The Influence of Melatonin Treatment in the Vinification of Feteasca Neagra and Cabernet Sauvignon Wines on the Profile of Polyphenolic Compounds and Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Wine Sampling
2.3. Trolox Equivalent Antioxidant Capacity (TEAC) Assay Using ABTS·+
2.4. TEAC Assay Using DPPH•
2.5. Folin–Ciocalteu Assay
2.6. HPLC Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. The Evolution of the Polyphenolic Compound Profile in FN and CS Wines
3.2. The Evolution of Antioxidant Activity in FN and CS Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avizcuri, J.M.; Sáenz-Navajas, M.P.; Echávarri, J.F.; Ferreira, V.; Fernández-Zurbano, P. Evaluation of the impact of initial red wine composition on changes in color and anthocyanin content during bottle storage. Food Chem. 2016, 213, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Soares, S.; Brandão, E.; Mateus, N.; de Freitas, V. Sensorial properties of red wine polyphenols: Astringency and bitterness. Crit. Rev. Food Sci. Nutr. 2017, 57, 937–948. [Google Scholar] [CrossRef]
- Gonzalo-Diago, A.; Dizy, M.; Fernández-Zurbano, P. Contribution of Low Molecular Weight Phenols to Bitter Taste and Mouthfeel Properties in Red Wines. Food Chem. 2014, 154, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Cheynier, V.; Fulcrand, H.; Brossaud, F.; Asselin, C.; Moutounet, M. Phenolic composition as related to red wine flavor. In Chemistry of Wine Flavor; Waterhouse, A.L., Ebeler, S.E., Eds.; Oxford University Publishing: New York, NY, USA, 1998; pp. 125–141. [Google Scholar]
- Strack, D. Phenolic Metabolism. In Plant Biochemistry; Dey, P.M., Harborne, J.B., Eds.; Academic Press: London, UK, 1997; pp. 387–416. [Google Scholar]
- Hahlbrock, K.; Scheel, D. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2003, 40, 347–369. [Google Scholar] [CrossRef]
- Ehlting, J.; Büttner, D.; Wang, Q.; Douglas, C.J.; Somssich, I.E.; Kombrink, E. Three 4-coumarate: Coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J. 1999, 19, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Göksel, Z.; Erdoğan, S.S.; Öztürk, A.; Atak, A.; Özer, C. Antioxidant activity and phenolic content of seed, skin and pulp parts of 22 grape (Vitis vinifera L.) cultivars (4 common and 18 registered or candidate for registration). J. Food Process. Preserv. 2014, 39, 1682–1691. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004, 52, 255–260. [Google Scholar] [CrossRef]
- Babazadeh, A.; Taghvimi, A.; Hamishehkar, H.; Tabibiazar, M. Development of new ultrasonic–solvent assisted method for determination of trans-resveratrol from red grapes: Optimization, characterization, and antioxidant activity (ORAC assay). Food Biosci. 2017, 20, 36–42. [Google Scholar] [CrossRef]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of shiraz and chardonnay (Vitis vinifera L.). Aust. J. Grape Wine Res. 2003, 9, 110–121. [Google Scholar] [CrossRef]
- Manca, M.L.; Firoznezhad, M.; Caddeo, C.; Marongiu, F.; Escribano-Ferrer, E.; Sarais, G.; Peris, J.E.; Usach, I.; Zaruf, M. Phytocomplexes extracted from grape seeds and stalks delivered in phospholipid vesicles tailored for the treatment of skin damages. Ind. Crops Prod. 2019, 128, 471–478. [Google Scholar] [CrossRef]
- Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Evolution of anthocyanins during grape maturation of two varieties (Vitis vinifera L.), Castelão Francês and Touriga Francesa. Vitis 1998, 37, 93–94. [Google Scholar]
- Nemzer, B.; Kalita, D.; Yashin, A.Y.; Yashin, Y.I. Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. Beverages 2022, 8, 1. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. Melatonin as a natural ally against oxidative stress: A physicochemical examination. J. Pineal Res. 2011, 51, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hacışevki, A.; Baba, B. An Overview of Melatonin as an Antioxidant Molecule: A Biochemical Approach. In Melatonin—Molecular Biology, Clinical and Pharmaceutical Approaches, 1st ed.; Dragoi, C.M., Nicolae, A.C., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Iriti, M.; Rossoni, M.; Faoro, F. Melatonin content in grape: Myth or panacea? J. Sci. Food Agric. 2006, 86, 1432–1438. [Google Scholar] [CrossRef]
- Rodriguez-Naranjo, M.I.; Torija, M.J.; Mas, A.; Cantos-Villar, E.; Garcia-Parrilla, C. Production of melatonin by Saccharomyces strains under growth and fermentation conditions. J. Pineal Res. 2012, 53, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Mercolini, L.; Addolorata Saracino, M.; Bugamelli, F.; Ferranti, A.; Malaguti, M.; Hrelia, S.; Raggi, M.A. HPLC-Fl analysis of melatonin and resveratrol isomers in wine using an SPE procedure. J. Sep. Sci. 2008, 31, 1007–1014. [Google Scholar] [CrossRef]
- Xu, L.; Yue, Q.; Bian, F.; Zhai, H.; Yao, Y. Melatonin Treatment Enhances the Polyphenol Content and Antioxidant Capacity of Red Wine. Hortic. Plant J. 2018, 4, 44–50. [Google Scholar] [CrossRef]
- Lee, S.; Jin, J.X.; Taweechaipaisankul, A.; Kim, G.A.; Lee, B.C. Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology 2018, 114, 191–198. [Google Scholar] [CrossRef]
- Fernández-Mar, M.I.; Mateos, R.; García-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 2012, 130, 797–813. [Google Scholar] [CrossRef]
- Li, X.; Li, M.H.; Deng, W.W.; Ahammed, G.J.; Wei, J.P.; Yan, P.; Zhang, L.P.; Fu, J.Y.; Han, W.Y. Exogenous melatonin improves tea quality under moderate high temperatures by increasing epigallocatechin-3-gallate and theanine biosynthesis in Camellia sinensis L. J. Plant Physiol. 2020, 253, 153273. [Google Scholar] [CrossRef]
- Zhang, N.; Sun, Q.; Li, H.; Li, X.; Cao, Y.; Zhang, H.; Li, S.; Zhang, L.; Qi, Y.; Ren, S.; et al. Melatonin Improved Anthocyanin Accumulation by Regulating Gene Expressions and Resulted in High Reactive Oxygen Species Scavenging Capacity in Cabbage. Front. Plant Sci. 2016, 23, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Zhang, N.; Wang, J.; Zhang, H.; Li, D.; Shi, J.; Li, R.; Weeda, S.; Zhao, B.; Ren, S.; et al. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J. Exp. Bot. 2015, 66, 657–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhang, S.; Xue, J.; Mu, B.; Song, H.; Liu, Y. Exogenous Melatonin Treatment Induces Disease Resistance against Botrytis cinerea on Post-Harvest Grapes by Activating Defence Responses. Foods 2022, 11, 2231. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Shen, Y.; Deng, H.; Wang, J.; Lin, L.; Deng, Q.; Lv, X.; Liang, D.; Hu, R.; Wang, Z.; et al. Melatonin application improves berry coloration, sucrose synthesis, and nutrient absorption in ‘Summer Black’ grape. Food Chem. 2021, 356, 129713. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.F.; Yu, Y.; Shi, T.C.; Fu, Y.S.; Zhao, T.; Zhang, Z.W. Melatonin treatment of pre-veraison grape berries modifies phenolic components and antioxidant activity of grapes and wine. J. Food Sci. Technol. 2019, 39, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Litescu, S.C.; Eremia, S.A.V.; Tache, A.; Vasilescu, I.; Radu, G.L. The Use of Oxygen Radical Absorbance Capacity (ORAC) and Trolox Equivalent Antioxidant Capacity (TEAC) Assays in the Assessment of Beverages’ Antioxidant Properties. In Processing and Impact on Antioxidants in Beverages; Preedy, V., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 245–251. [Google Scholar]
- OIV-OENO Resolution 567A-2016. Available online: https://www.oiv.int/public/medias/4954/oiv-oeno-567a-2016-en.pdf (accessed on 29 May 2023).
- ANSES Opinion Request No 2016-SA-0209. Available online: https://www.anses.fr/en/content/ansess-opinion-risks-associated-consumption-food-supplements-containing-melatonin (accessed on 29 May 2023).
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Alecu, A.; Albu, C.; Litescu, S.C.; Eremia, S.A.V.; Radu, G.L. Phenolic and Anthocyanin Profile of Valea Calugareasca Red Wines by HPLC-PDA-MS and MALDI-TOF Analysis. Food Anal. Methods 2016, 9, 300–310. [Google Scholar] [CrossRef]
- Albu, C.; Eremia, S.A.V.; Penu, R.; Vasilescu, I.; Litescu, S.C.; Radu, G.L. Characterization of the Phenolics and Free Radical Scavenging of Romanian Red Wine. Anal. Lett. 2017, 50, 591–606. [Google Scholar] [CrossRef]
- Garrido-Banuelos, G.; Buica, A.; du Toit, W.J. Phenolic and Sensorial Evolution during Bottle Ageing of South African Shiraz Wines with Different Initial Phenolic Profiles. S. Afr. J. Enol. Vitic. 2020, 41, 1–16. [Google Scholar] [CrossRef]
- Kougan, G.B.; Tabopda, T.; Kuete, V.; Verpoorte, R. 6—Simple Phenols, Phenolic Acids, and Related Esters from the Medicinal Plants of Africa. In Medicinal Plant Research in Africa; Kuete, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 225–249. [Google Scholar]
- Qu, G.; Wu, W.; Ba, L.; Ma, C.; Ji, N.; Cao, S. Melatonin Enhances the Postharvest Disease Resistance of Blueberries Fruit by Modulating the Jasmonic Acid Signaling Pathway and Phenylpropanoid Metabolites. Front. Chem. 2022, 10, 957581. [Google Scholar] [CrossRef]
- Xu, L.; Yue, Q.; Bian, F.; Zhai, H.; Yao, Y. Melatonin Treatment Enhances Content of Resveratrol via Up-regulating Stilbene Synthase (sts) Gene Expression in Grape. Food Sci. 2018, 39, 165–172. [Google Scholar]
- Kumar, G.; Saad, K.R.; Arya, M.; Puthusseri, B.; Mahadevappa, P.; Shetty, N.P.; Giridhar, P. The Synergistic role of serotonin and melatonin during temperature stress in promoting cell division, ethylene and isoflavones biosynthesis in Glycine max. Curr. Plant Biol. 2021, 26, 100206. [Google Scholar] [CrossRef]
- Fang, F.; Li, J.M.; Zhang, P.; Tang, K.; Wang, W.; Pan, Q.H.; Huang, W.D. Effects of grape variety, harvest date, fermentation vessel and wine ageing on flavonoid concentration in red wines. Food Res. Int. 2008, 41, 53–60. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, W.; Guan, X.; Wang, F.; Fan, Z.; Gao, S.; Yao, Y. VvMYB14 participates in melatonin-induced proanthocyanidin biosynthesis by upregulating expression of VvMYBPA1 and VvMYBPA2 in grape seeds. Hortic. Res. 2023, 10, uhac274. [Google Scholar] [CrossRef]
- He, F.; Mu, L.; Yan, G.L.; Liang, N.N.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.X.; Hardeland, R.; Manchester, L.C.; Poeggeler, B.; Lopez-Burillo, S.; Mayo, J.C.; Sainz, R.M.; Reiter, R.J. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J. Pineal Res. 2003, 34, 249–259. [Google Scholar] [CrossRef] [PubMed]
Compound | [M-H]− | tR (min.) | The Linear Regression Equations | R | Linearity Range of Response (µg mL−1) | LoD (µg mL−1) | LoQ (µg mL−1) |
---|---|---|---|---|---|---|---|
Gallic acid | 169 | 4.79 | A = 48686.49XC − 4680.433 | 0.9993 | 0.5–50 | 0.16 | 0.30 |
Caffeic acid | 179 | 15.54 | A = 12421.04XC − 879.4463 | 0.9990 | 0.5–50 | 0.19 | 0.47 |
Chlorogenic acid | 353 | 14.02 | A = 15009.58XC − 434.9512 | 0.9999 | 0.5–50 | 0.13 | 0.36 |
Myricetin | 317 | 28.99 | A = 58850.16XC − 16277.28 | 0.9993 | 0.5–50 | 0.33 | 0.45 |
Quercetin | 301 | 35.89 | A = 72301.05XC − 10684.39 | 0.9997 | 0.5–50 | 0.19 | 0.29 |
Quercitrin | 447 | 26.89 | A = 56594.18XC − 3157.114 | 0.9998 | 0.5–50 | 0.11 | 0.23 |
Quercetin 3-β-D-glucoside | 463 | 24.71 | A = 47325.40XC − 8096.301 | 0.9992 | 0.5–50 | 0.23 | 0.38 |
Rutin | 609 | 23.66 | A = 35613.21XC − 747.2902 | 0.9995 | 0.5–50 | 0.11 | 0.30 |
(−)-Catechin | 289 | 2.70 | A = 190597.3XC − 4539.659 | 0.9995 | 0.5–50 | 0.10 | 0.29 |
(+)-Catechin | 289 | 14.23 | A = 19405.45XC − 6469.358 | 0.9999 | 0.5–50 | 0.35 | 0.38 |
(−)-Epicatechin | 289 | 18.07 | A = 13661.42XC − 5979.017 | 0.9997 | 0.5–50 | 0.45 | 0.47 |
p-Coumaric acid | 163 | 23.37 | A = 232000.5XC − 16316.34 | 0.9994 | 0.5–50 | 0.13 | 0.29 |
Naringenin | 271 | 38.91 | A = 1086190XC − 360643.9 | 0.9997 | 0.5–50 | 0.35 | 0.38 |
Ellagic acid | 301 | 24.10 | A = 120801.7XC − 22281.19 | 0.9993 | 0.5–50 | 0.21 | 0.27 |
trans-Cinnamic acid | 147 | 2.28 | A = 127642.1XC − 6798.598 | 0.9997 | 0.5–50 | 0.17 | 0.44 |
Resveratrol | 227 | 32.01 | A = 30713.35XC − 5424.285 | 0.9994 | 0.5–50 | 0.23 | 0.34 |
Compound | tR (min.) | [M+H]+ | The Linear Regression Equations | R | Linearity Range of Response (µg mL−1) | LoD (µg mL−1) | LoQ (µg mL−1) |
---|---|---|---|---|---|---|---|
Delphinidin | 29.05 | 303 | A = 39532.71XC − 15380.05 | 0.9995 | 0.5–50 | 0.40 | 0.41 |
Delphinidin-3-glucoside | 24.33 | 465 | A = 2576.836XC − 1070.165 | 0.9997 | 0.5–50 | 0.44 | 0.49 |
Peonidin-3-glucoside | 28.27 | 463 | A = 41469.73XC − 14707.33 | 0.9996 | 0.5–50 | 0.36 | 0.38 |
Cyanidin-3-glucoside | 25.87 | 449 | A = 10929.26XC − 4870.150 | 0.9997 | 0.5–50 | 0.46 | 0.49 |
Malvidin | 34.87 | 331 | A = 71847.46XC − 11253.31 | 0.9995 | 0.5–50 | 0.20 | 0.30 |
Malvidin-3-glucoside | 28.86 | 493 | A = 5858.430XC − 2110.814 | 0.9996 | 0.5–50 | 0.39 | 0.45 |
Petunidin-3-glucoside | 26.89 | 479 | A = 279062.4XC − 98044.39 | 0.9998 | 0.5–50 | 0.36 | 0.39 |
Compound | Control CS Wine Concentration ± SD µg mL−1 | Treated CS Wine Concentration ± SD µg mL−1 | Control FN Wine Concentration ± SD µg mL−1 | Treated FN Wine Concentration ± SD µg mL−1 |
---|---|---|---|---|
Gallic acid | 12.14 ± 0.23 | 9.13 ± 0.19 | 16.32 ± 0.28 | 15.62 ± 0.35 |
Caffeic acid | 4.63 ± 0.19 | 4.73 ± 0.10 | 9.79 ± 0.03 | 10.98 ± 0.04 |
Chlorogenic acid | 11.11 ± 0.53 | 11.12 ± 0.09 | 6.25 ± 0.15 | 7.75 ± 0.25 |
Myricetin | 26.75 ± 0.42 | 30.20 ± 1.21 | 25.47 ± 0.55 | 32.26 ± 0.11 |
Quercetin | 28.91 ± 0.04 | 30.41 ± 0.14 | 16.59 ± 0.13 | 23.07 ± 0.01 |
Quercitrin | 2.09 ± 0.02 | 2.44 ± 0.20 | 0.14 ± 0.02 | 0.16 ± 0.01 |
Quercetin 3-β-D-glucoside | 35.67 ± 0.67 | 37.64 ± 0.96 | 3.78 ± 0.24 | 5.14 ± 0.01 |
Rutin | 2.86 ± 0.04 | 3.26 ± 0.14 | 1.30 ± 0.05 | 1.36 ± 0.02 |
(−)-Catechin | 12.84 ± 0.18 | 16.38 ± 0.30 | 15.37 ± 0.13 | 12.14 ± 0.20 |
(+)-Catechin | 62.01 ± 0.74 | 75.69 ± 0.87 | 31.18 ± 0.30 | 31.92 ± 0.07 |
(−)-Epicatechin | 39.95 ± 0.85 | 47.80 ± 0.57 | 40.27 ± 0.86 | 43.14 ± 0.05 |
Ellagic acid | 8.53 ± 0.13 | 9.33 ± 0.50 | 14.40 ± 0.42 | 16.38 ± 0.38 |
Resveratrol | 9.30 ± 0.27 | 13.21 ± 0.46 | 12.85 ± 0.15 | 19.29 ± 0.35 |
p-Coumaric acid | 10.10 ± 0.22 | 12.70 ± 0.35 | 2.10 ± 0.07 | 3.53 ± 0.14 |
Naringenin | 12.50 ± 0.35 | 16.60 ± 0.51 | 10.10 ± 0.13 | 16.80 ± 0.47 |
trans-Cinnamic acid | 9.13 ± 0.19 | 12.66 ± 0.29 | 4.61 ± 0.08 | 6.72 ± 0.09 |
Compound | Control CS Wine Concentration ± SD µg mL−1 | Treated CS Wine Concentration ± SD µg mL−1 | Control FN Wine Concentration ± SD µg mL−1 | Treated FN Wine Concentration ± SD µg mL−1 |
---|---|---|---|---|
Delphinidin | 1.30 ± 0.02 | 1.34 ± 0.02 | 1.27 ± 0.03 | 1.30 ± 0.01 |
Delphinidin-3-glucoside | 804.27 ± 2.6 | 950.80 ± 1.32 | 564.31 ± 2.03 | 688.37 ± 1.7 |
Peonidin-3-glucoside | 25.41 ± 0.28 | 29.10 ± 0.16 | 25.23 ± 0.25 | 31.24 ± 0.37 |
Cyanidin-3-glucoside | 5.21 ± 0.05 | 7.30 ± 0.06 | 1.80 ± 0.23 | 3.19 ± 0.01 |
Malvidin | 23.93 ± 0.6 | 22.71 ± 0.25 | 4.27 ± 0.16 | 4.38 ± 0.13 |
Malvidin-3-glucoside | 668.01 ± 2.19 | 688.32 ± 2.42 | 708.74 ± 2.79 | 708.34 ± 0.97 |
Petunidin-3-glucoside | 93.91 ± 0.31 | 106.97 ± 0.36 | 92.75 ± 0.73 | 104.66 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eremia, S.A.V.; Albu, C.; Radu, G.-L.; Alecu, A.; Brinduse, E. The Influence of Melatonin Treatment in the Vinification of Feteasca Neagra and Cabernet Sauvignon Wines on the Profile of Polyphenolic Compounds and Antioxidant Activity. Antioxidants 2023, 12, 1214. https://doi.org/10.3390/antiox12061214
Eremia SAV, Albu C, Radu G-L, Alecu A, Brinduse E. The Influence of Melatonin Treatment in the Vinification of Feteasca Neagra and Cabernet Sauvignon Wines on the Profile of Polyphenolic Compounds and Antioxidant Activity. Antioxidants. 2023; 12(6):1214. https://doi.org/10.3390/antiox12061214
Chicago/Turabian StyleEremia, Sandra A. V., Camelia Albu, Gabriel-Lucian Radu, Andreia Alecu, and Elena Brinduse. 2023. "The Influence of Melatonin Treatment in the Vinification of Feteasca Neagra and Cabernet Sauvignon Wines on the Profile of Polyphenolic Compounds and Antioxidant Activity" Antioxidants 12, no. 6: 1214. https://doi.org/10.3390/antiox12061214
APA StyleEremia, S. A. V., Albu, C., Radu, G. -L., Alecu, A., & Brinduse, E. (2023). The Influence of Melatonin Treatment in the Vinification of Feteasca Neagra and Cabernet Sauvignon Wines on the Profile of Polyphenolic Compounds and Antioxidant Activity. Antioxidants, 12(6), 1214. https://doi.org/10.3390/antiox12061214