PrC-210 Protects against Radiation-Induced Hematopoietic and Intestinal Injury in Mice and Reduces Oxidative Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Veterinary Care
2.2. Ethics Statement
2.3. PrC-210 Administration
2.4. Radiation
2.5. Acute Toxicity Study
2.6. Thirty-Day Survival Efficacy and PrC-210 Dose-Response Studies
2.7. Assessment of Hematological Recovery by PrC-210 Pretreatment
2.7.1. Effect of PrC-210 on Peripheral Blood Cell Recovery Post-TBI
2.7.2. Effect of PrC-210 on the Bone Marrow Cellularity Post-TBI
2.7.3. Effect of PrC-210 on the Biomarkers of Bone Marrow Aplasia
2.8. Total RNA Extraction from Spleen and Oxidative Stress Pathway Analysis
2.9. Assessment of Gastrointestinal Recovery by Pre-Treatment of PrC-210
2.9.1. Intestinal Crypt Colony Assay
2.9.2. Estimation of Bacterial DNA in Spleen and Liver Following Radiation
2.9.3. Effect of PrC-210 on the Serum Citrulline and SAA
2.10. Statistical Analysis
3. Results
3.1. PrC-210 Was Found to Be Safe Administered Orally
3.2. Survival of Lethally Irradiated Mice from a Single Dose of Pre-Administration of PrC-210
3.3. PrC-210 Dose Response in 30-Day Survival Studies
3.4. CBC Recovery
3.5. Hematopoietic Progenitor Cells Recovery
3.6. PrC-210 Pre-Treatment Restored Overall Cellularity and Protected Megakaryocytes
3.7. PrC-210 Attenuates Radiation-Induced Induction of EPO and Flt3L
3.8. PrC-210-Mediated Hematopoietic Recovery Was Correlated with Upregulation of Nitric Oxide Synthase 2
3.9. PrC-210 Pre-Treatment Restored Surviving Crypts, Reduced Bacterial DNA, Recovered Serum Citrulline and SAA Levels Following Radiation-Injury
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Epperly, M.; Bray, J.; Kraeger, S.; Zwacka, R.; Engelhardt, J.; Travis, E.; Greenberger, J. Prevention of late effects of irradiation lung damage by manganese superoxide dismutase gene therapy. Gene Ther. 1998, 5, 196–208. [Google Scholar] [CrossRef] [Green Version]
- Epperly, M.W.; Bray, J.A.; Krager, S.; Berry, L.M.; Gooding, W.; Engelhardt, J.F.; Zwacka, R.; Travis, E.L.; Greenberger, J.S. Intratracheal injection of adenovirus containing the human MNSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int. J. Radiat. Oncol. 1999, 43, 169–181. [Google Scholar] [CrossRef]
- Greenberger, J.; Kagan, V.; Bayir, H.; Wipf, P.; Epperly, M. Antioxidant Approaches to Management of Ionizing Irradiation Injury. Antioxidants 2015, 4, 82–101. [Google Scholar] [CrossRef] [PubMed]
- Okunieff, P.; Swarts, S.; Keng, P.; Sun, W.; Wang, W.; Kim, J.; Yang, S.; Zhang, H.; Liu, C.; Williams, J.P.; et al. Antioxidants Reduce Consequences of Radiation Exposure. Oxyg. Transp. Tissue XXIX 2008, 614, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Kagan, V.E.; Bayır, H.A.; Belikova, N.A.; Kapralov, O.; Tyurina, Y.Y.; Tyurin, V.A.; Jiang, J.; Stoyanovsky, D.A.; Wipf, P.; Kochanek, P.M.; et al. Cytochrome c/cardiolipin relations in mito-chondria: A kiss of death. Free Radic. Biol. Med. 2009, 46, 1439–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyurin, V.A.; Tyurina, Y.Y.; Jung, M.-Y.; Tungekar, M.A.; Wasserloos, K.J.; Bayır, H.; Greenberger, J.S.; Kochanek, P.M.; Shvedova, A.A.; Pitt, B.; et al. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. J. Chromatogr. B 2009, 877, 2863–2872. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.F.; Landauer, M.R. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 2003, 189, 1–20. [Google Scholar] [CrossRef]
- Singh, V.K.; Seed, T.M. The efficacy and safety of amifostine for the acute radiation syndrome. Expert. Opin. Drug Saf. 2019, 18, 1077–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peebles, D.D.; Soref, C.M.; Copp, R.R.; Thunberg, A.L.; Fahl, W.E. ROS-Scavenger and Radioprotective Efficacy of the New PrC-210 Aminothiol. Radiat. Res. 2012, 178, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Copp, R.R.; Peebles, D.D.; Soref, C.M.; Fahl, W.E. Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int. J. Radiat. Biol. 2013, 89, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Soref, C.M.; Hacker, T.A.; Fahl, W.E. A New Orally Active, Aminothiol Radioprotector-Free of Nausea and Hypotension Side Effects at Its Highest Radioprotective Doses. Int. J. Radiat. Oncol. 2012, 82, e701–e707. [Google Scholar] [CrossRef] [PubMed]
- Fahl, W.E.; Cadarso, M.; Goesch, T.R. Significant Reduction of Total-Body Irradiation-Induced Death in Mice Treated with PrC-210 24 Hours Postirradiation. Radiat. Res. 2022, 198, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Satyamitra, M.; Kumar, V.P.; Biswas, S.; Cary, L.; Dickson, L.; Venkataraman, S.; Ghosh, S.P. Impact of Abbreviated Filgrastim Schedule on Survival and Hematopoietic Recovery after Irradiation in Four Mouse Strains with Different Radiosensitivity. Radiat. Res. 2017, 187, 659–671. [Google Scholar] [CrossRef]
- Kumar, V.P.; Biswas, S.; Sharma, N.K.; Stone, S.; Fam, C.M.; Cox, G.N.; Ghosh, S.P. PEGylated IL-11 (BBT-059): A Novel Radiation Coun-termeasure for Hematopoietic Acute Radiation Syndrome. Health Phys. 2018, 115, 65–76. [Google Scholar] [CrossRef]
- Kumar, V.P.; Holmes-Hampton, G.P.; Biswas, S.; Stone, S.; Sharma, N.K.; Hritzo, B.; Guilfoyle, M.; Eichenbaum, G.; Guha, C.; Ghosh, S.P. Mitigation of total body irradiation-induced mortality and hematopoietic injury of mice by a thrombopoietin mimetic (JNJ-26366821). Sci. Rep. 2022, 12, 3485. [Google Scholar] [CrossRef] [PubMed]
- Copp, R.R.; Peebles, D.D.; Fahl, W.E. Synthesis and growth regulatory activity of a prototype member of a new family of aminothiol radioprotectors. Bioorganic Med. Chem. Lett. 2011, 21, 7426–7430. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.P.; Biswas, S.; Holmes-Hampton, G.P.; Sheleg, M.; Stone, S.; Legesse, B.; Ofir, R.; Ghosh, S.P. Pre-Administration of PLX-R18 Cells Protects Mice from Radiation-Induced Hematopoietic Failure and Lethality. Genes 2022, 13, 1756. [Google Scholar] [CrossRef]
- Ossetrova, N.I.; Condliffe, D.P.; Ney, P.H.; Krasnopolsky, K.; Hieber, K.P.; Rahman, A.; Sandgren, D.J. Early-response Biomarkers for Assessment of Radiation Exposure in a Mouse Total-body Irradiation Model. Health Phys. 2014, 106, 772–786. [Google Scholar] [CrossRef] [PubMed]
- Cheema, A.K.; Byrum, S.D.; Sharma, N.K.; Altadill, T.; Kumar, V.P.; Biswas, S.; Balgley, B.M.; Hauer-Jensen, M.; Tackett, A.J.; Ghosh, S.P. Proteomic Changes in Mouse Spleen after Radia-tion-Induced Injury and its Modulation by Gamma-Tocotrienol. Radiat. Res. 2018, 190, 449–463. [Google Scholar] [CrossRef]
- Berbée, M.; Fu, Q.; Boerma, M.; Wang, J.; Kumar, K.S.; Hauer-Jensen, M. γ-Tocotrienol ameliorates intestinal radiation injury and reduces vascular oxidative stress after total-body irradiation by an HMG-CoA reductase-dependent mechanism. Radiat. Res. 2009, 171, 596–605. [Google Scholar] [CrossRef] [Green Version]
- Suman, S.; Datta, K.; Chakraborty, K.; Kulkarni, S.S.; Doiron, K.; Fornace, A.J., Jr.; Kumar, K.S.; Hauer-Jensen, M.; Ghosh, S.P. Gamma tocotrienol, a potent radioprotector, preferentially upregulates expression of anti-apoptotic genes to promote intestinal cell survival. Food Chem. Toxicol. 2013, 60, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Withers, H.; Elkind, M. Microcolony Survival Assay for Cells of Mouse Intestinal Mucosa Exposed to Radiation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1970, 17, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Ghosh, S.P.; Satyamitra, M.; Mog, S.; Hieber, K.; Romanyukha, L.; Gambles, K.; Toles, R.; Kao, T.-C.; Hauer-Jensen, M.; et al. Gamma-Tocotrienol Protects Hematopoietic Stem and Progenitor Cells in Mice after Total-Body Irradiation. Radiat. Res. 2010, 173, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.P.; Kulkarni, S.; Hieber, K.; Toles, R.; Romanyukha, L.; Kao, T.-C.; Hauer-Jensen, M.; Kumar, K.S. Gamma-tocotrienol, a tocol antioxidant as a potent radioprotector. Int. J. Radiat. Biol. 2009, 85, 598–606. [Google Scholar] [CrossRef]
- Ghosh, S.P.; Kulkarni, S.; Perkins, M.W.; Hieber, K.; Pessu, R.L.; Gambles, K.; Maniar, M.; Kao, T.-C.; Seed, T.M.; Kumar, K.S. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice. J. Radiat. Res. 2012, 53, 526–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buell, M.G.; Harding, R.K. Proinflammatory effects of local abdominal irradiation on rat gastrointestinal tract. Dig. Dis. Sci. 1989, 34, 390–399. [Google Scholar] [CrossRef]
- Hovdenak, N.; Fajardo, L.F.; Hauer-Jensen, M. Acute radiation proctitis: A sequential clinicopathologic study during pelvic radi-otherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 1111–1117. [Google Scholar] [CrossRef]
- Kiang, J.G.; Smith, J.T.; Agravante, N.G. Geldanamycin Analog 17-DMAG Inhibits iNOS and Caspases in Gamma-Irradiated Human T Cells. Radiat. Res. 2009, 172, 321–330. [Google Scholar] [CrossRef]
- Inano, H.; Onoda, M. Nitric oxide produced by inducible nitric oxide synthase is associated with mammary tumorigenesis in irradiated rats. Nitric Oxide 2005, 12, 15–20. [Google Scholar] [CrossRef]
- Zhong, G.Z.; Chen, F.R.; Bu, D.F.; Wang, S.H.; Pang, Y.Z.; Tang, C.S. Cobalt-60 gamma radiation increased the nitric oxide generation in cultured rat vascular smooth muscle cells. Life Sci. 2004, 74, 3055–3063. [Google Scholar] [CrossRef]
- Chang, H.-R.; Tsao, D.-A.; Wang, S.-R.; Yu, H.-S. Expression of nitric oxide synthases in keratinocytes after UVB irradiation. Arch. Dermatol. Res. 2003, 295, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.; Cook, T.; Liu, K.; Vodovotz, Y.; Zamora, R.; Finkelstein, S.; Billiar, T.; Blumberg, D. Overexpression of the human inducible nitric oxide synthase gene enhances radiation-induced apoptosis in colorectal cancer cells via a caspase-dependent mechanism. Nitric Oxide 2003, 8, 119–126. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, V.P.; Biswas, S.; Holmes-Hampton, G.P.; Goesch, T.; Fahl, W.; Ghosh, S.P. PrC-210 Protects against Radiation-Induced Hematopoietic and Intestinal Injury in Mice and Reduces Oxidative Stress. Antioxidants 2023, 12, 1417. https://doi.org/10.3390/antiox12071417
Kumar VP, Biswas S, Holmes-Hampton GP, Goesch T, Fahl W, Ghosh SP. PrC-210 Protects against Radiation-Induced Hematopoietic and Intestinal Injury in Mice and Reduces Oxidative Stress. Antioxidants. 2023; 12(7):1417. https://doi.org/10.3390/antiox12071417
Chicago/Turabian StyleKumar, Vidya P., Shukla Biswas, Gregory P. Holmes-Hampton, Torsten Goesch, William Fahl, and Sanchita P. Ghosh. 2023. "PrC-210 Protects against Radiation-Induced Hematopoietic and Intestinal Injury in Mice and Reduces Oxidative Stress" Antioxidants 12, no. 7: 1417. https://doi.org/10.3390/antiox12071417
APA StyleKumar, V. P., Biswas, S., Holmes-Hampton, G. P., Goesch, T., Fahl, W., & Ghosh, S. P. (2023). PrC-210 Protects against Radiation-Induced Hematopoietic and Intestinal Injury in Mice and Reduces Oxidative Stress. Antioxidants, 12(7), 1417. https://doi.org/10.3390/antiox12071417