In Vitro Characterization of Antioxidant, Antibacterial and Antimutagenic Activities of the Green Microalga Ettlia pseudoalveolaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain, Cultivation Medium and Pre-Cultivation
2.2. Experimental and Photobioreactor Setup
2.3. Harvest and Sample Preparation
2.4. Microalgae Extract Preparation
2.5. Proximate and Fatty Acids Composition of Microalgae
2.6. Antioxidant Profiling of E. pseudoalveolaris Extract
2.6.1. Bioactive Molecules Content
2.6.2. Phenolic Compounds Profiling by UHPLC-ESI-MS/MS Analysis
2.6.3. In Vitro Antioxidant Activity Assays
2.7. Endothelial Cell Culture and Treatments
2.8. Antibacterial Activity
2.9. Short Term Assays in Yeast Cells
- (1)
- Growth assay: E. pseudoalveolaris extract (50, 100, 200, and 400 μg/mL) was added in the flasks during growth until reaching the logarithmic phase; then H2O2 was added and the cultures were incubated for 90 min under shaking (30 °C).
- (2)
- Incubation assay: logarithmic phase cells were incubated both with E. pseudoalveolaris extract (50, 100, 200, and 400 μg/mL) and H2O2 for 90 min, under shaking (30 °C).
2.10. Statistical Analysis
3. Results and Discussion
3.1. Cultivation Conditions
3.2. Proximate and Fatty Acids Composition
3.3. Antioxidant Profiling of E. pseudoalveolaris Extract
3.3.1. Phytochemical Characterization
3.3.2. In Vitro Antioxidant Properties
3.4. Effects on HMEC-1 Cells Treated with H2O2
3.5. Antibacterial Activity
3.6. Short Term Tests in Yeast Saccharomyces cerevisiae
3.6.1. Genotoxicity Assays
3.6.2. Antimutagenic Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehariya, S.; Goswami, R.K.; Karthikeysan, O.P.; Verma, P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere 2021, 280, 130553. [Google Scholar] [CrossRef] [PubMed]
- Gharib, R.; Tabarzad, M.; Hosseinabadi, T. Effect of high salinity on mycosporine-like amino acid production in Desmodesmus sp. Trends Pept. Protein Sci. 2020, 5, 1–6. [Google Scholar] [CrossRef]
- Wada, N.; Sakamoto, T.; Matsugo, S. Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 2015, 4, 603–646. [Google Scholar] [CrossRef]
- Safer, A.M.; Al-Nughamish, A.J. Hepatotoxicity induced by the anti-oxidant food additive, butylated hydroxytoluene (BHT), in rats: An electron microscopical study. Histol. Histopathol. 1999, 14, 391–406. [Google Scholar] [PubMed]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Assunção, M.F.; Amaral, R.; Martins, C.B.; Ferreira, J.D.; Ressurreição, S.; Santos, S.D.; Verejao, J.M.T.B.; Santos, L.M. Screening microalgae as potential sources of antioxidants. J. Appl. Phycol. 2017, 29, 865–877. [Google Scholar] [CrossRef]
- Li, H.B.; Cheng, K.W.; Wong, C.C.; Fan, K.W.; Chen, F.; Jiang, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 2007, 102, 771–776. [Google Scholar] [CrossRef]
- Stepp, D.W.; Pollock, D.M.; Frisbee, J.C. Low-flow vascular remodeling in the metabolic syndrome X. Am. J. Physiol.-Heart Circ. Physiol. 2004, 286, H964–H970. [Google Scholar] [CrossRef] [Green Version]
- Cardillo, C.; Campia, U.; Bryant, M.B.; Panza, J.A. Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation 2002, 106, 1783–1787. [Google Scholar] [CrossRef] [Green Version]
- Twigg, M.W.; Freestone, K.; Homer-Vanniasinkam, S.; Ponnambalam, S. The LOX-1 scavenger receptor and its implications in the treatment of vascular disease. Cardiol. Res. Pract. 2012, 2012, 632408. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Kakutani, M.; Naruko, T.; Ueda, M.; Narumiya, S.; Masaki, T.; Sawamura, T. Activation-dependent surface expression of LOX-1 in human platelets. Biochem. Biophys. Res. Commun. 2001, 282, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Nagase, M.; Fujita, T.; Narumiya, S.; Masaki, T.; Sawamura, T. Diabetes enhances lectin-like oxidized LDL receptor-1 (LOX-1) expression in the vascular endothelium: Possible role of LOX-1 ligand and AGE. Biochem. Biophys. Res. Commun. 2001, 287, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Dubiński, A.; Zdrojewicz, Z. The role of interleukin-6 in development and progression of atherosclerosis. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2007, 22, 291–294. [Google Scholar]
- Abedin, R.M.; Taha, H.M. Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Glob. J. Biotechnol. Biochem. 2008, 3, 22–31. [Google Scholar]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef]
- Lum, K.K.; Kim, J.; Lei, X.G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 2013, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- European Parliament and the Council of the European Union. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Off. J. Eur. Union 2015, 327, 1–22. [Google Scholar]
- Huarancca Reyes, T.; Chiellini, C.; Barozzi, E.; Sandoval, C.; Echeverría, C.; Guglielminetti, L. Exploring the physiological multiplicity of native microalgae from the Ecuadorian Highland, Italian Lowland and indoor locations in response to UV-B. Int. J. Mol. Sci. 2023, 24, 1346. [Google Scholar] [CrossRef]
- Fields, F.J.; Ostrand, J.T.; Mayfield, S.P. Fed-batch mixotrophic cultivation of Chlamydomonas reinhardtii for high-density cultures. Algal Res. 2018, 33, 109–117. [Google Scholar] [CrossRef]
- Barten, R.J.; Wijffels, R.H.; Barbosa, M.J. Bioprospecting and characterization of temperature tolerant microalgae from Bonaire. Algal Res. 2020, 50, 102008. [Google Scholar] [CrossRef]
- Uma, R.; Sivasubramanian, V.; Niranjali, D.S. Preliminary phytochemical analysis and in vitro antibacterial screening of green microalgae Desmococcus olivaceous, Chlorococcum humicola and Chlorella vulgaris. J. Algal Biomass Util. 2011, 2, 82–93. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Journal—Association of Official Analytical Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Folch, J.; Lees, M.; Stanley GH, S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Dal Bosco, A.; Castellini, C.; Bianchi, L.; Mugnai, C. Effect of dietary α-linolenic acid and vitamin E on the fatty acid composition, storage stability and sensory traits of rabbit meat. Meat Sci. 2004, 66, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Souid, A.; Gabriele, M.; Longo, V.; Pucci, L.; Bellani, L.; Smaoui, A.; Abdelly, C.; Hamed, K.B. Salt tolerance of the halophyte Limonium delicatulum is more associated with antioxidant enzyme activities than phenolic compounds. Funct. Plant Biol. 2016, 43, 607–619. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. J. Plant Physiol. 1987, 131, 101–110. [Google Scholar] [CrossRef]
- Ninfali, P.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br. J. Nutr. 2005, 93, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Colosimo, R.; Gabriele, M.; Cifelli, M.; Longo, V.; Domenici, V.; Pucci, L. The effect of sourdough fermentation on Triticum dicoccum from Garfagnana: 1H NMR characterization and analysis of the antioxidant activity. Food Chem. 2020, 305, 125510. [Google Scholar] [CrossRef]
- Houng NT, T.; Matsumoto, K.; Kasai, R.; Yamasaki, K.; Watanabe, H. In vitro antioxidant activity of Vietnamese ginseng saponin and its components. Biol. Pharm. Bull. 1998, 21, 978–981. [Google Scholar] [CrossRef] [Green Version]
- Lubrano, V.; Balzan, S. LOX-1 and ROS, inseparable factors in the process of endothelial damage. Free. Radic. Res. 2014, 48, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Pozzo, L.; Russo, R.; Frassinetti, S.; Vizzarri, F.; Árvay, J.; Vornoli, A.; Casamassima, D.; Palazzo, M.; Della Croce, C.M.; Longo, V. Wild Italian Prunus spinosa L. fruit exerts in vitro antimicrobial activity and protects against in vitro and in vivo oxidative stress. Foods 2020, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Souid, A.; Della Croce, C.M.; Frassinetti, S.; Gabriele, M.; Pozzo, L.; Ciardi, M.; Abdelly, C.; Ben Hamed, K.; Magné, C.; Longo, V. Nutraceutical potential of leaf hydro-ethanolic extract of the edible halophyte Crithmum maritimum L. Molecules 2021, 26, 5380. [Google Scholar] [CrossRef]
- Zimmermann, F.K.; Kern, R.; Rasenberger, H. A yeast strain for simultaneous detection of induced mitotic crossing over, mitotic gene conversion and reverse mutation. Mutat. Res. 1975, 28, 381–388. [Google Scholar] [CrossRef]
- Peláez-Soto, A.; Fernández-Espinar, M.T.; Roig, P.; Gil, J.V. Evaluation of the ability of polyphenol extracts of cocoa and red grape to promote the antioxidant response in yeast using a rapid multiwell assay. J. Food Sci. 2017, 82, 324–332. [Google Scholar] [CrossRef]
- Maheshwari, N.; Krishna, P.K.; Thakur, I.S.; Srivastava, S. Biological fixation of carbon dioxide and biodiesel production using microalgae isolated from sewage waste water. Environ. Sci. Pollut. Res. 2020, 27, 27319–27329. [Google Scholar] [CrossRef]
- Maurício, T.; Couto, D.; Lopes, D.; Conde, T.; Pais, R.; Batista, J.; Melo, T.; Pinho, M.; Moreira, A.S.P.; Trovão, M.; et al. Differences and similarities in lipid composition, nutritional value, and bioactive potential of four edible Chlorella vulgaris strains. Foods 2023, 12, 1625. [Google Scholar] [CrossRef] [PubMed]
- Rugnini, L.; Rossi, C.; Antonaroli, S.; Rakaj, A.; Bruno, L. The influence of light and nutrient starvation on morphology, biomass and lipid content in seven strains of green microalgae as a source of biodiesel. Microorganisms 2020, 8, 1254. [Google Scholar] [CrossRef]
- Chen, W.; Li, T.; Du, S.; Chen, H.; Wang, Q. Microalgal polyunsaturated fatty acids: Hotspots and production techniques. Front. Bioeng. Biotechnol. 2023, 11, 1146881. [Google Scholar] [CrossRef]
- De Pauw, N.; Van Vaerenbergh, E. Microalgal wastewater treatment systems: Potentials and limits. Phytodepur. Employ. Biomass Produced. Cent. Ric. Produz Anim. Reggio Emilia Italy 1983, 211–287. [Google Scholar]
- Masi, A.; Leonelli, F.; Scognamiglio, V.; Gasperuzzo, G.; Antonacci, A.; Terzidis, M.A. Chlamydomonas reinhardtii: A factory of nutraceutical and food supplements for human health. Molecules 2023, 28, 1185. [Google Scholar] [CrossRef]
- Nicoletti, C.; Procházková, L.; Nedbalová, L.; Mócsai, R.; Altmann, F.; Holzinger, A.; Remias, D. Thorsmoerkia curvula gen. et spec. nov. (Trebouxiophyceae, Chlorophyta), a semi-terrestrial microalga from Iceland exhibits high levels of unsaturated fatty acids. J. Appl. Phycol. 2021, 33, 3671–3682. [Google Scholar] [CrossRef]
- Tutunchi, H.; Ostadrahimi, A.; Saghafi-Asl, M. The effects of diets enriched in monounsaturated oleic acid on the management and prevention of obesity: A systematic review of human intervention studies. Adv. Nutr. 2020, 11, 864–877. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Rico, M.; Rivero, A.; Suárez de Tangil, M. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem. 2011, 125, 1104–1109. [Google Scholar] [CrossRef]
- Maadane, A.; Merghoub, N.; Ainane, T.; El Arroussi, H.; Benhima, R.; Amzazi, S.; Bakri, Y.; Wahby, I. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. J. Biotechnol. 2015, 215, 13–19. [Google Scholar] [CrossRef]
- Orr, V.; Rehmann, L. Improvement of the Nile Red fluorescence assay for determination of total lipid content in microalgae independent of chlorophyll content. J. Appl. Phycol. 2015, 27, 2181–2189. [Google Scholar] [CrossRef]
- Tiong, I.K.R.; Nagappan, T.; Wahid, M.E.A.; Muhammad, T.S.T.; Tatsuki, T.; Satyantini, W.H.; Mahasri, G.; Sorgeloos, P.; Sung, Y.Y. Antioxidant capacity of five microalgae species and their effect on heat shock protein 70 expression in the brine shrimp Artemia. Aquac. Rep. 2020, 18, 100433. [Google Scholar] [CrossRef]
- Oo, Y.Y.N.; Su, M.C.; Kyaw, K.T. Extraction and determination of chlorophyll content from microalgae. Int. J. Adv. Res. Publ. 2017, 1, 298. [Google Scholar]
- Avila, J.G.; de Liverant, J.G.; Martınez, A.; Martınez, G.; Munoz, J.L.; Arciniegas, A.; de Vivar, A.R. Mode of action of Buddleja cordata verbascoside against Staphylococcus aureus. J. Ethnopharmacol. 1999, 66, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Santos-Cruz, L.F.; Ávila-Acevedo, J.G.; Ortega-Capitaine, D.; Ojeda-Duplancher, J.C.; Perdigón-Moya, J.L.; Hernández-Portilla, L.B.; López-Dionicio, H.; Durán-Díaz, Á.; Dueñas-García, I.E.; Castañeda-Partida, L.; et al. Verbascoside is not genotoxic in the ST and HB crosses of the Drosophila wing spot test, and its constituent, caffeic acid, decreases the spontaneous mutation rate in the ST cross. Food Chem. Toxicol. 2012, 50, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Sperker, S.; Stefanova, R.; McGinn, P.J.; O’Leary, S.J. Antioxidant properties and lipid composition of selected microalgae. J. Appl. Phycol. 2019, 31, 309–318. [Google Scholar] [CrossRef]
- Habashy, N.H.; Serie MM, A.; Attia, W.E.; Abdelgaleil, S.A. Chemical characterization, antioxidant and anti-inflammatory properties of Greek Thymus vulgaris extracts and their possible synergism with Egyptian Chlorella Vulgaris. J. Funct. Foods 2018, 40, 317–328. [Google Scholar] [CrossRef]
- Cominacini, L.; Pasini, A.F.; Garbin, U.; Davoli, A.; Tosetti, M.L.; Campagnola, M.; Rigoni, A.; Pastorino, A.M.; Lo Cascio, V.; Sawamura, T. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species. J. Biol. Chem. 2000, 275, 12633–12638. [Google Scholar] [CrossRef] [Green Version]
- Goyal, T.; Mitra, S.; Khaidakov, M.; Wang, X.; Singla, S.; Ding, Z.; Liu, S.; Mehta, J.L. Current concepts of the role of oxidized LDL receptors in atherosclerosis. Curr. Atheroscler. Rep. 2012, 14, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Xun, K.L.; Wu, Q.; Zhang, T.T.; Shi, J.S.; Du, G.H. Oxidized low density lipoprotein receptor-1 mediates oxidized low-density lipoprotein-induced apoptosis in human umbilical vein endothelial cells: Role of reactive oxygen species. Vasc. Pharmacol. 2007, 47, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lubrano, V.; Gabriele, M.; Puntoni, M.R.; Longo, V.; Pucci, L. Relationship among IL-6, LDL cholesterol and lipid peroxidation. Cell. Mol. Biol. Lett. 2015, 20, 310–322. [Google Scholar] [CrossRef]
- Kannappan, S.; Palanisamy, N.; Anuradha, C.V. Suppression of hepatic oxidative events and regulation of eNOS expression in the liver by naringenin in fructose-administered rats. Eur. J. Pharmacol. 2010, 645, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Seenivasan, R.; Indu, H.; Archana, G.; Geetha, S. The antibacterial activity of some marine algae from south east coast of India. J. Pharm. Res. 2010, 3, 1907–1912. [Google Scholar]
- Simić, S.; Kosanić, M.; Ranković, B. Evaluation of in vitro antioxidant and antimicrobial activities of green microalgae Trentepohlia umbrina. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Guedes, A.C.; Barbosa, C.R.; Amaro, H.M.; Pereira, C.I.; Malcata, F.X. Microalgal and cyanobacterial cell extracts for use as natural antibacterial additives against food pathogens. Int. J. Food Sci. Technol. 2011, 46, 862–870. [Google Scholar] [CrossRef]
- Bhagavathy, S.; Sumathi, P.; Jancy Sherene Bell, I. Green algae Chlorococcum humicola. A new source of bioactive compounds with antimicrobial activity. Asian Pac. J. Trop. Biomed. 2011, 1, S1–S7. [Google Scholar] [CrossRef]
- Ghasemi, Y.; Moradian, A.; Mohagheghzadeh, A.; Shokravi, S.; Morowvat, M.H. Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: Characterization of antimicrobial activity of Chroococcus dispersus. J. Biol. Sci. 2007, 6, 904–910. [Google Scholar] [CrossRef] [Green Version]
- Arguelles, E.D.; Laurena, A.C.; Martinez-Goss, M.R.; Monsalud, R.G. Antibacterial activity, total phenolic content and antioxidant capacity of the green microalga Desmodesmus sp. from Los Banos (Philippines). J. Nat. Stud. 2017, 16, 1–13. [Google Scholar]
- Cox, M.M.; Doudna, J.A.; O’Donnell, M. Molecular Biology: Principles and Practice, 2nd ed.; W.H. Freeman & Co., Ltd.: New York, NY, USA, 2015; pp. 914–917. ISBN 9781464126147. Available online: https://www.nhbs.com/publisher/wh-freeman (accessed on 18 April 2023).
- Murbach, T.S.; Glávits, R.; Endres, J.R.; Hirka, G.; Vértesi, A.; Béres, E.; Szakonyiné, I. A toxicological evaluation of Chlamydomonas reinhardtii, a green algae. Int. J. Toxicol. 2018, 37, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference Compound | E. pseudoalveolaris |
---|---|
Moisture | 63.15 ± 0.03 |
Ash | 22.44 ± 0.09 |
Lipid | 0.99 ± 0.05 |
Crude protein | 8.31 ± 0.12 |
Crude fiber | 5.11 ± 0.07 |
SFAs | |
C14:0 | 5.17 ± 0.04 |
C15:0 | 0.37 ± 0.01 |
C16:0 | 35.94 ± 0.11 |
C18:0 | 2.41 ± 0.02 |
C20:0 | 0.86 ± 0.00 |
MUFAs | |
C14:1 | 0.47 ± 0.00 |
C16:1-n7 | 3.35 ± 0.03 |
C18:1-n9 | 3.28 ± 0.02 |
PUFAs | |
C18:2-n6 (LA) | 14.95 ± 0.06 |
C18:3-n3 (ALA) | 29.28 ± 0.12 |
C20:4-n6 (AA) | 2.04 ± 0.02 |
C22:5-n3 (DPA) | 1.88 ± 0.01 |
E. pseudoalveolaris | ||
---|---|---|
Bioactive compounds | Total polyphenols (mg GAE/g dw) | 9.04 ± 0.80 |
Flavonoids (mg CE/g dw) | 13.51 ± 1.11 | |
Flavonols (mg QE/g dw) | 4.17 ± 0.58 | |
Anthocyanins (mg C3GE/100 g dw) | 3.39 ± 0.61 | |
Pigments | Chlorophyll A (μg ChlA/g dw) | 2.09 ± 0.02 |
Chlorophyll B (μg ChlB/g dw) | 1.88 ± 0.03 | |
Antioxidant activity | ORAC (µmol TE/g dw) | 82.38 ± 5.86 |
FRAP (mg FE2+/g dw) | 11.11 ± 0.73 | |
TBARS (IC50 = mg/mL) | 7.78 ± 1.54 |
No. | Rt | Q1 | Q3 | MW | Phenolic Compound | Concentration (µg/100 g dw) |
---|---|---|---|---|---|---|
1 | 1.28 | 168.9 | 125 | 170 | Gallic Acid | 152.32 ± 4.14 |
2 | 1.92 | 153 | 123 | 154 | Hydroxytyrosol | 22.06 ± 1.06 |
3 | 2.56 | 353 | 191 | 354 | Chlorogenic Acid | 32.26 ± 1.60 |
4 | 2.69 | 289 | 244.9 | 290 | Catechin | 62.42 ± 3.64 |
5 | 2.80 | 178.9 | 135 | 180 | Caffeic Acid | 152.32 ± 0.8 |
6 | 2.86 | 166.9 | 108 | 168 | Vanillic Acid | 148.5 ± 3.56 |
7 | 2.98 | 289 | 244.9 | 290 | Epicatechin | 101.56 ± 5.94 |
8 | 3.00 | 625.1 | 270.9 | 626 | Quecetin-3,4-O-DG | 89.90 ± 2.68 |
9 | 3.08 | 515.9 | 353 | 516 | Cynarin | 2.30 ± 0.14 |
10 | 3.29 | 609.2 | 299.9 | 610 | Rutin | 131.96 ± 2.98 |
11 | 3.35 | 163 | 119 | 164 | 4-Coumaric Acid | 121.24 ± 2.36 |
12 | 3.46 | 463.1 | 300 | 464 | Quercetin 3-O-G | 34.68 ± 3.06 |
13 | 3.48 | 623.1 | 160.9 | 624 | Verbascoside | 3054.48 ± 31.16 |
14 | 3.52 | 593.2 | 284.9 | 594 | Kaempferol 3-O-R | 37.04 ± 2.12 |
15 | 3.54 | 389.1 | 227 | 390 | Piceid | ≤LOD |
16 | 3.65 | 193 | 134 | 194 | t-Ferulic acid | 8.92 ± 0.50 |
17 | 3.69 | 447.1 | 284.1 | 448 | Kaempferol 3-O-G | 8.06 ± 1.30 |
18 | 3.85 | 447.1 | 284.9 | 448 | Kaempferol 7-O-G | 6.20 ± 1.48 |
19 | 3.97 | 359 | 161 | 360 | Rosmarinic Acid | 16.02 ± 1.18 |
20 | 4.01 | 435.1 | 272.9 | 436 | Phloridzin | ≤LOD |
21 | 4.09 | 539.1 | 275 | 540 | Oleuropein | 269.26 ± 5.62 |
22 | 4.42 | 523.1 | 291 | 524 | Ligstroside | 43.44 ± 1.96 |
23 | 4.46 | 227.1 | 185 | 228 | Resveratrol | ≤LOD |
24 | 4.60 | 284.9 | 133 | 286 | Luteolin | 10.40 ± 0.68 |
25 | 4.64 | 301 | 150.9 | 302 | Quercetin | 59.48 ± 1.86 |
26 | 5.02 | 268.9 | 117 | 270 | Apigenin | 1.62 ± 0.12 |
27 | 5.04 | 273 | 167 | 274 | Phloretin | 329.5 ± 6.80 |
28 | 5.13 | 270.9 | 150.9 | 272 | Naringenin | 2.42 ± 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vornoli, A.; Grande, T.; Lubrano, V.; Vizzarri, F.; Gorelli, C.; Raffaelli, A.; Della Croce, C.M.; Baca, S.Z.; Sandoval, C.; Longo, V.; et al. In Vitro Characterization of Antioxidant, Antibacterial and Antimutagenic Activities of the Green Microalga Ettlia pseudoalveolaris. Antioxidants 2023, 12, 1308. https://doi.org/10.3390/antiox12061308
Vornoli A, Grande T, Lubrano V, Vizzarri F, Gorelli C, Raffaelli A, Della Croce CM, Baca SZ, Sandoval C, Longo V, et al. In Vitro Characterization of Antioxidant, Antibacterial and Antimutagenic Activities of the Green Microalga Ettlia pseudoalveolaris. Antioxidants. 2023; 12(6):1308. https://doi.org/10.3390/antiox12061308
Chicago/Turabian StyleVornoli, Andrea, Teresa Grande, Valter Lubrano, Francesco Vizzarri, Chiara Gorelli, Andrea Raffaelli, Clara Maria Della Croce, Santiago Zarate Baca, Carla Sandoval, Vincenzo Longo, and et al. 2023. "In Vitro Characterization of Antioxidant, Antibacterial and Antimutagenic Activities of the Green Microalga Ettlia pseudoalveolaris" Antioxidants 12, no. 6: 1308. https://doi.org/10.3390/antiox12061308
APA StyleVornoli, A., Grande, T., Lubrano, V., Vizzarri, F., Gorelli, C., Raffaelli, A., Della Croce, C. M., Baca, S. Z., Sandoval, C., Longo, V., Pozzo, L., & Echeverria, C. (2023). In Vitro Characterization of Antioxidant, Antibacterial and Antimutagenic Activities of the Green Microalga Ettlia pseudoalveolaris. Antioxidants, 12(6), 1308. https://doi.org/10.3390/antiox12061308