Differential Responses of Antioxidant Enzymes and Lignin Metabolism in Susceptible and Resistant Sweetpotato Cultivars during Root-Knot Nematode Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Plant Treatment with M. incognita
2.3. Analysis of H2O2 Contents
2.4. Enzyme Activity Assays
2.5. Determination of Total Phenolic and Lignin Contents
2.6. RNA Extraction and qRT-PCR Analysis
2.7. Statistical Analysis
3. Results
3.1. Identification and H2O2 Analysis of RKN-Resistant and -Susceptible Sweetpotato Cultivars
3.2. Differential Responses of H2O2-Related Enzyme Activity in RKN-Infected Sweetpotato Roots
3.3. Differential Responses of Phenylpropanoid and Lignin Metabolism in RKN-Infected Sweetpotato Roots
3.4. Changes in H2O2 Levels and Antioxidant Enzyme Activities during RKN Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | cinnamyl alcohol dehydrogenase |
CAT | catalase |
DHM | Dahomi |
DJM | Danjami |
JHM | Juhwanhmi |
PAL | phenylalanine ammonia-lyase |
POD | guaiacol peroxidase |
PWM | Pungwonmi |
RCs | resistant cultivars |
RKN | root-knot nematode |
SCs | susceptible cultivars |
SHM | Shinhwangmi |
SOD | superoxide dismutase |
YM | Yulmi |
References
- Abad, P.; Favery, B.; Rosso, M.N.; Castagnone-Sereno, P. Root-knot nematode parasitism and host response: Molecular basis of a sophisticated interaction. Mol. Plant Pathol. 2003, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Abad, P.; Gouzy, J.; Aury, J.-M.; Castagnone-Sereno, P.; Danchin, E.G.J.; Deleury, E.; Perfus-Barbeoch, L.; Anthouard, V.; Artiguenave, F.; Blok, V.C.; et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 2008, 26, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Caillaud, M.C.; Dubreuil, G.; Quentin, M.; Perfus-Barbeoch, L.; Lecomte, P.; Almeida-Engler, J.; Abad, P.; Rosso, M.N.; Favery, B. Root-knot nematodes manipulates plant cell functions during compatible interaction. J. Plant Physiol. 2008, 165, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Diaz, J.T.; Chinn, M.S.; Truong, V.D. Simultaneous saccharification and fermentation of industrial sweetpotatoes for ethanol production and anthocyanins extraction. Ind. Crops Prod. 2014, 62, 53–60. [Google Scholar] [CrossRef]
- Grace, M.H.; Yousef, G.G.; Gustafson, S.J.; Truong, V.D.; Yencho, G.C.; Lila, M.A. Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweetpotato storage and impacts on bioactive properties. Food Chem. 2014, 145, 717–724. [Google Scholar] [CrossRef]
- Kistner, M.H.; Daiber, K.C.; Bester, C. The effect of root-knot nematodes (Meloidogyne spp.) and dry land conditions on the production of sweetpotato. J. S. Afr. Soc. Hortic. Sci. 1993, 3, 108–110. [Google Scholar]
- Palomares-Rius, J.E.; Kikuchi, T. -Omics fields of study related to plant-parasitic nematodes. J. Integr. OMICS 2013, 3, 1–10. [Google Scholar] [CrossRef]
- Halliwell, B. Reactive species and antioxidants: Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef]
- Mhamdi, A.; Noctor, G.; Baker, A. Plant catalases: Peroxisomal redox guardians. Arch. Biochem. Biophys. 2012, 525, 181–194. [Google Scholar] [CrossRef]
- Passardi, F.; Penel, C.; Dunand, C. Performing the paradoxical: How plant peroxidases modify the cell wall. Trend Plant Sci. 2004, 9, 534–540. [Google Scholar] [CrossRef]
- Melillo, M.T.; Leonetti, P.; Bongiovanni, M.; Castagnone-Sereno, P.; Bleve-Zacheo, T. Modulation of reactive oxygen species activities and H2O2 accumulation during compatible and incompatible tomato–root-knot nematode interactions. New Phytol. 2006, 170, 501–512. [Google Scholar] [CrossRef]
- Sato, K.; Kadota, Y.; Shirasu, K. Plant immune responses to parasitic nematodes. Front. Plant Sci. 2019, 10, 1165. [Google Scholar] [CrossRef]
- Waetzig, G.H.; Sobczak, M.; Grundler, F.M.W. Localization of hydrogen peroxide during the defence response of Arabidopsis thaliana against the plant-parasitic nematode Heterodera glycines. Nematology 1999, 1, 681–686. [Google Scholar] [CrossRef]
- Williamson, V.M. Plant nematode resistance genes. Curr. Opin. Plant Biol. 1999, 2, 327–331. [Google Scholar] [CrossRef]
- Anthony, F.; Topart, P.; Martinez, A.; Silva, M.; Nicole, M. Hypersensitive-like reaction conferred by the Mex-1 resistance gene against Meloidogyne exigua in coffee. Plant Pathol. 2005, 54, 476–482. [Google Scholar] [CrossRef]
- Pegard, A.; Brizzard, G.; Fazari, A.; Soucaze, O.; Abad, P.; Djian-Caporalino, C. Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology 2005, 95, 158–165. [Google Scholar] [CrossRef]
- Kaplan, D.T.; Thomason, I.J.; Van Gundy, S.D. Histological study of compatible and incompatible interaction of soybeans and Meloidogyne incognita. J. Nematol. 1979, 11, 338–343. [Google Scholar]
- Zacheo, G.; Bleve-Zacheo, T. Involvement of superoxide dismutases and superoxide radicals in the susceptibility and resistance of tomato plants to Meloidogyne incognita attack. Physiol. Mol. Plant Pathol. 1988, 32, 313–322. [Google Scholar] [CrossRef]
- Zacheo, G.; Orlando, C.; Bleve-Zacheo, T. Characterization of anionic peroxidases in tomato isolines infected by Meloidogyne incognita. J. Nematol. 1993, 25, 249–256. [Google Scholar]
- Ha, J.; Won, J.C.; Jung, Y.H.; Yang, J.W.; Lee, H.U.; Nam, K.J.; Park, S.C.; Jeong, J.C.; Lee, S.W.; Lee, D.W.; et al. Comparative proteomic analysis of the response of fibrous roots of nematode-resistant and -sensitive sweet potato cultivars to root-knot nematode Meloidogyne incognita. Acta Physiol. Plant. 2017, 39, 262. [Google Scholar] [CrossRef]
- Lee, I.H.; Shim, D.; Jeong, J.C.; Sung, Y.W.; Nam, K.J.; Yang, J.W.; Ha, J.; Lee, J.J.; Kim, Y.H. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-resistant and susceptible sweetpotato cultivars. Planta 2019, 249, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.H.; Kim, H.S.; Nam, K.J.; Lee, K.L.; Yang, J.W.; Kwak, S.S.; Lee, J.J.; Shim, D.; Kim, Y.H. The defense response involved in sweetpotato resistance to root-knot nematode Meloidogyne incognita: Comparison of root transcriptomes of resistant and susceptible sweetpotato cultivars with respect to induced and constitutive defense responses. Front. Plant Sci. 2021, 12, 671677. [Google Scholar] [CrossRef] [PubMed]
- Viaene, N.; Smol, N.; Bert, W. General Techniques in Nematology; Academia Press: Gent, Belgium, 2012; pp. 58–59. [Google Scholar]
- Bindschedler, L.V.; Minibayeva, F.; Gardner, S.L.; Gerrish, C.; Davies, D.R.; Bolwell, G.P. Early signaling events in the apoplastic oxidative burst in suspension cultured French bean cells involved cAMP and Ca2+. New Phytol. 2001, 151, 185–194. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Beyer, W.F.; Fridovich, Y. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Meth. Enzymol. 1984, 105, 121–126. [Google Scholar]
- Kwak, S.S.; Kim, S.K.; Lee, M.S.; Jung, K.H.; Park, I.H.; Liu, J.R. Acidic peroxidase from suspension cultures of sweetpotato. Phytochemistry 1995, 39, 981–984. [Google Scholar] [CrossRef]
- Stadnik, M.J.; Buchenauer, H. Inhibition of phenylalanine ammonia-lyase suppresses the resistance induced by benzothiadiazole in wheat to Blumeria graminis f. sp. tritici. Physiol. Mol. Plant Pathol. 2000, 57, 25–34. [Google Scholar] [CrossRef]
- Hatfield, R.; Fukushima, R.S. Can lignin be accurately measured? Crop Sci. 2005, 45, 832–839. [Google Scholar] [CrossRef]
- Park, S.C.; Kim, Y.H.; Ji, C.Y.; Park, S.; Jeong, J.C.; Lee, H.S.; Kwak, S.S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS ONE 2012, 7, 51502. [Google Scholar] [CrossRef]
- Klessig, D.F.; Durner, J.; Noad, R.; Navarre, D.A.; Wendehenne, D.; Kumar, D.; Zhou, J.M.; Shah, J.; Zhang, S.; Kachroo, P.; et al. Nitric oxide and salicylic acid signaling in plant defence. Proc. Natl. Acad. Sci. USA 2000, 97, 8849–8855. [Google Scholar] [CrossRef]
- Dangl, J.L.; Jones, J.D.G. Plant pathogens and integrated defence response to infection. Nature 2001, 418, 203–206. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Iriti, M.; Faoro, F. Review of innate and specific immunity in plants and animals. Mycopathologia 2007, 164, 57–64. [Google Scholar] [CrossRef]
- Gechev, T.S.; Van Breusegem, F.; Stone, J.M.; Denv, I.; Laloi, C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 2006, 28, 1091–1101. [Google Scholar] [CrossRef]
- Holtmann, B.; Kleine, M.; Grundler, F.M.W. Ultrastructure and anatomy of nematode induced syncytia in roots of susceptible and resistant sugar beet. Protoplasma 2000, 211, 39–50. [Google Scholar] [CrossRef]
- Sobczak, M.; Avrova, A.; Jupowicz, J.; Phillips, M.; Ernst, K.; Kumar, A. Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection to tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Mol. Plant-Microbe Interact. 2005, 18, 158–168. [Google Scholar] [CrossRef]
- Das, S.; DeMason, D.A.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J. Exp. Bot. 2008, 59, 1305–1313. [Google Scholar] [CrossRef]
- Holbein, J.; Grundler, F.M.W.; Siddique, S. Plant basal resistance to nematodes: An update. J. Exp. Bot. 2016, 67, 2049–2061. [Google Scholar] [CrossRef]
- Gara, L.D.; de Pinto, M.C.; Tommasi, F. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol. Biochem. 2003, 41, 863–870. [Google Scholar] [CrossRef]
- Shukla, N.; Yadav, R.; Kaur, P.; Rasmussen, S.; Goel, S.; Agarwal, M.; Jagannath, A.; Gupta, R.; Kumar, A. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Mol. Plant Pathol. 2018, 19, 615–633. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.-W.; Park, S.-U.; Lee, H.-U.; Nam, K.J.; Lee, K.-L.; Lee, J.J.; Kim, J.H.; Kwak, S.-S.; Kim, H.S.; Kim, Y.-H. Differential Responses of Antioxidant Enzymes and Lignin Metabolism in Susceptible and Resistant Sweetpotato Cultivars during Root-Knot Nematode Infection. Antioxidants 2023, 12, 1164. https://doi.org/10.3390/antiox12061164
Yang J-W, Park S-U, Lee H-U, Nam KJ, Lee K-L, Lee JJ, Kim JH, Kwak S-S, Kim HS, Kim Y-H. Differential Responses of Antioxidant Enzymes and Lignin Metabolism in Susceptible and Resistant Sweetpotato Cultivars during Root-Knot Nematode Infection. Antioxidants. 2023; 12(6):1164. https://doi.org/10.3390/antiox12061164
Chicago/Turabian StyleYang, Jung-Wook, Sul-U Park, Hyeong-Un Lee, Ki Jung Nam, Kang-Lok Lee, Jeung Joo Lee, Ju Hwan Kim, Sang-Soo Kwak, Ho Soo Kim, and Yun-Hee Kim. 2023. "Differential Responses of Antioxidant Enzymes and Lignin Metabolism in Susceptible and Resistant Sweetpotato Cultivars during Root-Knot Nematode Infection" Antioxidants 12, no. 6: 1164. https://doi.org/10.3390/antiox12061164
APA StyleYang, J. -W., Park, S. -U., Lee, H. -U., Nam, K. J., Lee, K. -L., Lee, J. J., Kim, J. H., Kwak, S. -S., Kim, H. S., & Kim, Y. -H. (2023). Differential Responses of Antioxidant Enzymes and Lignin Metabolism in Susceptible and Resistant Sweetpotato Cultivars during Root-Knot Nematode Infection. Antioxidants, 12(6), 1164. https://doi.org/10.3390/antiox12061164