Effect of Dietary Berry Supplementation on Antioxidant Biomarkers in Adults with Cardiometabolic Risks: A Systematic Review of Clinical Trials
Abstract
:1. Introduction
2. Methods
2.1. Eligibility, Information Sources, and Search Strategy
2.2. Selection and Data Collection Process
2.3. Assessment of Risk of Bias in Included Studies
2.4. Effect Measures and Synthesis Methods
3. Results
3.1. Study Selection and Characteristics
3.2. Quality Assessment
3.3. Adults with Features of MetS
3.4. Adults with Obesity or Overweight
3.5. Secondary Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murphy, S.L.; Kochanek, K.D.; Xu, J.; Arias, E. Mortality in the United States, 2020. NCHS Data Brief 2021, 427, 1–8. Available online: https://www.cdc.gov/nchs/data/databriefs/db427.pdf (accessed on 5 November 2022).
- National Academies of Science, Engineering, and Medicine; Division of Behavioral and Social Sciences and Education; Committee on National Statistics; Committee on Population; Committee on Rising Midlife Mortality Rates and Socioeconomic Disparities. High and Rising Mortality Rates among Working-Age Adults; Becker, T., Majmundar, M.K., Harris, K.M., Eds.; National Academics Press: Washington, DC, USA, 2021; pp. 311–362. [Google Scholar]
- Bakhtiyari, M.; Kazemian, E.; Kabir, K.; Hadaegh, F.; Aghajanian, S.; Mardi, P.; Ghahfarokhi, N.T.; Ghanbari, A.; Mansournia, M.A.; Azizi, F. Contribution of obesity and cardiometabolic risk factors in developing cardiovascular disease: A population-based cohort study. Sci. Rep. 2022, 12, 1544. [Google Scholar] [CrossRef]
- Donath, M.Y.; Meier, D.T.; Böni-Schnetzler, M. Inflammation in the Pathophysiology and Therapy of Cardiometabolic Disease. Endocr. Rev. 2019, 40, 1080–1091. [Google Scholar] [CrossRef]
- Norlander, A.E.; Madhur, M.S.; Harrison, D.G. The immunology of hypertension. J. Exp. Med. 2018, 215, 21–33. [Google Scholar] [CrossRef]
- Esser, N.; Paquot, N.; Scheen, A.J. Inflammatory markers and cardiometabolic diseases. Acta Clin. Belg. 2015, 70, 193–199. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, C.; Deng, W. The role of pro-inflammatory cytokines in lipid metabolism of metabolic diseases. Int. Rev. Immunol. 2019, 38, 249–266. [Google Scholar] [CrossRef]
- Akhigbe, R.; Ajayi, A. The impact of reactive oxygen species in the development of cardiometabolic disorders: A review. Lipids Health Dis. 2021, 20, 23. [Google Scholar] [CrossRef]
- Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 2010, 5, 51–66. [Google Scholar] [CrossRef]
- Haida, Z.; Hakiman, M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci. Nutr. 2019, 7, 1555–1563. [Google Scholar] [CrossRef]
- Jansen, E.; Ruskovska, T. Serum Biomarkers of (Anti)Oxidant Status for Epidemiological Studies. Int. J. Mol. Sci. 2015, 16, 27378–27390. [Google Scholar] [CrossRef] [PubMed]
- Del Bo’, C.; Martini, D.; Porrini, M.; Klimis-Zacas, D.; Riso, P. Berries and oxidative stress markers: An overview of human intervention studies. Food Funct. 2015, 6, 2890–2917. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, H.; Liu, W.; Li, C. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B. 2012, 13, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Cassidy, A.; O’Reilly, É.J.; Kay, C.; Sampson, L.; Franz, M.; Forman, J.P.; Curhan, G.; Rimm, E.B. Habitual intake of flavono.id subclasses and incident hypertension in adults. Am. J. Clin. Nutr. 2011, 93, 338–347. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Stull, A.J.; Cash, K.C.; Johnson, W.D.; Champagne, C.M.; Cefalu, W.T. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010, 140, 1764–1768. [Google Scholar] [CrossRef]
- Basu, A.; Izuora, K.; Betts, N.M.; Kinney, J.W.; Salazar, A.M.; Ebersole, J.L.; Scofield, R.H. Dietary Strawberries Improve Cardiometabolic Risks in Adults with Obesity and Elevated Serum LDL Cholesterol in a Randomized Controlled Crossover Trial. Nutrients 2021, 13, 1421. [Google Scholar] [CrossRef]
- Luís, Â.; Domingues, F.; Pereira, L. Association between berries intake and cardiovascular diseases risk factors: A systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Food Funct. 2018, 9, 740–757. [Google Scholar] [CrossRef]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Roberts, C.K.; Sindhu, K.K. Oxidative stress and metabolic syndrome. Life Sci. 2009, 84, 705–712. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Li, T.; Stern, J. Revised Cochrane Risk of Bias Tool for Randomized Trials (RoB 2) Additional Considerations for Crossover Trials. 2021. Available online: https://drive.google.com/file/d/11LFgCuDpWk5-BvBNbHtNzbJv5-qVpTWb/view (accessed on 12 February 2023).
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J.; GRADE Working Group. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Basu, A.; Izuora, K.; Betts, N.M.; Ebersole, J.L.; Scofield, R.H. Dietary Strawberries Improve Biomarkers of Antioxidant Status and Endothelial Function in Adults with Cardiometabolic Risks in a Randomized Controlled Crossover Trial. Antioxidants 2021, 10, 1730. [Google Scholar] [CrossRef]
- Richter, C.K.; Skulas-Ray, A.C.; Gaugler, T.L.; Meily, S.; Petersen, K.S.; Kris-Etherton, P.M. Effects of Cranberry Juice Supplementation on Cardiovascular Disease Risk Factors in Adults with Elevated Blood Pressure: A Randomized Controlled Trial. Nutrients 2021, 13, 2618. [Google Scholar] [CrossRef]
- Marin-Echeverri, C.; Piedrahita-Blandon, M.; Galvis-Perez, Y.; Blesso, C.N.; Fernandez, M.L.; Nunez-Rangel, V.; Barona-Acevedo, J. Improvements in antioxidant status after agraz consumption was associated to reductions in cardiovascular risk factors in women with metabolic syndrome. Cyta J. Food 2021, 19, 238–246. [Google Scholar] [CrossRef]
- Cho, J.M.; Chae, J.; Jeong, S.R.; Moon, M.J.; Ha, K.; Kim, S.; Lee, J.H. The cholesterol-lowering effect of unripe Rubus coreanus is associated with decreased oxidized LDL and apolipoprotein B levels in subjects with borderline-high cholesterol levels: A randomized controlled trial. Lipids Health Dis. 2020, 19, 166. [Google Scholar] [CrossRef]
- Hsia, D.S.; Zhang, D.J.; Beyl, R.S.; Greenway, F.L.; Khoo, C. Effect of daily consumption of cranberry beverage on insulin sensitivity and modification of cardiovascular risk factors in adults with obesity: A pilot, randomised, placebo-controlled study. Br. J. Nutr. 2020, 124, 577–585. [Google Scholar] [CrossRef]
- Xiao, D.; Zhu, L.; Edirisinghe, I.; Fareed, J.; Brailovsky, Y.; Burton-Freeman, B. Attenuation of Postmeal Metabolic Indices with Red Raspberries in Individuals at Risk for Diabetes: A Randomized Controlled Trial. Obesity 2019, 27, 542–550. [Google Scholar] [CrossRef]
- Quintero-Quiroz, J.; Gainis-Perez, Y.; Galeano-Vasquez, S.; Marin-Echeverri, C.; Franco-Escobar, C.; Ciro-Gomez, G.; Nunez-Rangel, V.; Aristizabal-Rivera, J.C.; Barona-Acevedo, J. Physico-chemical characterization and antioxidant capacity of the colombian berry (Vaccinium meridionale Swartz) with a high-polyphenol content: Potential effects in people with metabolic syndrome. Food Sci. Technol. 2019, 39, 573–582. [Google Scholar] [CrossRef]
- Marin-Echeverri, C.; Blesso, C.N.; Fernandez, M.L.; Galvis-Perez, Y.; Ciro-Gomez, G.; Nunez-Rangel, V.; Aristizabal, J.C.; Barona-Acevedo, J. Effect of Agraz (Vaccinium meridionale Swartz) on High-Density Lipoprotein Function and Inflammation in Women with Metabolic Syndrome. Antioxidants 2018, 7, 185. [Google Scholar] [CrossRef]
- Espinosa-Moncada, J.; Marín-Echeverri, C.; Galvis-Pérez, Y.; Ciro-Gómez, G.; Aristizábal, J.C.; Blesso, C.N.; Fernandez, M.L.; Barona-Acevedo, J. Evaluation of Agraz Consumption on Adipocytokines, Inflammation, and Oxidative Stress Markers in Women with Metabolic Syndrome. Nutrients 2018, 10, 1639. [Google Scholar] [CrossRef]
- Kim, H.; Simbo, S.Y.; Fang, C.; McAlister, L.; Roque, A.; Banerjee, N.; Talcott, S.T.; Zhao, H.; Kreider, R.B.; Mertens-Talcott, S.U. Açaí (Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose- or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food Funct. 2018, 9, 3097–3103. [Google Scholar] [CrossRef]
- Feresin, R.G.; Johnson, S.A.; Pourafshar, S.; Campbell, J.C.; Jaime, S.J.; Navaei, N.; Elam, M.L.; Akhavan, N.S.; Alvarez-Alvarado, S.; Tenenbaum, G. Impact of daily strawberry consumption on blood pressure and arterial stiffness in pre- and stage 1-hypertensive postmenopausal women: A randomized controlled trial. Food Funct. 2017, 8, 4139–4149. [Google Scholar] [CrossRef]
- Nair, A.R.; Mariappan, N.; Stull, A.J.; Francis, J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. Food Funct. 2017, 8, 4118–4128. [Google Scholar] [CrossRef]
- Zanchet, M.; Nardi, G.M.; Bratti, L.; Filippin-Monteiro, F.B.; Locatelli, C. Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome. Oxidative Med. Cell. Longev. 2017, 2017, 9763210. [Google Scholar] [CrossRef]
- Stote, K.S.; Sweeney, M.I.; Kean, T.; Baer, D.J.; Novotny, J.A.; Shakerley, N.L.; Chandrasekaran, A.; Carrico, P.M.; Melendez, J.A.; Gottschall-Pass, K.T. The effects of 100% wild blueberry (Vaccinium angustifolium) juice consumption on cardiometablic biomarkers: A randomized, placebo-controlled, crossover trial in adults with increased risk for type 2 diabetes. BMC Nutrition 2017, 3, 45. [Google Scholar] [CrossRef]
- Paquette, M.; Larque, A.; Weisnagel, S.J.; Desjardins, Y.; Marois, J.; Pilon, G.; Dudonne, S.; Marette, A.; Jacques, H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: A parallel, double-blind, controlled and randomised clinical trial. Br. J. Nutr. 2017, 117, 519–531. [Google Scholar] [CrossRef]
- Johnson, S.A.; Feresin, R.G.; Navaei, N.; Figueroa, A.; Elam, M.L.; Akhavan, N.S.; Hooshmand, S.; Pourafshar, S.; Payton, M.E.; Arjmandi, B.H. Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation, and antioxidant defense in postmenopausal women with pre- and stage 1-hypertension: A randomized controlled trial. Food Funct. 2017, 8, 372–380. [Google Scholar] [CrossRef]
- Lee, Y.J.; Ahn, Y.; Kwon, O.; Lee, M.Y.; Lee, C.H.; Lee, S.; Park, T.; Kwon, S.W.; Kim, J.Y. Dietary Wolfberry Extract Modifies Oxidative Stress by Controlling the Expression of Inflammatory mRNAs in Overweight and Hypercholesterolemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Agric. Food Chem. 2017, 65, 309–316. [Google Scholar] [CrossRef]
- Xie, L.; Vance, T.; Kim, B.; Lee, S.G.; Caceres, C.; Wang, Y.; Hubert, P.A.; Lee, J.Y.; Chun, O.K.; Bolling, B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr. Res. N. Y. 2017, 37, 67–77. [Google Scholar] [CrossRef]
- An, J.H.; Kim, D.; Lee, T.; Kim, K.J.; Kim, S.H.; Kim, N.H.; Kim, H.Y.; Choi, D.S.; Kim, S.G. Effect of Rubus Occidentalis Extract on Metabolic Parameters in Subjects with Prediabetes: A Proof-of-concept, Randomized, Double-blind, Placebo-controlled Clinical Trial. Phytother. Res. 2016, 30, 1634–1640. [Google Scholar] [CrossRef]
- Basu, A.; Morris, S.; Nguyen, A.; Betts, N.M.; Fu, D.X.; Lyons, T.J. Effects of Dietary Strawberry Supplementation on Antioxidant Biomarkers in Obese Adults with Above Optimal Serum Lipids. J. Nutr. Metab. 2016, 2016, 3910630. [Google Scholar] [CrossRef]
- Park, E.; Edirisinghe, I.; Wei, H.; Vijayakumar, L.P.; Banaszewski, K.; Cappozzo, J.C.; Burton-Freeman, B. A dose-response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Mol. Nutr. Food Res. 2016, 60, 1099–1109. [Google Scholar] [CrossRef]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily Blueberry Consumption Improves Blood Pressure and Arterial Stiffness in Postmenopausal Women with Pre- and Stage 1-Hypertension: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef]
- McAnulty, L.S.; Collier, S.R.; Landram, M.J.; Whittaker, D.S.; Isaacs, S.E.; Klemka, J.M.; Cheek, S.L.; Arms, J.C.; McAnulty, S.R. Six weeks daily ingestion of whole blueberry powder increases natural killer cell counts and reduces arterial stiffness in sedentary males and females. Nutr. Res. NY 2014, 34, 577–584. [Google Scholar] [CrossRef]
- Basu, A.; Betts, N.M.; Nguyen, A.; Newman, E.D.; Fu, D.; Lyons, T.J. Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. J. Nutr. 2014, 144, 830–837. [Google Scholar] [CrossRef]
- Soltani, R.; Hakimi, M.; Asgary, S.; Ghanadian, S.M.; Keshvari, M.; Sarrafzadegan, N. Evaluation of the Effects of Vaccinium arctostaphylos L. Fruit Extract on Serum Lipids and hs-CRP Levels and Oxidative Stress in Adult Patients with Hyperlipidemia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Evid. Based Complement. Altern. Med. 2014, 2014, 217451. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Seppänen-Laakso, T.; Kankainen, M.; Maukonen, J.; Törrönen, R.; Kolehmainen, M.; Leppänen, T.; Moilanen, E.; Nohynek, L.; Aura, A.M. Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol. Nutr. Food Res. 2013, 57, 2258–2263. [Google Scholar] [CrossRef]
- Riso, P.; Klimis-Zacas, D.; Del Bo’, C.; Martini, D.; Campolo, J.; Vendrame, S.; Møller, P.; Loft, S.; De Maria, R.; Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961. [Google Scholar] [CrossRef]
- Simão, T.N.C.; Lozovoy, M.A.B.; Simão, A.N.C.; Oliveira, S.R.; Venturini, D.; Morimoto, H.K.; Miglioranza, L.H.S.; Dichi, I. Reduced-energy cranberry juice increases folic acid and adiponectin and reduces homocysteine and oxidative stress in patients with the metabolic syndrome. Br. J. Nutr. 2013, 110, 1885–1894. [Google Scholar] [CrossRef]
- Basu, A.; Betts, N.M.; Ortiz, J.; Simmons, B.; Wu, M.; Lyons, T.J. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr. Res. 2011, 31, 190–196. [Google Scholar] [CrossRef]
- Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010, 140, 1582–1587. [Google Scholar] [CrossRef]
- Karlsen, A.; Paur, I.; Bohn, S.K.; Sakhi, A.K.; Borge, G.I.; Serafini, M.; Erlund, I.; Laake, P.; Tonstad, S.; Blomhoff, R. Bilberry juice modulates plasma concentration of NF-kappa B related inflammatory markers in subjects at increased risk of CVD. Eur. J. Nutr. 2010, 49, 345–355. [Google Scholar] [CrossRef]
- Broncel, M.; Kozirog, M.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Chojnowska-Jezierska, J. Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med. Sci. Monit. 2010, 16, CR28–CR34. [Google Scholar]
- Burton-Freeman, B.; Linares, A.; Hyson, D.; Kappagoda, T. Strawberry modulates LDL oxidation and postprandial lipemia in response to high-fat meal in overweight hyperlipidemic men and women. J. Am. Coll. Nutr. 2010, 29, 46–54. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Nguyen, T.H.; Kendall, C.W.; Faulkner, D.A.; Bashyam, B.; Kim, I.J.; Ireland, C.; Patel, D.; Vidgen, E.; Josse, A.R. The effect of strawberries in a cholesterol-lowering dietary portfolio. Metab. Clin. Exp. 2008, 57, 1636–1644. [Google Scholar] [CrossRef]
- Ruel, G.; Pomerleau, S.; Couture, P.; Lemieux, S.; Lamarche, B.; Couillard, C. Low-calorie cranberry juice supplementation reduces plasma oxidized LDL and cell adhesion molecule concentrations in men. Br. J. Nutr. 2008, 99, 352–359. [Google Scholar] [CrossRef]
- Skoczyñska, A.; Jêdrychowska, I.; Porêba, R.; Affelska-Jercha, A.; Turczyn, B.; Wojakowska, A.; Andrzejak, R. Influence of chokeberry juice on arterial blood pressure and lipid parameters in men with mild hypercholesterolemia. Pharmacol. Rep. 2007, 59, 177–182. [Google Scholar]
- Ruel, G.; Pomerleau, S.; Couture, P.; Lemieux, S.; Lamarche, B.; Couillard, C. Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Br. J. Nutr. 2006, 96, 357–364. [Google Scholar] [CrossRef]
- Usharani, P.; Merugu, P.L.; Nutalapati, C. Evaluation of the effects of a standardized aqueous extract of Phyllanthus emblica fruits on endothelial dysfunction, oxidative stress, systemic inflammation and lipid profile in subjects with metabolic syndrome: A randomised, double blind, placebo controlled clinical study. BMC Complement. Altern. Med. 2019, 19, 97–105. [Google Scholar] [CrossRef]
- Chew, B.; Mathison, B.; Kimble, L.; McKay, D.; Kaspar, K.; Khoo, C.; Chen, C.O.; Blumberg, J. Chronic consumption of a low calorie, high polyphenol cranberry beverage attenuates inflammation and improves glucoregulation and HDL cholesterol in healthy overweight humans: A randomized controlled trial. Eur. J. Nutr. 2019, 58, 1223–1235. [Google Scholar] [CrossRef]
- Basu, A.; Kurien, B.T.; Tran, H.; Byrd, B.; Maher, J.; Schell, J.; Masek, E.; Barrett, J.R.; Lyons, T.J.; Betts, N.M. Strawberries decrease circulating levels of tumor necrosis factor and lipid peroxides in obese adults with knee osteoarthritis. Food Funct. 2018, 9, 6218–6226. [Google Scholar] [CrossRef]
- Zhong, S.; Sandhu, A.; Edirisinghe, I.; Burton-freeman, B. Characterization of Wild Blueberry Polyphenols Bioavailability and Kinetic Profile in Plasma over 24-h Period in Human Subjects. Mol. Nutr. Food Res. 2017, 61, 1700405. [Google Scholar] [CrossRef]
- Richter, C.K.; Skulas-Ray, A.C.; Gaugler, T.L.; Lambert, J.D.; Proctor, D.N.; Kris-Etherton, P.M. Incorporating freeze-dried strawberry powder into a high-fat meal does not alter postprandial vascular function or blood markers of cardiovascular disease risk: A randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 313–322. [Google Scholar] [CrossRef]
- Huang, Y.C.; Park, E.; Edirisinghe, I.; Burton-Freeman, B.M. Maximizing the health effects of strawberry anthocyanins: Understanding the influence of the consumption timing variable. Food Funct. 2016, 7, 4745–4752. [Google Scholar] [CrossRef]
- Prymont-Przyminska, A.; Bialasiewicz, P.; Zwolinska, A.; Sarniak, A.; Wlodarczyk, A.; Markowski, J.; Rutkowski, K.P.; Nowak, D. Addition of strawberries to the usual diet increases postprandial but not fasting non-urate plasma antioxidant activity in healthy subjects. J. Clin. Biochem. Nutr. 2016, 59, 191–198. [Google Scholar] [CrossRef]
- Eftekhari, M.H.; Allaei, M.; Khosropanah, S.; Rajaeifard, A.; Sohrabi, Z. Cranberry Supplement and Metabolic Risk Factors in Obese and Overweight Females. Jentashapir J. Health Res. 2016, 7. [Google Scholar] [CrossRef]
- Davinelli, S.; Bertoglio, J.C.; Zarrelli, A.; Pina, R.; Scapagnini, G. A Randomized Clinical Trial Evaluating the Efficacy of an Anthocyanin-Maqui Berry Extract (Delphinol®) on Oxidative Stress Biomarkers. J. Am. Coll. Nutr. 2015, 34 (Suppl. 1), 28–33. [Google Scholar] [CrossRef]
- Khazaal, F.; Mosah, H.A.; Sahib, H.B.; Hamdi, A.S. Effect of raspberry ketones and l-carnitine on oxidative stress and body weight in Iraqi obese patients. Int. J. Pharm. Sci. Rev. Res. 2015, 31, 69–75. Available online: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01070384/full (accessed on 26 November 2022).
- Banaszewski, K.; Park, E.; Edirisinghe, I.; Cappozzo, J.C.; Burton-Freeman, B.M. A pilot study to investigate bioavailability of strawberry anthocyanins and characterize postprandial plasma polyphenols absorption patterns by Q-TOF LC/MS in humans. J. Berry Res. 2013, 3, 113–126. [Google Scholar] [CrossRef]
- Ruel, G.; Lapointe, A.; Pomerleau, S.; Couture, P.; Lemieux, S.; Lamarche, B.; Couillard, C. Evidence that cranberry juice may improve augmentation index in overweight men. Nutr. Res. 2013, 33, 41–49. [Google Scholar] [CrossRef]
- Zunino, S.J.; Parelman, M.A.; Freytag, T.L.; Stephensen, C.B.; Kelley, D.S.; Mackey, B.E.; Woodhouse, L.R.; Bonnel, E.L. Effects of dietary strawberry powder on blood lipids and inflammatory markers in obese human subjects. Br. J. Nutr. 2012, 108, 900–909. [Google Scholar] [CrossRef]
- Edirisinghe, I.; Banaszewski, K.; Cappozzo, J.; Sandhya, K.; Ellis, C.L.; Tadapaneni, R.; Kappagoda, C.T.; Burton-Freeman, B.M. Strawberry anthocyanin and its association with postprandial inflammation and insulin. Br. J. Nutr. 2011, 106, 913–922. [Google Scholar] [CrossRef]
- McAnulty, S.R.; McAnulty, L.S.; Morrow, J.D.; Khardouni, D.; Shooter, L.; Monk, J.; Gross, S.; Brown, V. Effect of daily fruit ingestion on angiotensin converting enzyme activity, blood pressure, and oxidative stress in chronic smokers. Free Radic. Res. 2005, 39, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Paiva, S.A.; Yeum, K.J.; Guohua, C.; Prior, R.L.; Russell, R.M. Postprandial Plasma Carotenoid Responses Following Consumption of Strawberries, Red Wine, Vitamin C or Spinach by Elderly Women. J. Nutr. 1998, 128, 2391–2394. [Google Scholar] [CrossRef]
- Cao, G.; Russell, R.M.; Lischner, N.; Prior, R.L. Serum Antioxidant Capacity Is Increased by Consumption of Strawberries, Spinach, Red Wine or Vitamin C in Elderly Women1,2. J. Nutr. 1998, 128, 2383–2390. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic syndrome and risk of incident cardiovascular events and death: A systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef]
- Griendling, K.K.; Camargo, L.L.; Rios, F.J.; Alves-Lopes, R.; Montezano, A.C.; Touyz, R.M. Oxidative Stress and Hypertension. Circ. Res. 2021, 128, 993–1020. [Google Scholar] [CrossRef] [PubMed]
- Matsuno, K.; Yamada, H.; Iwata, K.; Jin, D.; Katsuyama, M.; Matsuki, M.; Takai, S.; Yamanishi, K.; Miyazaki, M.; Matsubara, H.; et al. Nox1 is involved in angiotensin II-mediated hypertension: A study in Nox1-deficient mice. Circulation 2005, 112, 2677–2685. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, G.; Banfi, B.; Deffert, C.; Fiette, L.; Schappi, M.; Herrmann, F.; Krause, K. Decreased blood pressure in NOX1-deficient mice. FEBS Lett. 2006, 580, 497–504. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Atkin, S.L.; Sahebkar, A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J. Cell. Physiol. 2019, 234, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.K.; Koo, J.; Roberts, C.K.; Vaziri, N.D. Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: Response to insulin and antioxidant therapies. Clin. Exp. Hypertens. 2004, 26, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [PubMed]
- Weinbrenner, T.; Schröder, H.; Escurriol, V.; Fito, M.; Elosua, R.; Vila, J.; Marrugat, J.; Covas, M. Circulating oxidized LDL is associated with increased waist circumference independent of body mass index in men and women. Am. J. Clin. Nutr. 2006, 83, 30–32. [Google Scholar] [CrossRef]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef]
- Choromańska, B.; Myśliwiec, P.; Łuba, M.; Wojskowicz, P.; Dadan, J.; Myśliwiec, H.; Choromańska, K.; Zalewska, A.; Maciejczyk, M. A Longitudinal Study of the Antioxidant Barrier and Oxidative Stress in Morbidly Obese Patients after Bariatric Surgery. Does the Metabolic Syndrome Affect the Redox Homeostasis of Obese People? J. Clin. Med. 2020, 9, 976. [Google Scholar] [CrossRef]
- Couto, N.; Wood, J.; Barber, J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 2016, 95, 27–42. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Cominacini, L.; Garbin, U.; Pastorino, A.M.; Davoli, A.; Campagnola, M.; De Santis, A.; Pasini, C.; Faccini, G.B.; Trevisan, M.T.; Bertozzo, L. Predisposition to LDL oxidation in patients with and without angiographically established coronary artery disease. Atherosclerosis 1993, 99, 63–70. [Google Scholar] [CrossRef]
- Hurtado-Roca, Y.; Bueno, H.; Fernandez-Ortiz, A.; Ordovas, J.M.; Ibañez, B.; Fuster, V.; Rodriguez-Artalejo, F.; Laclaustra, M. Oxidized LDL Is Associated with Metabolic Syndrome Traits Independently of Central Obesity and Insulin Resistance. Diabetes 2017, 66, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, P.; De Keyzer, D.; Jacobs, D.R.J. Oxidized LDL and the metabolic syndrome. Future Lipidol. 2008, 3, 637–649. [Google Scholar] [CrossRef]
- Holvoet, P.; Kritchevsky, S.B.; Tracy, R.P.; Mertens, A.; Rubin, S.M.; Butler, J.; Goodpaster, B.; Harris, T.B. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes 2004, 53, 1068–1073. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Golzarand, M.; Mirmiran, P.; Shiva, N.; Azizi, F. Dietary total antioxidant capacity and the occurrence of metabolic syndrome and its components after a 3-year follow-up in adults: Tehran Lipid and Glucose Study. Nutr. Metab. 2012, 9, 70. [Google Scholar] [CrossRef]
- Bouanane, S.; Benkalfat, N.B.; Baba Ahmed, F.; Merzouk, H.; Mokhtari, N.S.; Merzouk, S.; Gresti, J.; Tessier, C.; Narce, M. Time course of changes in serum oxidant/antioxidant status in overfed obese rats and their offspring. Clin. Sci. 2009, 116, 669–680. [Google Scholar] [CrossRef] [PubMed]
Author, Year (Country) | RCT Design | Participant Age (±SD) and Sex | Participant Cardiometabolic Risk Factor | Intervention | Time of Exposure | Plasma/Serum (unless otherwise stated) Antioxidant and/or Oxidative Stress Outcomes | Between Group Significant Outcomes (unless otherwise stated) (Cohen’s d, 95% CI) |
---|---|---|---|---|---|---|---|
Basu et al., 2021 (USA) [27] | Double-blinded, crossover (n = 33) | 53 ± 13 years 2M/31F | Obesity; elevated LDL-C | Intervention 1: 13 g FDS powder Intervention 2: 32 g FDS powder | Powder divided into 2 servings per day for 4 weeks | Catalase; GSH; GSH reductase; reduced GSH; SOD; peroxidase; TAC; MDA | 13 g: ↑ SOD (0.51) ↓ MDA (0.51) ↑ TAC (0.37) 32 g: ↑ SOD (1.00) ↓ MDA (0.73) ↑ TAC (0.62) |
Richter et al., 2021 (USA) [28] | Double-blinded, crossover (n = 40) | 47 ± 12 years 25M/15F | Overweight; SBP ≥ 120 mmHg and/or DBP ≥ 80 mmHg | 500 mL cranberry juice | 250 mL of juice twice per day for 4 weeks | Isoprostanes | ∅ |
Marin-Echeverri et al., 2021 (Colombia) [29] | Double-blinded, crossover (n = 40) | 47 ± 9 years 40F | Classified with MetS | 7.38 g lyophilized agraz per 200 mL water (~200 g fresh agraz) | 200 mL of beverage per day for 4 weeks | SOD; catalase; GPx; ABTS; FRAP; ORAC; 8-OHdG; F2-isoprostane | ∅ |
Cho et al., 2020 (South Korea) [30] | Double-blinded, parallel (n = 77) | Control: 48 ± 12 years 6M/32F Intervention: 47 ± 12 years 13M/26F | Total blood cholesterol between 200–239 mg/dL | 600 mg freeze-dried Korean blackberry | Consumed daily for 12 weeks | Ox-LDL | ↓ ox-LDL (0.69) |
Hsia et al., 2020 (USA) [31] | Double-blinded, parallel (n = 37) | Control: 48 ± 12 years 4M/13F Intervention: 47 ± 16 years 8M/8F | Obesity; elevated FPG or impaired glucose tolerance; insulin concentration ≥ 5 μIU/mL | 0.062 g cranberry powder per 100 mL beverage | 450 mL of beverage per day for 8 weeks | Ox-LDL; lectin-like ox-LDL receptor 1; 8-isoprostane; MDA; advanced glycated end products; paraoxonase-1 | ↓ 8-isoprostane (0.42) |
Xiao et al., 2019 (USA) [32] | Single-blinded, 3-arm, crossover (n = 32) | 34 ± 12 years 17M/15F | Elevated FPG and fasting insulin; HOMA-IR ≥ 2.5 | Intervention 1: 125 g frozen red raspberries Intervention 2: 250 g frozen red raspberries | Consumed with 900 kcal challenge meal typical of Western eating patterns | Ox-LDL | ∅ |
Quintero-Quiroz et al., 2019 (Colombia) [33] | Double-blinded, crossover (n = 66) | 47 ± 10 years 26M/40F | Classified with MetS | 7.38 g lyophilized agraz per 200 mL water (~200 g fresh agraz) | 200 mL of beverage per day for 4 weeks | FRAP; DPPH scavenging activity | ∅ |
Marin-Echeverri et al., 2018 (Colombia) [34] | Double-blinded, crossover (n = 40) | 47 ± 9 years 40F | Classified with MetS | Freeze-dried agraz reconstituted in 200 mL water (~200 g fresh agraz) | 200 mL of beverage per day for 4 weeks | PON1 arylesterase and lactonase activity; MPO; AOPP | ∅ |
Espinosa-Moncada et al., 2018 (Colombia) [35] | Double-blinded, crossover (n = 40) | 47 ± 9 years 40F | Classified with MetS | 200 mL agraz nectar | 200 mL of beverage per day for 4 weeks | Antioxidant capacity; TBARS; F2-isoprostanes; urinary 8-OHdG | ↑ antioxidant capacity (0.31) ↓ urinary 8-OHdG (0.54) |
Kim et al., 2018 (USA) [36] | Double-blinded, parallel (n = 37) | Control: 42 ± 14 years Intervention: 47 ± 12 years 11M/26F | Classified with MetS | 12% solid açaí pulp (~81 g açaí pulp) | 325 mL beverage twice per day for 12 weeks | 8-isoprostane | ↓ 8-isoprostane (0.33) |
Feresin et al., 2017 (USA) [37] | Double-blinded, parallel (n = 60) | 45–65 years 60F | Pre- or stage-1 hypertension | Intervention 1: 50 g FDS powder Intervention 2: 25 g FDS powder | Powder consumed once per day for 8 weeks | SOD | ∅ |
Nair et al., 2017 (USA) [38] | Double-blinded, parallel (n = 27) | Control: 59 ± 3 years 2M/10F Intervention: 55 ± 2 years 7M/8F | Classified with MetS | 22.5 g freeze-dried blueberry powder | 12oz yogurt and skim-milk based smoothie twice per day for 6 weeks | Whole blood and monocyte total ROS; whole blood and monocyte superoxide production rates | ↓ whole blood and monocyte ROS and superoxide production (NP) |
Zanchet et al., 2017 (Brazil) [39] | Parallel (n = 50) | Control: 49 ± 13 years 7M/18F Intervention: 53 ± 11 years 8M/17F | Classified with MetS | 14 g goji berry | Natural form consumed daily for 45 days | FRAP; reduced GSH; MDA; erythrocyte catalase; erythrocyte SOD; TBARS | All within group: ↑ FRAP (NP) ↑ TBARS (NP) ↑ GSH (NP) ↑ catalase (NP) ↓ SOD (NP) |
Stote et al., 2017 (USA) [40] | Single-blinded, crossover (n = 19) | 53 ± 6 years 20F | Two risk factors for T2DM | 240 mL wild blueberry juice | Half of dosage consumed twice per day for 1 week | Ox-LDL; 8-isoprostane | ∅ |
Paquette et al., 2017 (Canada) [41] | Double-blinded, parallel (n = 41) | Control: 60 ± 5 years 9M/12F Intervention: 57 ± 4 years 9M/11F | Overweight or obesity; fasting plasma insulin > 60 pmol/L | 1.84 g mix of dry strawberry and cranberry polyphenol extracts | Beverage consumed daily for 6 weeks | Ox-LDL; FRAP | ∅ |
Johnson et al., 2017 (USA) [42] | Double-blinded, parallel (n = 40) | Control: 57 ± 5 years Intervention: 60 ± 5 years 40F | Obesity; pre- or stage-1 hypertension | 22 g freeze-dried blueberry powder (~1 cup fresh blueberries) | 11 g with 240 mL of water twice per day for 8 weeks | SOD; 8-isoprostane; GPx; GSH reductase; ox-LDL; DNA 8-OHdG | 4 weeks: ↓ 8-OHdG (4.54) 8 weeks: ∅ |
Lee et al., 2017 (Korea) [43] | Double-blinded, parallel (n = 53) | Control: 52 ± 8 years 3M/24F Intervention: 50 ± 7 years 9M/17F | Overweight; LDL-C between 130–165 mg/dL | 13.5 g wolfberry extract | Beverage consumed daily for 8 weeks | Erythrocyte SOD, catalase, GPx; ox-LDL; MDA | ↓ SOD (NP) ↑ catalase (NP) |
Xie et al., 2017 (USA) [44] | Double-blinded, parallel (n = 49) | Control: 37 ± 15 years 11M/13F Intervention: 33 ± 13 years 13M/12F | Overweight; total serum cholesterol > 200 mg/dL; LDL-C > 100 mg/dL | 500 mg aronia berry extract | 500 mg daily for 12 weeks | Catalase; GPx; SOD; TAC; 8-isoprostanes | ∅ |
An et al., 2016 (Korea) [45] | Double-blinded, parallel (n = 44) | Control: 58 ± 8 years 4M/9F Intervention 1: 60 ± 9 years 4M/10F Intervention 2: 58 ± 7 years 5M/12F | Impaired fasting glucose between 100–125 mg/dL or OGTT between 140–200 mg/dL | Intervention 1: 900 mg black raspberry extract Intervention 2: 1800 mg black raspberry extract | Half of dosage consumed twice per day for 12 weeks | Ox-LDL | ↓ ox-LDL (within group, NP) |
Basu et al., 2016 (USA) [46] | Parallel (n = 60) | 49 ± 10 years 5M/55F | Obesity; elevated serum lipids | Intervention 1: 25 g FDS powder Intervention 2: 50 g FDS powder | Half of dosage consumed as beverage twice per day for 12 weeks | Antioxidant capacity; whole blood GSH reductase; catalase; GPx; GSH reductase | Intervention 1: ↑ antioxidant capacity (4.33) ↑ catalase (2.07) ↑ whole blood GSH reductase (4.61) Intervention 2: ↑ antioxidant capacity (7.60) ↑ whole blood GSH reductase (10.75) |
Park et al., 2016 (USA) [47] | Single-blinded, 4-arm, crossover (n = 21) | 40 ± 14 years 5M/16F | Waist circumference > 110 cm; FPG between 5.5–6.9 mmol/L or fasting insulin > 75th percentile cutoff or HOMA-IR ≥ 1.0 | Intervention 1: 10 g FDS powder Intervention 2: 20 g FDS powder Intervention 3: 40 g FDS powder | Consumed within 20 min after breakfast meal typical of Western eating patterns | Ox-LDL; ORAC | Intervention 2: ↓ ox-LDL (NP) Intervention 3: ↓ ox-LDL (NP) |
Johnson et al., 2015 (USA) [48] | Double-blinded, parallel (n = 40) | Control: 57 ± 5 years Intervention: 60 ± 5 years 40F | Blood pressure between 125/85 and 160/90 mmHg | 22 g freeze-dried blueberry powder | Consumed daily for 8 weeks | SOD | ↑ SOD (within group, NP) |
McAnulty et al., 2014 (USA) [49] | Parallel (n = 25) | Control: 40 ± 13 years Intervention: 46 ± 12 years NP | Blood pressure ≥ 120/80 mmHg | 19 g blueberry powder | Consumed twice per day for 6 weeks | ORAC; FRAP | ∅ |
Basu et al., 2014 (USA) [50] | Parallel (n = 60) | 49 ± 10 years 5M/55F | Obesity; elevated serum lipids | Intervention 1: 25 g FDS powder Intervention 2: 50 g FDS powder | Half of dosage consumed as beverage twice per day for 12 weeks | Combined MDA and HNE | Intervention 1: ↓ MDA and HNE (2.62) Intervention 2: ↓ MDA and HNE (7.20) |
Soltani et al., 2014 (Iran) [51] | Double-blinded, parallel (n =50) | Control: 46 ± 17 years 10M/15F Intervention: 48 ± 16 years 10M/15F | Hyperlipidemic | 500 mg dried whortleberry | Consumed twice per day for 4 weeks | MDA | ↓ MDA (0.57) |
Puupponen-Pimiä et al., 2013 (Finland) [52] | Parallel (n = 32) | Control: 50 ± 7 years 3M/9F Intervention: 53 ± 7 years 10M/10F | Classified with MetS | 100 g strawberry purée 100 g frozen raspberries 100 g frozen cloudberries | Consumed daily for 8 weeks | 8-isoprostanes; TRAP | ∅ |
Riso et al., 2013 (Italy) [53] | Repeated-measures, crossover (n = 18) | 48 ± 10 years 18M | Overweight; one CVD risk factor | 25 g freeze dried wild blueberry powder | Beverage consumed daily for 6 weeks | Reduction in oxidized purines; H2O2-induced DNA damage; reduced GSH; oxidized GSSG; GST; SOD; GPx | ↓ oxidized purines (0.60) ↓ H2O2 damage (0.85) |
Simão et al., 2013 (Brazil) [54] | Parallel (n = 56) | Control: 49 years 8M/28F Intervention: 51 years 6M/14F | Classified with MetS | 0.7 L reduced-calorie cranberry juice | Consumed twice per day for 60 days | Lipo-peroxidation; protein oxidation | ↓ lipo-peroxidation (NP) ↓ protein oxidation (NP) |
Basu et al., 2011 (USA) [55] | Double-blinded, parallel (n = 36) | 52 ± 8 years 36F | Classified with MetS | 240 mL reduced-calorie cranberry juice | Consumed daily for 8 weeks | Ox-LDL; MDA and HNE; antioxidant capacity | ↓ ox-LDL (0.67) ↓ MDA and HNE (2.06) ↑ antioxidant capacity (1.59) |
Basu et al., 2010 (USA) [56] | Single-blinded, parallel (n = 48) | Control: 48 ± 3 years 2M/21F Intervention: 52 ± 3 years 2M/23F | Obesity; classified with MetS | 50 g freeze-dried blueberry powder | Half of dosage consumed as beverage twice per day for 8 weeks | Ox-LDL; MDA and HNE; MPO | ↓ ox-LDL (NP) ↓ MDA and HNE (NP) |
Karlsen et al., 2010 (Norway) [57] | Parallel (n = 62) | Control *: 53 years 25M/7F Intervention: 53 years 21M/10F | Overweight; one CVD risk factor | 330 mL bilberry juice | Consumed daily | FRAP; TRAP; ORAC; vitamin C; DHAA; TAA; oxidized GSH; tocopherols; carotenoids; quercetin; lipid peroxidation; oxidized vitamin C | ↑ Quercetin (NP) ↑ p-coumaric acid (NP) |
Broncel et al., 2010 (Poland) [58] | Parallel (n = 47) | 42–65 years 15M/32F | Classified with MetS | 100 mg aronia extract | Consumed three times per day for 2 months | Erythrocyte SOD, catalase, GPx, TBARS | ↑ SOD (2.18) ↓ catalase (1.33) ↓ TBARS (1.25) |
Burton-Freeman et al., 2010 (USA) [59] | Single-blind, crossover (n = 24) | 51 ± 15 years 10M/14F | Overweight; hyperlipidemic | 10 g FDS powder | Acute: Beverage consumed with high-fat challenge meal Chronic: Beverage consumed daily for 6 weeks | Ox-LDL | Acute: ↓ ox-LDL (4.97) Chronic: ∅ |
Jenkins et al., 2008 (Canada) [60] | Crossover (n = 28) | 62 ± 1 years NP | Hyperlipidemic | 454 g strawberries | Consumed daily for 1 month after 2.5 years of cholesterol-lowering diet | Protein oxidation; TBARS | ↓ TBARS (1.36) ↓ TBARS molar ratio of LDL-C (1.02) |
Ruel et al., 2008 (Canada) [61] | Single-blinded, crossover (n = 30) | 51 ± 10 years 30M | Waist circumference ≥ 90 cm; LDL-C between 3.0–5.0 mmol/L | 125 mL, 250 mL, 500 mL cranberry juice | Progressive consumption daily for 12 weeks | Ox-LDL | 250 mL: ↓ ox-LDL (within group, NP) 500 mL: ↓ ox-LDL (within group, NP) |
Skoczyñska et al., 2007 (Poland) [62] | Crossover (n = 58) | 54 ± 6 years 58M | Total serum cholesterol ≥ 200 mg/dL | 250 mL chokeberry juice | Consumed daily for 6 weeks | Lipid peroxides; vitamin A; vitamin E | ↑ vitamin A (0.94) |
Ruel et al., 2006 (Canada) [63] | Single-blinded, parallel (n = 30) | 51 ± 10 years 30M | Waist circumference ≥ 90 cm; LDL-C between 3.0–5.0 mmol/L | 125 mL, 250 mL, 500 mL cranberry juice | Progressive consumption daily for 12 weeks | TAC | ∅ |
Author, Year (Country) | RCT Design | Participant Age (±SD) and Sex | Participant Cardiometabolic Risk Factor | Intervention | Time of Exposure | Plasma/Serum (unless otherwise stated) Antioxidant and/or Oxidative Stress Outcomes | Between Group Significant Outcomes (unless otherwise stated) (Cohen’s d, 95% CI) |
---|---|---|---|---|---|---|---|
Usharani et al., 2019 (India) [64] | Double-blinded, parallel (n = 59) | Control: 57 ± 7 years 14M/4F Intervention 1: 57 ± 9 years 15M/6F Intervention 2: 57 ± 7 years 14M/6F | Overweight; endothelial dysfunction | Intervention 1: 500 mg Indian gooseberry Intervention 2: 1000 mg Indian gooseberry | Half of dosage. Consumed twice per day for 12 weeks | GSH; MDA | 250 mg: ↑GSH (0.99) ↓ MDA (1.69) 500 mg: ↑GSH (2.79) ↓ MDA (2.90) |
Chew et al., 2019 (USA) [65] | Double-blinded, parallel (n = 78) | 43 ± 1 years 33M/45F | Obesity | 450 mL cranberry extract beverage | 450 mL of beverage per day for 8 weeks | Reduced GSH; oxidized GSSG; GPx; SOD; ox-LDL; F2α-isoprostanes; urinary 8-OHdG | ∅ |
Basu et al., 2018 (USA) [66] | Crossover (n = 17) | 57 ± 7 years 4M/13F | Obesity | 50 g FDS powder | 50 g twice per day for 12 weeks | 4-hydroxy-2-nonenal-HNE modified proteins | ↓ HNE-modified proteins (NP) |
Zhong et al., 2017 (USA) [67] | Single-blinded, crossover (n = 12) | 29 ± 5 years 6M/6F | Overweight | 25 g freeze-dried wild blueberry powder | Consumed with challenge meal | Anthocyanins; phenolic acids | NP |
Richter et al., 2017 (USA) [68] | Crossover (n = 30) | 28 ± 11 years 17M/13F | Obesity | 40 g FDS powder | Consumed with 1000 kcal high-fat challenge meal | MDA: ox-LDL | ∅ |
Huang et al., 2016 (USA) [69] | Single-blinded, 3-arm, crossover (n = 14) | Control: 27 ± 4 years 7M/3F Intervention: 25 ± 4 years 2M/2F | Overweight | 12 g FDS powder | Consumed with high-fat, high-kcal challenge meal typical of Western eating patterns | Ox-LDL | ∅ |
Prymont-Przyminska et al., 2016 (Poland) [70] | Open label, parallel (n = 18) | Control: 47 ± 8 years 5M/2F Intervention: 41 ± 11 years 10M/1F | Overweight | 500 g strawberries | Consumed daily for 9 days | DPPH scavenging activity; FRAP; total polyphenols | All within group: ↑ non-urate FRAP (NP) ↑ FRAP (NP) ↓ DPPH activity (NP) |
Eftekhari et al., 2016 (Iran) [71] | Double-blinded, parallel (n = 40) | Control: 42 ± 7 years Intervention: 42 ± 5 years 40F | Overweight | 400 mg cranberry | Consumed daily for 8 weeks | MDA | ∅ |
Davinelli et al., 2015 (Italy) [72] | Double-blinded, parallel (n = 42) | 45–65 years 29M/13F | Overweight | 150 mg maqui berry extract | Consumed three times per day for 4 weeks | Ox-LDL; urinary F2-isoprostanes | ↓ ox-LDL (NP) ↓ urinary F2-isoprostanes (NP) |
Khazaal et al., 2015 (Iraq) [73] | Single-blinded, parallel (n = 60) * | Control: 33 ± 7 years 18F Intervention: 32 ± 6 years 20F | Obesity | 500 mg raspberry ketones | Consumed daily for 12 weeks | GSH; MDA; 8-isoprostanes | ↑ GSH (1.37) ↓ MDA (0.42) |
Banaszewski et al., 2013 (USA) [74] | Single-blinded, crossover (n = 5) | 1M/4F | Obesity | Intervention 1: 10 g FDS powder Intervention 2: 20 g FDS Intervention 3: 40 g FDS powder | Beverage consumed with challenge meal | Anthocyanins | 10 g FDS: ↑ pelargonidin-O-glucuronide (6.74) ↑ pelargonidin-3-O-glucoside (4.66) ↑ cyanidin-3-O-glucoside (12.02) 20 g FDS: ↑ pelargonidin-O-glucuronide (16.25) ↑ pelargonidin-3-O-glucoside (3.06) ↑ cyanidin-3-O-glucoside (7.12) 40 g FDS: ↑ pelargonidin-O-glucuronide (9.74) ↑ cyanidin-3-O-glucoside (3.87) |
Ruel et al., 2013 (Canada) [75] | Double-blinded, crossover (n = 35) | 45 ± 10 years 35M | Overweight | 500 mL reduced-calorie cranberry juice | Consumed daily for 4 weeks | Ox-LDL | ∅ |
Zunino et al., 2012 (USA) [76] | Double-blinded, crossover (n = 20) | 29 ± 7 years 7M 32 ± 11 years 13F | Overweight | 80 g frozen strawberries | Consumed as FDS powder in beverage two times per day for 7 weeks | TAS; ORAC; 8-isoprostane | ∅ |
Edirisinghe et al., 2011 (USA) [77] | Single-blinded, crossover (n = 24) | 51 ± 15 years 10M/14F | Overweight | 34 g FDS powder | Consumed with challenge meal typical of Western eating patterns | Polyphenolic compounds | ↑ pelargonidin sulfate ↑ pelargonidin-3-O-glucoside (NP) |
McAnulty et al., 2005 (USA) [78] | Parallel (n = 20) | Control: 29 ± 4 years Intervention: 26 ± 3 years 20M | Overweight | 250 mg blueberries | Consumed daily for 3 weeks | F2-isoprostanes; lipid hydroperoxides; FRAP | ↓ lipid hydroperoxides (within group) |
Paiva et al., 1998 (Brazil) [79] | Crossover (n = 8) | 67 ± 1 years 8F | Overweight | 240 g strawberries | Beverage consumed as breakfast before lunch and dinner | Lutein; zeaxanthin; cryptoxanthin; α-carotene; Β-carotene; lycopene | All within group: 11 h after consumption: ↓ lutein (NP) ↓ zeaxanthin (NP) ↓ cryptoxanthin (NP) ↓ lycopene (NP) 15 h from consumption: ↓ Β-carotene (NP) |
Cao et al., 1998 (USA) [80] | Crossover (n = 8) | 67 ± 1 years 8F | Overweight | 240 g strawberries | Beverage consumed as breakfast before lunch and dinner | ORACPCA; FRAP; TEAC; vitamin C3; urinary ORAC | 4 h after consumption: ↑ ORACPCA (0.84) ↑ FRAP (0.61) ↑ vitamin C3 (0.71) 24 h after consumption: ↑ ORAC (0.36) |
Study | Randomization | Deviation from Intended Interventions | Missing Outcome Data | Measurement of Outcome | Selection of Reported Result | Overall Risk of Bias |
---|---|---|---|---|---|---|
Cho et al., 2020 [30] | Low | Low | Low | Low | Low | Low |
Hsia et al., 2020 [31] | Low | Low | Low | Low | Low | Low |
Chew et al., 2019 [65] | Low | Low | Low | Low | Low | Low |
Usharani et al., 2019 [64] | Low | Low | Low | Low | Low | Low |
Kim et al., 2018 [36] | Low | Low | Low | Low | Low | Low |
Feresin et al., 2017 [37] | Low | Low | Low | Low | Low | Low |
Johnson et al., 2017 [42] | Low | Low | Low | Low | Low | Low |
Lee et al., 2017 [43] | Low | Low | Low | Low | Low | Low |
Nair et al., 2017 [38] | Some concerns | Low | Low | Low | Low | Low |
Paquette et al., 2017 [41] | Low | Low | Low | Low | Low | Low |
Xie et al., 2017 [44] | Low | Low | Low | Low | Low | Low |
Zanchet et al., 2017 [39] | Low | Low | Low | High | Low | Low |
An et al., 2016 [45] | Low | Low | Low | Low | Low | Low |
Basu et al., 2016 [46] | Low | Low | Low | Low | Low | Low |
Eftekhari et al., 2016 [71] | Low | Low | Low | Low | Low | Low |
Prymont-Przyminska et al., 2016 [70] | High | Some concerns | High | High | Low | High |
Davinelli et al., 2015 [72] | Low | Low | Low | Low | Low | Low |
Johnson et al., 2015 [48] | Low | Low | Low | Low | Low | Low |
Khazaal et al., 2015 [73] | Some concerns | Some concerns | Low | Low | Low | Some concerns |
Basu et al., 2014 [50] | Low | Low | Low | Low | Low | Low |
McAnulty et al., 2014 [49] | High | High | Low | Low | Low | High |
Soltani et al., 2014 [51] | Low | Low | Low | Low | Low | Low |
Basu et al., 2011 [55] | Low | Low | Low | Low | Low | Low |
Puupponen-Pimiä et al., 2013 [52] | Some concerns | Low | Low | Low | Some concerns | Some concerns |
Simão et al., 2013 [54] | Some concerns | High | High | Low | Low | Some concerns |
Basu et al., 2010 [56] | Low | Some concerns | Low | Low | Low | Some concerns |
Broncel et al., 2010 [58] | High | High | Low | Some concerns | Some concerns | High |
Karlesn et al., 2010 [57] | Low | Some concerns | Low | Some concerns | Low | Some concerns |
Ruel et al., 2006 [63] | High | Some concerns | High | High | Low | High |
McAnulty et al., 2005 [78] | Some concerns | Low | Low | Low | Low | Low |
Study | Randomization | Period and Carryover Effects | Deviation from Intended Interventions | Missing Outcome Data | Measurement of Outcome | Selection of Reported Result | Overall Risk of Bias |
---|---|---|---|---|---|---|---|
Basu et al., 2021 [27] | Low | Low | Low | Low | Low | Low | Low |
Marin-Echeverri et al., 2021 [29] | Some concerns | Low | Low | Low | Low | Low | Low |
Richter et al., 2021 [28] | Low | Low | Low | Low | Low | Low | Low |
Quintero-Quiroz et al., 2019 [33] | Some concerns | Low | Low | High | High | Low | Some concerns |
Xiao et al., 2019 [32] | Some concerns | High | High | High | Some concerns | High | High |
Basu et al., 2018 [66] | Low | Low | Low | Low | Low | Low | Low |
Espinosa-Moncada et al., 2018 [35] | Low | Low | Low | Low | Low | Low | Low |
Marin-Echeverri et al., 2018 [34] | Some concerns | Some concerns | Low | High | Some concerns | High | High |
Richter et al., 2017 [68] | Low | Low | Low | Low | Some concerns | Some concerns | Low |
Stote et al., 2017 [40] | Low | Some concerns | High | Low | High | High | High |
Zhong et al., 2017 [67] | Some concerns | Low | Low | Low | Low | Low | Low |
Huang et al., 2016 [69] | Low | Some concerns | Low | Low | Low | Low | Some concerns |
Park et al., 2016 [47] | Some concerns | Some concerns | Low | Low | Low | Low | Low |
Banaszewski et al., 2013 [74] | Low | Low | Low | Low | Low | Low | Low |
Riso et al., 2013 [53] | Some concerns | Low | Low | Low | Low | Low | Low |
Ruel et al., 2013 [75] | Low | High | Low | Low | Low | High | High |
Zunino et al., 2012 [76] | Low | High | Low | Low | Low | High | Some concerns |
Edirisinghe et al., 2011 [77] | Low | Low | Low | Low | Low | Low | Low |
Burton-Freeman et al., 2010 [59] | Low | Low | Low | Low | Low | Low | Low |
Jenkins et al., 2008 [60] | Low | Some concerns | Some concerns | Low | Low | Low | Some concerns |
Ruel et al., 2008 [61] | High | High | High | Low | Some concerns | High | High |
Skoczyñska et al., 2007 [62] | High | Low | High | Low | Some concerns | High | High |
Cao et al., 1998 [80] | Low | Low | Some concerns | Low | Low | Low | Some concerns |
Paiva et al., 1998 [79] | Some concerns | Low | Some concerns | Low | High | Low | Some concerns |
Recommended Berry Dosage | Oxidative Stress Benefits | Antioxidant Benefits | Benefits to Cardiometabolic Risk Factors |
---|---|---|---|
100 mg aronia extract | Reduced lipid peroxidation byproducts [58] | Increased enzymatic activity [58] | Reduced blood pressure [58] Increased high-density lipoprotein cholesterol [58] |
22 g blueberries (freeze-dried) | Reduced cellular oxidative stress [42] Reduced lipid peroxidation byproducts [48,56] | Increased enzymatic activity [48] | Reduced blood pressure [48,56] |
250 mL chokeberry juice | None reported | Increased antioxidant concentration [62] | Reduced triglycerides [58] Reduced serum glucose [62] |
240 mL cranberry juice | Reduced lipid peroxidation byproducts [55] | Increased antioxidant capacity [55] | Reduced waist circumference [63] Increased high-density lipoprotein cholesterol [63] |
14 g goji berry | Reduced lipid peroxidation byproducts [39] | Increased enzymatic activity [39] Increased antioxidant concentration [39] Increased antioxidant capacity [39] | Reduced waist circumference [39] |
500–1000 mg Indian gooseberry | Reduced lipid peroxidation byproducts [64] | Increased enzymatic activity [64] | Reduced triglycerides [64] |
500 mg raspberry ketones | None reported | Increased antioxidant concentration [73] | Reduced waist circumference [73] |
10–25 g strawberries (freeze-dried) | Reduced lipid peroxidation byproducts [50] | Increased enzymatic activity [27,46] Increased antioxidant capacity [46] Increased antioxidant concentration [74] | None reported |
454 g strawberries | Reduced lipid peroxidation byproducts [60] | None reported | None reported |
500 mg whortleberry (dried) | Reduced lipid peroxidation byproducts [51] | None reported | Reduced triglycerides [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helm, M.M.; Alaba, T.; Klimis-Zacas, D.; Izuora, K.; Basu, A. Effect of Dietary Berry Supplementation on Antioxidant Biomarkers in Adults with Cardiometabolic Risks: A Systematic Review of Clinical Trials. Antioxidants 2023, 12, 1182. https://doi.org/10.3390/antiox12061182
Helm MM, Alaba T, Klimis-Zacas D, Izuora K, Basu A. Effect of Dietary Berry Supplementation on Antioxidant Biomarkers in Adults with Cardiometabolic Risks: A Systematic Review of Clinical Trials. Antioxidants. 2023; 12(6):1182. https://doi.org/10.3390/antiox12061182
Chicago/Turabian StyleHelm, Macy M., Tolu Alaba, Dorothy Klimis-Zacas, Kenneth Izuora, and Arpita Basu. 2023. "Effect of Dietary Berry Supplementation on Antioxidant Biomarkers in Adults with Cardiometabolic Risks: A Systematic Review of Clinical Trials" Antioxidants 12, no. 6: 1182. https://doi.org/10.3390/antiox12061182
APA StyleHelm, M. M., Alaba, T., Klimis-Zacas, D., Izuora, K., & Basu, A. (2023). Effect of Dietary Berry Supplementation on Antioxidant Biomarkers in Adults with Cardiometabolic Risks: A Systematic Review of Clinical Trials. Antioxidants, 12(6), 1182. https://doi.org/10.3390/antiox12061182