, István Seri, Thomas Hegyi, Tibor Ertl, Tamás Szabó, Tamás Röszer, Ágnes Papp, József Balla, Tamás Gáll, and et al. 2023. "Prevention of Chronic Morbidities in Extremely Premature Newborns with LISA-nCPAP Respiratory Therapy and Adjuvant Perinatal Strategies" Antioxidants 12, no. 6: 1149. https://doi.org/10.3390/antiox12061149
APA StyleBalázs, G., Balajthy, A., Seri, I., Hegyi, T., Ertl, T., Szabó, T., Röszer, T., Papp, Á., Balla, J., Gáll, T., & Balla, G. (2023). Prevention of Chronic Morbidities in Extremely Premature Newborns with LISA-nCPAP Respiratory Therapy and Adjuvant Perinatal Strategies. Antioxidants, 12(6), 1149. https://doi.org/10.3390/antiox12061149