Plant Food Dyes with Antioxidant Properties and Allergies—Friend or Enemy?
Abstract
:1. Colorants as Food Additives
2. The Aim of the Manuscript and Methods of Its Implementation
3. Antioxidant Dyes as Functional Food Additives and Their Relationship with Allergy
3.1. Anthocyanins
3.2. Betanin
3.3. Chlorophylls
3.4. Carotenoids
3.5. Curcumin
4. Pro- and Antiallergic Properties and Acceptable Daily Intake (ADI) of Selected Antioxidant Food Colors in Scientific Opinions of EFSA Expert Panels
5. Summary, Conclusions, and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sen, T.; Barrow, C.J.; Deshmukh, S.K. Microbial Pigments in the Food Industry—Challenges and the Way Forward. Front. Nutr. 2019, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, N.; Roriz, C.L.; Morales, P.; Barros, L.; Ferreira, I.C. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci. Technol. 2016, 52, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ntrallou, K.; Gika, H.; Tsochatzis, E. Analytical and Sample Preparation Techniques for the Determination of Food Colorants in Food Matrices. Foods 2020, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Novais, C.; Molina, A.K.; Abreu, R.M.V.; Santo-Buelga, C.; Ferreira, I.C.F.R.; Pereira, C.; Barros, L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. J. Agric. Food Chem. 2022, 70, 2789–2805. [Google Scholar] [CrossRef]
- Burrows, J.A. Palette of Our Palates: A Brief History of Food Coloring and Its Regulation. Compr. Rev. Food Sci. Food Saf. 2009, 8, 394–408. [Google Scholar] [CrossRef]
- Aberoumand, A. A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World J. Dairy Food Sci. 2011, 6, 71–78. [Google Scholar]
- Gulrajani, M.L. Present status of natural dyes. Indian J. FibreText. Res. 2001, 26, 191–201. [Google Scholar]
- Petroviciu, I.; Teodorescu, I.C.; Vasilca, S.; Albu, F. Transition from Natural to Early Synthetic Dyes in the Romanian Traditional Shirts Decoration. Heritage 2023, 6, 505–523. [Google Scholar] [CrossRef]
- Nagendrappa, G. Sir William Henry Perkin: The man and his ‘Mauve’. Resonance 2010, 15, 779–793. [Google Scholar] [CrossRef]
- Garfield, S. Mauve. Canongate Books. 2018. Available online: https://www.perlego.com/book/1457461/mauve-how-one-man-invented-a-colour-that-changed-the-world-pdf (accessed on 21 June 2023).
- Accum, F.C. A Treatise on Adulterations of Food, and Culinary Poisons: Exhibiting the Fraudulent Sophistications of Bread, Beer, Wine, Spiritous Liquors, Tea, Coffee, Cream, Confectionery, Vinegar, Mustard, Pepper, Cheese, Olive Oil, Pickles, and Other Articles Employed in Domestic Economy, and Methods of Detecting Them; Ab’m Small: Philadelphia, PA, USA, 1820. Available online: https://collections.nlm.nih.gov/catalog/nlm:nlmuid-2541012R-bk (accessed on 21 June 2023).
- Regulation (EC) No. 1333/2008 of the European Parliament and the Council of 16 December 2008 on Food Additives. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:354:0016:0033:en:PDF (accessed on 9 June 2023).
- O Nas. Available online: https://www.efsa.europa.eu/pl/about/about-efsa (accessed on 22 June 2023).
- Cömert, E.D.; Mogol, B.A.; Gökmen, V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Food Sci. 2019, 2, 1–10. [Google Scholar] [CrossRef]
- Janciauskiene, S. The Beneficial Effects of Antioxidants in Health and Diseases. Chronic Obstr. Pulm. Dis. J. COPD Found. 2020, 7, 182–202. [Google Scholar] [CrossRef] [PubMed]
- Pruteanu, L.L.; Bailey, D.S.; Grădinaru, A.C.; Jäntschi, L. The Biochemistry and Effectiveness of Antioxidants in Food, Fruits, and Marine Algae. Antioxidants 2023, 12, 860. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.D.; Hallagan, J.B.; Taylor, S.L. The role of natural color additives in food allergy. Adv. Food Nutr. Res. 2001, 43, 195–216. [Google Scholar] [CrossRef]
- Allan, K.; Kelly, F.J.; Devereux, G. Antioxidants and allergic disease: A case of too little or too much? Clin. Exp. Allergy 2010, 40, 370–380. [Google Scholar] [CrossRef]
- Moreno-Macias, H.; Romieu, I. Effects of antioxidant supplements and nutrients on patients with asthma and allergies. J. Allergy Clin. Immunol. 2014, 133, 1237–1244. [Google Scholar] [CrossRef]
- Han, M.; Lee, D.; Lee, S.H.; Kim, T.H. Oxidative Stress and Antioxidant Pathway in Allergic Rhinitis. Antioxidants 2021, 10, 1266. [Google Scholar] [CrossRef]
- Solymosi, K.; Latruffe, N.; Morant-Manceau, A.; Schoefs, B. Food colour additives of natural origin. In Colour Additives for Foods and Beverages; Scotter, M.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 4–34. [Google Scholar] [CrossRef]
- Saluk-Juszczak, J. Anthocyanins as components of functional food for cardiovascular risk prevention. Adv. Hyg. Med. Exp. 2010, 64, 451–458. (In Polish) [Google Scholar]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Diaconeasa, Z.; Iuhas, C.I.; Ayvaz, H.; Mortas, M.; Farcaş, A.; Mihai, M.; Danciu, C.; Stanilă, A. Anthocyanins from Agro-Industrial Food Waste: Geographical Approach and Methods of Recovery—A Review. Plants 2022, 12, 74. [Google Scholar] [CrossRef]
- Yudina, R.S.; Gordeeva, E.I.; Shoeva, O.Y.; Tikhonova, M.A.; Khlestkina, E.K. Anthocyanins as functional food components. Vavilov J. Genet. Breed. 2021, 25, 178–189. [Google Scholar] [CrossRef]
- Lakshan, S.A.T.; Jayanath, N.Y.; Abeysekera, W.P.K.M.; Abeysekera, W.K.S.M. A Commercial Potential Blue Pea (Clitoriaternatea L.) Flower Extract Incorporated Beverage Having Functional Properties. Evid.-Based Complement. Altern. Med. 2019, 2019, 2916914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, C.D.; Mazza, G.J.; Holub, B.J. Anthocyanins Exist in the Circulation Primarily as Metabolites in Adult Men. J. Nutr. 2005, 135, 2582–2588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, M.; Naviglio, D.; Ferrara, L. Nasunin, an antioxidant anthocyanin from eggplant peels, as natural dye to avoid food allergies and intolerances. Eur. Sci. J. 2014, 10, 1–11. [Google Scholar] [CrossRef]
- Vassilopoulou, E.; Zuidmeer, L.; Akkerdaas, J.; Tassios, I.; Rigby, N.R.; Mills, E.C.; van Ree, R.; Saxoni-Papageorgiou, P.; Papadopoulos, N.G. Severe Immediate Allergic Reactions to Grapes: Part of a Lipid Transfer Protein-Associated Clinical Syndrome. Int. Arch. Allergy Immunol. 2007, 143, 92–102. [Google Scholar] [CrossRef]
- Pastorello, E.A.; Farioli, L.; Pravettoni, V.; Ortolani, C.; Fortunato, D.; Giuffrida, M.G.; Garoffo, L.P.; Calamari, A.M.; Brenna, O.; Conti, A. Identification of grape and wine allergens as an Endochitinase 4, a lipid-transfer protein, and a Thaumatin. J. Allergy Clin. Immunol. 2003, 111, 350–359. [Google Scholar] [CrossRef]
- Vuong, T.T.; Hongsprabhas, P. Influences of pH on binding mechanisms of anthocyanins from butterfly pea flower (Clitoriaternatea) with whey powder and whey protein isolate. Cogent Food Agric. 2021, 7, 1889098. [Google Scholar] [CrossRef]
- Multisona, R.R.; Shirodkar, S.; Arnold, M.; Gramza-Michalowska, A. Clitoriaternatea Flower and Its Bioactive Compounds: Potential Use as Microencapsulated Ingredient for Functional Foods. Appl. Sci. 2023, 13, 2134. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Kumar, V.; Kumar, N.S.; Heinrich, M. The Ayurvedic medicine Clitoriaternatea—From traditional use to scientific assessment. J. Ethnopharmacol. 2008, 120, 291–301. [Google Scholar] [CrossRef]
- Kazuma, K.; Noda, N.; Suzuki, M. Flavonoid composition related to petal color in different lines of Clitoriaternatea. Phytochemistry 2003, 64, 1133–1139. [Google Scholar] [CrossRef]
- Nair, V.; Bang, W.Y.; Schreckinger, E.; Andarwulan, N.; Cisneros-Zevallos, L. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoriaternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells. J. Agric. Food Chem. 2015, 63, 6355–6365. [Google Scholar] [CrossRef]
- Rao, V.S.N.; Paiva, L.A.F.; Souza, M.F.; Campos, A.R.; Ribeiro, R.A.; Brito, G.A.C.; Teixeira, M.J.; Silveira, E.R. Ternatin, an Anti-Inflammatory Flavonoid, Inhibits Thioglycolate-Elicited Rat Peritoneal Neutrophil Accumulation and LPS-Activated Nitric Oxide Production in Murine Macrophages. Planta Med. 2003, 69, 851–853. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.F.; Rao, V.S.; Silveira, E.R. Anti-anaphylactic and anti-inflammatory effects of ternatin, a flavonoid isolated from Egletesviscosa Less. Braz. J. Med. Biol. Res. 1992, 25, 1029–1032. [Google Scholar] [PubMed]
- Jaafar, N.F.; Ramli, M.E.; Salleh, R.M. Optimumextraction condition of Clitoreaternatea flower on antioxidant activities, total phenolic, total flavonoid and total anthocyanin contents. Trop. Life Sci. Res. 2020, 31, 1. [Google Scholar] [CrossRef] [PubMed]
- Taur, D.J.; Patil, R.Y. Antihistaminic activity of Clitoriaternatea L. roots. J. Basic Clin. Pharm. 2011, 2, 41–44. [Google Scholar]
- Singh, N.K.; Garabadu, D.; Sharma, P.; Shrivastava, S.K.; Mishra, P. Anti-allergy and anti-tussive activity of Clitoriaternatea L. in experimental animals. J. Ethnopharmacol. 2018, 224, 15–26. [Google Scholar] [CrossRef]
- Garcia-Larsen, V.; Thawer, N.; Charles, D.; Cassidy, A.; Van Zele, T.; Thilsing, T.; Ahlström, M.; Haahtela, T.; Keil, T.; Matricardi, P.M.; et al. Dietary Intake of Flavonoids and Ventilatory Function in European Adults: A GA2LEN Study. Nutrients 2018, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, D.V.T.; Dos Santos Baião, D.; De Oliveira Silva, F.; Alves, G.; Perrone, D.; Del Aguila, E.M.; Paschoalin, V.M.F. Betanin, a Natural Food Additive: Stability, Bioavailability, Antioxidant and Preservative Ability Assessments. Molecules 2019, 24, 458. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I. Plant Betalains: Safety, Antioxidant Activity, Clinical Efficacy, and Bioavailability. Compr. Rev. Food Sci. Food Saf. 2015, 15, 316–330. [Google Scholar] [CrossRef] [Green Version]
- Zenaidi, M.; Pauliat, S.; Chaliier, P.; Fratta, A.; Girardet, J.P. Allergy to food colouring. A prospective study in ten children. La Tunis. Med. 2005, 83, 414–418. (In French) [Google Scholar]
- Li, Q.; Shen, Y.; Guo, X.; Xu, Y.; Mao, Y.; Wu, Y.; He, F.; Wang, C.; Chen, Y.; Yang, Y. Betanin Dose-Dependently Ameliorates Allergic Airway Inflammation by Attenuating Th2 Response and Upregulating cAMP–PKA–CREB Pathway in Asthmatic Mice. J. Agric. Food Chem. 2022, 70, 3708–3718. [Google Scholar] [CrossRef]
- Wang, Y.; Fernando, G.S.N.; Sergeeva, N.N.; Vagkidis, N.; Chechik, V.; Do, T.; Marshall, L.J.; Boesch, C. Uptake and Immunomodulatory Properties of Betanin, Vulgaxanthin I and Indicaxanthin towards Caco-2 Intestinal Cells. Antioxidants 2022, 11, 1627. [Google Scholar] [CrossRef] [PubMed]
- Pucci, C.; Martinelli, C.; Degl’Innocenti, A.; Desii, A.; De Pasquale, D.; Ciofani, G. Light-Activated Biomedical Applications of Chlorophyll Derivatives. Macromol. Biosci. 2021, 21, 2100181. [Google Scholar] [CrossRef] [PubMed]
- Kriti, V.; Pophaly, S.D. Natural food colors. Plant Arch. 2018, 18, 1159–1162. [Google Scholar]
- Ebrahimi, P.; Shokramraji, Z.; Tavakkoli, S.; Mihaylova, D.; Lante, A. Chlorophylls as Natural Bioactive Compounds Existing in Food By-Products: A Critical Review. Plants 2023, 12, 1533. [Google Scholar] [CrossRef]
- Suresh, H.D.; Nagananda, G.S.; Minchitha, K.U.; Swetha, S.; Suryan, S. Synthesis and Bio-evaluation of Soluble Sodium Copper Chlorophyllin Complexes from the Leaves of Aloe vera. S. Afr. J. Bot. 2021, 147, 1086–1095. [Google Scholar] [CrossRef]
- Solymosi, K.; Mysliwa-Kurdziel, B. Chlorophylls and their Derivatives Used in Food Industry and Medicine. Mini-Rev. Med. Chem. 2017, 17, 1194–1222. [Google Scholar] [CrossRef] [Green Version]
- Mandal, B.K.; Ling, Y.-C. Analysis of Chlorophylls/Chlorophyllins in Food Products Using HPLC and HPLC-MS Methods. Molecules 2023, 28, 4012. [Google Scholar] [CrossRef]
- Tumolo, T.; Lanfer-Marquez, U.M. Copper chlorophyllin: A food colorant with bioactive properties? Food Res. Int. 2012, 46, 451–459. [Google Scholar] [CrossRef]
- Subramoniam, A.; Asha, V.V.; Nair, S.A.; Sasidharan, S.P.; Sureshkumar, P.K.; Rajendran, K.N.; Karunagaran, D.; Ramalingam, K. Chlorophyll Revisited: Anti-inflammatory Activities of Chlorophyll a and Inhibition of Expression of TNF-α Gene by the Same. Inflammation 2012, 35, 959–966. [Google Scholar] [CrossRef]
- Karg, C.A.; Parráková, L.; Fuchs, D.; Schennach, H.; Kräutler, B.; Moser, S.; Gostner, J.M. A Chlorophyll-Derived Phylloxanthobilin Is a Potent Antioxidant That Modulates Immunometabolism in Human PBMC. Antioxidants 2022, 11, 2056. [Google Scholar] [CrossRef]
- Lauritano, C.; Helland, K.; Riccio, G.; Andersen, J.H.; Ianora, A.; Hansen, E.H. Lysophosphatidylcholines and Chlorophyll-Derived Molecules from the Diatom Cylindrothecaclosterium with Anti-Inflammatory Activity. Mar. Drugs 2020, 18, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, K.-H.; Hsu, C.-Y.; Huang, Y.-P.; Lai, J.-Y.; Hsieh, W.-B.; Huang, M.-Y.; Yang, C.-M.; Chao, P.-Y. Chlorophyll-Related Compounds Inhibit Cell Adhesion and Inflammation in Human Aortic Cells. J. Med. Food 2013, 16, 886–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.; Braun, M.S.; Wink, M. Chlorophyll and Chlorophyll Derivatives Interfere with Multi-Drug Resistant Cancer Cells and Bacteria. Molecules 2019, 24, 2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uğuz, A.C.; Rocha-Pimienta, J.; Martillanes, S.; Garrido, M.; Espino, J.; Delgado-Adámez, J. Chlorophyll Pigments of Olive Leaves and Green Tea Extracts Differentially Affect Their Antioxidant and Anticancer Properties. Molecules 2023, 28, 2779. [Google Scholar] [CrossRef]
- Böhm, M.; Bunselmeyer, B.; Luger, T.A.; Brehler, R. Food intolerance due to wine gums: Identification of copper chlorophyll (E141) as a possible pseudoallergen. J. Allergy Clin. Immunol. 2001, 107, 393–394. [Google Scholar] [CrossRef]
- Vollmar, A.M.; Moser, S. The advent of phyllobilins as bioactive phytochemicals—Natural compounds derived from chlorophyll in medicinal plants and food with immunomodulatory activities. Pteridines 2023, 34, 20220047. [Google Scholar] [CrossRef]
- Valbuena, T.; Barranco, P.; Pascual, C.; López-Serrano, M.C.; Quirce, S. Late asthmatic reaction induced by exposure to raw Swiss chard. J. Investig. Allergol. Clin. Immunol. 2010, 20, 267–272. [Google Scholar]
- Jara-Gutiérrez, P.; Zafra, M.P.; Sanz, V.; Del Pozo, V.; Fernandez-Nieto, M. Asthma Due to Swiss Chard: Identification of a New Allergen. J. Investig. Allergol. Clin. Immunol. 2017, 27, 67–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- Fujiwara, T.; Nishida, N.; Nota, J.; Kitani, T.; Aoishi, K.; Takahashi, H.; Sugahara, T.; Hato, N. Efficacy of chlorophyll c2 for seasonal allergic rhinitis: Single-center double-blind randomized control trial. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 4289–4294. [Google Scholar] [CrossRef] [PubMed]
- González-Peña, M.A.; Ortega-Regules, A.E.; de Parrodi, C.A.; Lozada-Ramírez, J.D. Chemistry, Occurrence, Properties, Applications, and Encapsulation of Carotenoids—A Review. Plants 2023, 12, 313. [Google Scholar] [CrossRef] [PubMed]
- Merhan, O. The Biochemistry and Antioxidant Properties of Carotenoids. In Carotenoids; Cvetkovic, D.J., Nikolic, G.S., Eds.; IntechOpen: London, UK, 2017; pp. 51–66. [Google Scholar]
- Fernandes, A.S.; Nascimento, T.C.D.; Jacob-Lopes, E.; De Rosso, V.V.; Zepka, L.Q. Introductory Chapter: Carotenoids—A Brief Overview on Its Structure, Biosynthesis, Synthesis, and Applications. Prog. Carotenoid Res. 2018, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.-S.; Lee, J.-H. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—A Review of Recent Advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, R.C.; Ross, R.P.; Stanton, C. Carotenoids in Milk and the Potential for Dairy Based Functional Foods. Foods 2021, 10, 1263. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [Green Version]
- Young, A.J.; Lowe, G.L. Carotenoids—Antioxidant Properties. Antioxidants 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.L.; Norhaizan, M.E. Carotenoids: How Effective Are They to Prevent Age-Related Diseases? Molecules 2019, 24, 1801. [Google Scholar] [CrossRef] [Green Version]
- Bellik, Y.; Boukraâ, L.; Alzahrani, H.A.; Bakhotmah, B.A.; Abdellah, F.; Hammoudi, S.M.; Iguer-Ouada, M. Molecular Mechanism Underlying Anti-Inflammatory and Anti-Allergic Activities of Phytochemicals: An Update. Molecules 2012, 18, 322–353. [Google Scholar] [CrossRef] [Green Version]
- Nish, W.A.; Whisman, B.A.; Goetz, D.W.; Ramirez, D.A. Anaphylaxis to annatto dye: A case report. Ann. Allergy 1991, 66, 129–131. [Google Scholar]
- Ebo, D.G.; Ingelbrecht, S.; Bridts, C.H.; Stevens, W.J. Allergy for cheese: Evidence for an IgE-mediated reaction from the natural dye annatto. Allergy 2009, 64, 1558–1560. [Google Scholar] [CrossRef]
- Sadowska, B.; Sztormowska, M.; Chełmińska, M. Annatto hypersensitivity after oral ingestion confirmed by placebo-controlled oral challenge. Ann. Allergy Asthma Immunol. 2021, 127, 510–511. [Google Scholar] [CrossRef] [PubMed]
- Auttachoat, W.; Germolec, D.R.; Smith, M.J.; White, K.L.; Guo, T.L. Contact sensitizing potential of annatto extract and its two primary color components, cis-bixin and norbixin, in female BALB/c mice. Food Chem. Toxicol. 2011, 49, 2638–2644. [Google Scholar] [CrossRef] [PubMed]
- Floch, M.H. Annatto, Diet, and the Irritable Bowel Syndrome. J. Clin. Gastroenterol. 2009, 43, 905–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, H.L. Annatto and IBS. J. Clin. Gastroenterol. 2009, 43, 1014–1015. [Google Scholar] [CrossRef]
- Ramsey, N.B.; Tuano, K.T.S.; Davis, C.M.; Dillard, K.; Hanson, C. Annatto seed hypersensitivity in a pediatric patient. Ann. Allergy Asthma Immunol. 2016, 117, 331–333. [Google Scholar] [CrossRef]
- Castro, T.A.; Leite, B.S.; Assunção, L.S.; Freitas, T.d.J.; Colauto, N.B.; Linde, G.A.; Otero, D.M.; Machado, B.A.S.; Ribeiro, C.D.F. Red Tomato Products as an Alternative to Reduce Synthetic Dyes in the Food Industry: A Review. Molecules 2021, 26, 7125. [Google Scholar] [CrossRef]
- Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef]
- Bin-Jumah, M.N.; Nadeem, M.S.; Gilani, S.J.; Mubeen, B.; Ullah, I.; Alzarea, S.I.; Ghoneim, M.M.; Alshehri, S.; Al-Abbasi, F.A.; Kazmi, I. Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants 2022, 11, 232. [Google Scholar] [CrossRef]
- Khan, U.M.; Sevindik, M.; Zarrabi, A.; Nami, M.; Ozdemir, B.; Kaplan, D.N.; Selamoglu, Z.; Hasan, M.; Kumar, M.; Alshehri, M.M.; et al. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative Med. Cell. Longev. 2021, 2021, 2713511. [Google Scholar] [CrossRef]
- Włodarczyk, K.; Smolińska, B.; Majak, I. Tomato Allergy: The Characterization of the Selected Allergens and Antioxidants of Tomato (Solanum lycopersicum)—A Review. Antioxidants 2022, 11, 644. [Google Scholar] [CrossRef]
- Hoppe, P.P.; Kramer, K.; Berg, H.V.D.; Steenge, G.; Van Vliet, T. Synthetic and tomato-based lycopene have identical bioavailability in humans. Eur. J. Nutr. 2003, 42, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Hossin, I.; Talukder, G.; Roy, N.; Shaha, R.K. Anti-Allergic Compounds from Red Tomato Peel. J. Adv. Lab. Res. Biol. 2012, 3, 181–189. [Google Scholar]
- Polat, H.; Sagıt, M.; Gurgen, S.G.; Yasar, M.; Ozcan, I. Protective role of lycopene in experımental allergic rhinitis in rats. Int. J. Pediatr. Otorhinolaryngol. 2021, 150, 110905. [Google Scholar] [CrossRef] [PubMed]
- Ushiroda, C.; Takagi, T.; Fuke, N.; Mizushima, K.; Hirai, Y.; Higashimura, Y.; Harusato, A.; Kamada, K.; Uchiyama, K.; Ishikawa, T.; et al. Lycopene intake induces colonic regulatory T cells in mice and suppresses food allergy symptoms. Pediatr. Allergy Immunol. 2021, 33, e13691. [Google Scholar] [CrossRef] [PubMed]
- Schmutzler, W.; Gladis-Villanueva, M.d.M.; Bolsmann, K.; Braam, U.; Zwadlo-Klarwasser, G. Effect of Beta-Carotene on Histamine Release from Human Mast Cells and Monocytes. Int. Arch. Allergy Immunol. 1997, 113, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—A review. J. Tradit. Complement. Med. 2017, 7, 205–233. [Google Scholar] [CrossRef] [Green Version]
- El-Saadony, M.T.; Yang, T.; Korma, S.A.; Sitohy, M.; El-Mageed, T.A.A.; Selim, S.; Al Jaouni, S.K.; Salem, H.M.; Mahmmod, Y.; Soliman, S.M.; et al. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front. Nutr. 2023, 9, 1040259. [Google Scholar] [CrossRef]
- Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2015, 57, 2889–2895. [Google Scholar] [CrossRef]
- Das, K.C.; Das, C.K. Curcumin (diferuloylmethane), a singlet oxygen (1O2) quencher. Biochem. Biophys. Res. Commun. 2002, 295, 62–66. [Google Scholar] [CrossRef]
- Stanić, Z. Curcumin, a Compound from Natural Sources, a True Scientific Challenge—A Review. Plant Foods Hum. Nutr. 2016, 72, 1–12. [Google Scholar] [CrossRef]
- Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr. 2017, 59, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Springer: Boston, MA, USA, 2007. [Google Scholar] [CrossRef]
- Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C.R. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics 2022, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N.N.I.M.; Begum, M.Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; et al. A Comprehensive Review on the Therapeutic Potential of Curcuma longa Linn. in Relation to its Major Active Constituent Curcumin. Front. Pharmacol. 2022, 13, 820806. [Google Scholar] [CrossRef] [PubMed]
- Urošević, M.; Nikolić, L.; Gajić, I.; Nikolić, V.; Dinić, A.; Miljković, V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics 2022, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Irani, C.; Haddad, F.; Maalouly, G.; Nemnoum, R. Curcumin in Stevens-Johnsons Syndrome: Culprit or Bystander? World Allergy Organ. J. 2009, 2, 59–60. [Google Scholar] [CrossRef] [Green Version]
- Bush, J.A.; Cheung, K.-J.J.; Li, G. Curcumin Induces Apoptosis in Human Melanoma Cells through a Fas Receptor/Caspase-8 Pathway Independent of p53. Exp. Cell Res. 2001, 271, 305–314. [Google Scholar] [CrossRef]
- Ceylan, E.; Cosan, D.T.; Muluk, N.B.; Cingi, C. Investigation of the effect of the curcumin component as an alternative to the local treatment of nasal diseases. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 39–43. [Google Scholar] [CrossRef]
- Acar, M.; Muluk, N.B.; Yigitaslan, S.; Cengiz, B.P.; Shojaolsadati, P.; Karimkhani, H.; Ada, S.; Berkoz, M.; Cingi, C. Can curcumin modulate allergic rhinitis in rats? J. Laryngol. Otol. 2016, 130, 1103–1109. [Google Scholar] [CrossRef]
- Altıntoprak, N.; Kar, M.; Acar, M.; Berkoz, M.; Muluk, N.B.; Cingi, C. Antioxidant activities of curcumin in allergic rhinitis. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 3765–3773. [Google Scholar] [CrossRef]
- Kurup, V.P.; Barrios, C.S. Immunomodulatory effects of curcumin in allergy. Mol. Nutr. Food Res. 2008, 52, 1031–1039. [Google Scholar] [CrossRef]
- Haftcheshmeh, S.M.; Mirhafez, S.R.; Abedi, M.; Heydarlou, H.; Shakeri, A.; Mohammadi, A.; Sahebkar, A. Therapeutic potency of curcumin for allergic diseases: A focus on immunomodulatory actions. Biomed. Pharmacother. 2022, 154, 113646. [Google Scholar] [CrossRef] [PubMed]
- Shende, S.; Samundare, P.; Dangi, S.; Mehorlia, S.; Upmanyu, N. Antiallergic activity of curcumin. Int. J. Creat. Res. Thoughts 2020, 8, 3741–3744. [Google Scholar]
- Suzuki, M.; Nakamura, T.; Iyoki, S.; Fujiwara, A.; Watanabe, Y.; Mohri, K.; Isobe, K.; Ono, K.; Yano, S. Elucidation of Anti-allergic Activities of Curcumin-Related Compounds with a Special Reference to Their Anti-oxidative Activities. Biol. Pharm. Bull. 2005, 28, 1438–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Z.-L.; Sudirman, S.; Lin, H.-J.; Chen, W.-N. In vitro anti-inflammatory effects of curcumin on mast cell-mediated allergic responses via inhibiting FcεRI protein expression and protein kinase C delta translocation. Cytotechnology 2019, 72, 81–95. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Y.Q.; Ma, B.H.; Yu, S.F.; Li, L.Y.; Zeng, Q.X.; Zhou, Y.T.; Wu, Y.F.; Liu, W.L.; Wan, J.B.; et al. Tetrahydrocurcumin, a major metabolite of curcumin, ameliorates allergic airway inflammation by attenuating Th2 response and suppressing the IL-4Rα-Jak1-STAT6 and Jagged1/Jagged2 -Notch1/Notch2 pathways in asthmatic mice. Clin. Exp. Allergy 2018, 48, 1494–1508. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S.; See, H.-J.; Jung, S.Y.; Choi, D.W.; Kwon, D.-A.; Bae, M.-J.; Sung, K.-S.; Shon, D.-H. Turmeric (Curcuma longa) attenuates food allergy symptoms by regulating type 1/type 2 helper T cells (Th1/Th2) balance in a mouse model of food allergy. J. Ethnopharmacol. 2015, 175, 21–29. [Google Scholar] [CrossRef]
- Kinney, S.R.M.; Carlson, L.; Ser-Dolansky, J.; Thompson, C.; Shah, S.; Gambrah, A.; Xing, W.; Schneider, S.S.; Mathias, C.B. Curcumin Ingestion Inhibits Mastocytosis and Suppresses Intestinal Anaphylaxis in a Murine Model of Food Allergy. PLoS ONE 2015, 10, e0132467. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lu, Y.; Jin, Y.; Son, J.-K.; Lee, S.H.; Chang, H.W. Curcumin Inhibits the Activation of Immunoglobulin E-Mediated Mast Cells and Passive Systemic Anaphylaxis in Mice by Reducing Serum Eicosanoid and Histamine Levels. Biomol. Ther. 2014, 22, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Hao, J.; Yang, Z.; Ma, C.; Gao, L.; Chen, Y.; Li, G.; Li, J. Anti-Allergic Effect of Dietary Polyphenols Curcumin and Epigallocatechin Gallate via Anti-Degranulation in IgE/Antigen-Stimulated Mast Cell Model: A Lipidomics Perspective. Metabolites 2023, 13, 628. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of anthocyanins (E 163) as a food additive. EFSA J. 2013, 11, 3145. [Google Scholar] [CrossRef]
- Luke, R.G.; Watson, W.C. Anaphilaxis with beeturia. Br. Med. J. 1963, 2, 980. [Google Scholar] [CrossRef] [PubMed]
- EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food). Scientific opinion on the revaluation of beetroot red (E 162) as a food additive. EFSA J. 2015, 13, 4318. [Google Scholar] [CrossRef]
- Kuramoto, Y.; Yamada, K.; Tsuruta, O.; Sugano, M. Effect of Natural Food Colorings on Immunoglobulin ProductioninVitroby Rat Spleen Lymphocytes. Biosci. Biotechnol. Biochem. 1996, 60, 1712–1713. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies (NDA) on the Safety of Alfalfa Protein Concentrate as Food. EFSA J. 2009, 997, 1–19. [Google Scholar] [CrossRef]
- EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources Added to Food). Scientific Opinion on the re-evaluation of chlorophylls (E 140(i)) as food additives. EFSA J. 2015, 13, 4089. [Google Scholar] [CrossRef]
- EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources Added to Food). Scientific Opinion on re-evaluation of chlorophyllins (E 140(ii)) as food additives. EFSA J. 2015, 13, 4085. [Google Scholar] [CrossRef] [Green Version]
- EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources Added to Food). Scientific Opinion on re-evaluation of copper complexes of chlorophylls (E 141(i)) and chlorophyllins (E 141(ii)) as food additives. EFSA J. 2015, 13, 4151. [Google Scholar] [CrossRef]
- Breinholt, V.M.; Dragsted, L.O.; Hansen, M.; Hossaini, A.; Lam, H.R.; Mortensen, A.; Rasmussen, E.S.; Husøy, T.; Ilbäck, N.G.; Meyland, L.H.; et al. Food additives in Europe 2000, status of safety assesments of food additives presently permitted in the EU. TemaNord 2002, 560, 145–148. [Google Scholar]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of mixed carotenes (E 160a (i)) and beta-carotene (E 160a (ii)) as a food additive. EFSA J. 2012, 10, 2593. [Google Scholar] [CrossRef]
- Thompson, D.A.; Tan, B.B. Tetrahydracurcumin-related allergic contact dermatitis. Contact Dermat. 2006, 55, 254–255. [Google Scholar] [CrossRef]
- Liddle, M.; Hull, C.; Liu, C.; Powell, D. Contact Urticaria from Curcumin. DERM 2006, 17, 196–197. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific Opinion on the re-evaluation of curcumin (E 100) as a food additive. EFSA J. 2010, 8, 1679. [Google Scholar] [CrossRef]
- Feketea, G.; Tsabouri, S. Common food colorants and allergic reactions in children: Myth or reality? Food Chem. 2017, 230, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, S.; Bahna, S.L. Hypersensitivity reactions to food additives. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Lis, K. Cochineal—An allergen of many possibilities. Alergia 2021, 1, 34–36. (In Polish) [Google Scholar]
Food Dye (E Number) | Allergenicity/Hypersensitivity/Intolerance | References Indicated in the EFSA Report, Which Were the Basis for the Development of the Scientific Opinion of the EFSA Expert Panel | ADI | Cited EFSA Report [ref. nr] |
---|---|---|---|---|
Anthocyanins (E163) | The EFSA Expert Panel did not consider this issue relevant to the safety of these food additives for humans. | No references indicated. | The ADI for anthocyanins has been established at 0–2.5 mg/kg bw/day. * * This value was determined for anthocyanins from grape peel. | [117] |
Betanin-beetroot red (E162) | According to the EFSA Expert Panel, the widespread consumption of beetroot red, both in natural food products and as a color additive, and the lack of reports of allergic reactions and intolerances, suggests that betanin is not a significant cause of sensitization, allergy, hypersensitivity, and food intolerance. | A case report of a woman who developed anaphylactic shock during beeturia, but according to the authors, the anaphylaxis was not caused by hypersensitivity to beetroot extract [118]. | There is not enough database to establish the ADI. Beetroot red is a natural component of the diet and exposure to betanin ingested as a food additive is not considered to increase the risk associated with the consumption of naturally occurring plant beetroot red. | [119] |
This in vitro study showed reduced production of IgE by rat splenic lymphocytes exposed to betanin of unknown specification at concentrations of 1 μM and 10 μM. Based on these results, the authors concluded that these results suggest that natural dyes have a regulatory effect on immunoglobulin production [120]. | ||||
Chlorophylls (E 140(i)) | The EFSA notes that sources of chlorophyll (e.g., alfalfa) may contain proteins with homology to some peanut proteins, which are strong allergens. This means that chlorophyll extracts from plants may also have allergenic potential [121]. | No reported cases of allergy to chlorophylls (E 140(i)) were found. | Chlorophylls are natural dietary components that occur naturally in many foods in relatively high concentrations. For this reason, exposure from the use of chlorophyll as food additives is lower than exposure to chlorophyll from natural sources. Therefore, it is not necessary to set an ADI. | [122] |
Chlorophyllins (E 140(ii)) | According to the EFSA, no documented cases of allergy or hypersensitivity to chlorophyllins derived from food have been published until the date of the cited scientific report [123] | No cases of allergy to chlorophyllins (E 140(ii)) have been identified in the literature. | According to the EFSA, due to the lack of adequate data on absorption, distribution, metabolism, excretion, and toxicity, and the fact that chlorophyllins (E 140(ii)) are neither natural components of the normal diet nor metabolites of chlorophylls in humans, the assessment of the safety of chlorophyllins as a food additive is not currently possible, but definitely necessary. | [123] |
copper complexes of chlorophylls–Cu-Chlorophylls (E 141(i)) and copper complexes of chlorophyllins; Cu-Chloropchyllins (E 141(ii)) | According to the EFSA, the available data do not indicate significant immunotoxicity or allergenic potential of Cu-chlorophylls and Cu-chlorophyllins when used as food additives. | A case of an allergic reaction (recurrent angioedema, rhinoconjunctivitis, and asthma symptoms) was reported in a 28-year-old woman after ingestion of foods containing Cu-chlorophylls (E 141(i)). Hypersensitivity to E141(i) was confirmed by challenge tests using food consumed by the woman and E141(i) dye. It was established that the trigger for swelling was green candy. To trigger the reaction, it was necessary to consume 1 mg of E141(i) or five candies. The elimination of the E141(i) dye from the patient’s diet prevented further episodes of hypersensitivity symptoms [60]. | Provisionally established ADI for Cu-Chlorophyllin at 0–15 mg/kg bw/day. * * According to the EFSA Expert Panel, the current ADI data for copper complexes of chlorophylls and chlorophyllins should be considered provisional and should be reviewed again. This is due to the lack of reliable data on absorption, distribution, metabolism, excretion, and toxicity. | [124] |
mixed carotenes (E 160a (i)) and beta-carotene (E 160a (ii)) | According to the EFSA, the available data on hypersensitivity, sensitization, and/or allergy to carotenoids is very limited. For this reason, they do not allow for unambiguous opinions in this regard. | In estimating the allergenic potential of carotenoids, the EFSA refers to analyses of the status of safety assessments of food additives currently authorized in the EU “Food Additives in Europe 2000” (TemaNord 2002). The TemaNord (2002) report describes a research project involving 135 patients with urticaria or atopic dermatitis and 123 patients with contact dermatitis. All patients were orally administered β-carotene (100 mg) together with β-apo-carotene (100 mg). In the first group, one patient developed symptoms of hypersensitivity and one patient had ambiguous symptoms suggesting hypersensitivity. No hypersensitivity response was observed in the second group [125]. | The ADI for carotenoids has been established at 0–5 mg/kg bw/day. * * According to the current EFSA opinion, this value should be re-examined. It should also take into account the share of naturally occurring carotenes in food. | [126] |
Curcumin (E 100) | According to the EFSA Panel, both pro- and antiallergic effects of curcumin have been documented in the available literature reports. | The EFSA notes that several cases of hypersensitivity to curcumin have been reported in the form of contact dermatitis [127] or contact urticaria [128] after the use of cosmetics containing this dye. On the other hand, the EFSA also indicates studies that have demonstrated the immunomodulatory, including antiallergic, effect of curcumin. According to available reports, curcumin has an inhibitory effect on the release of histamine from mast cells. The results obtained in a mouse model of allergy indicate a marked inhibition of the allergic reaction in animals treated with curcumin, suggesting a major role of curcumin in reducing the allergic response [101]. | The EFSA Expert Panel has set an ADI for curcumin of 0–3 mg/kg bw/day. * * The Panel also noted that, in everyday life, curcumin intake from a normal diet is typically less than 7% of the ADI. In some European countries, however, it happens that at maximum consumption levels the ADI is exceeded. | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lis, K.; Bartuzi, Z. Plant Food Dyes with Antioxidant Properties and Allergies—Friend or Enemy? Antioxidants 2023, 12, 1357. https://doi.org/10.3390/antiox12071357
Lis K, Bartuzi Z. Plant Food Dyes with Antioxidant Properties and Allergies—Friend or Enemy? Antioxidants. 2023; 12(7):1357. https://doi.org/10.3390/antiox12071357
Chicago/Turabian StyleLis, Kinga, and Zbigniew Bartuzi. 2023. "Plant Food Dyes with Antioxidant Properties and Allergies—Friend or Enemy?" Antioxidants 12, no. 7: 1357. https://doi.org/10.3390/antiox12071357
APA StyleLis, K., & Bartuzi, Z. (2023). Plant Food Dyes with Antioxidant Properties and Allergies—Friend or Enemy? Antioxidants, 12(7), 1357. https://doi.org/10.3390/antiox12071357