To Prevent Oxidative Stress, What about Protoporphyrin IX, Biliverdin, and Bilirubin?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Free Radical Scavengers, Antioxidants, Antireductants, or Antiradicals
3.2. Interaction with Ca2+
3.3. Excited States and Photoactivation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hauber, M.E. The Book of Eggs; Chicago University Press: Chicago, IL, USA, 2014; ISBN 9781782400479. [Google Scholar]
- Hanley, D.; Grim, T.; Cassey, P.; Hauber, M.E. Not so colourful after all: Eggshell pigments constrain avian eggshell colour space. Biol. Lett. 2015, 11, 20150087. [Google Scholar] [CrossRef]
- Kennedy, G.; Vevers, H. A survey of avian eggshell pigments. Comp. Biochem. Physiol. Part B Comp. Biochem. 1976, 55, 117–123. [Google Scholar] [CrossRef] [PubMed]
- López-Rull, I.; Miksik, I.; Gil, D. Egg pigmentation reflects female and egg quality in the spotless starling Sturnus unicolor. Behav. Ecol. Sociobiol. 2008, 62, 1877–1884. [Google Scholar] [CrossRef]
- López-Rull, I.; Celis, P.; Gil, D. Egg Colour Covaries with female expression of a male ornament in the spotless starling (Sturnus unicolor). Ethology 2007, 113, 926–933. [Google Scholar] [CrossRef]
- Sparks, N.H.C. Eggshell pigments—From formation to deposition. Avian Biol. Res. 2011, 4, 162–167. [Google Scholar] [CrossRef]
- Florczyk, U.M.; Jozkowicz, A.; Dulak, J. Biliverdin reductase: New features of an old enzyme and its potential therapeutic significance. Pharmacol. Rep. 2008, 60, 38–48. [Google Scholar]
- Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin Is an Antioxidant of Possible Physiological Importance. Science 1987, 235, 1043–1046. [Google Scholar] [CrossRef]
- Asad, S.; Singh, S.; Ahmad, A.; Khan, N.U.; Hadi, S. Prooxidant and antioxidant activities of bilirubin and its metabolic precursor biliverdin: A structure—Activity study. Chem. Interactions 2001, 137, 59–74. [Google Scholar] [CrossRef]
- Baird, T.; Solomon, S.E.; Tedstone, D.R. Localisation and characterisation of egg shell porphyrins in several avian species. Br. Poult. Sci. 1975, 16, 201–208. [Google Scholar] [CrossRef]
- Hargitai, R.; Boross, N.; Hámori, S.; Neuberger, E.; Nyiri, Z. Eggshell Biliverdin and Protoporphyrin Pigments in a Songbird: Are They Derived from Erythrocytes, Blood Plasma, or the Shell Gland? Physiol. Biochem. Zool. 2017, 90, 613–626. [Google Scholar] [CrossRef]
- Wang, X.-T.; Deng, X.-M.; Zhao, C.-J.; Li, J.-Y.; Xu, G.-Y.; Lian, L.-S.; Wu, C.-X. Study of the Deposition Process of Eggshell Pigments Using an Improved Dissolution Method. Poult. Sci. 2007, 86, 2236–2238. [Google Scholar] [CrossRef] [PubMed]
- Gautron, J.; Stapane, L.; Le Roy, N.; Nys, Y.; Rodriguez-Navarro, A.B.; Hincke, M.T. Avian eggshell biomineralization: An update on its structure, mineralogy and protein tool kit. BMC Cell Biol. 2021, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Stoddard, M.C.; Kupán, K.; Eyster, H.N.; Rojas-Abreu, W.; Cruz-López, M.; Serrano-Meneses, M.A.; Küpper, C. Camouflage and Clutch Survival in Plovers and Terns. Sci. Rep. 2016, 6, 32059. [Google Scholar] [CrossRef] [PubMed]
- Stoddard, M.C.; Marshall, K.L.A.; Kilner, R.M. Imperfectly camouflaged avian eggs: Artefact or adaptation? Avian Biol. Res. 2011, 4, 196–213. [Google Scholar] [CrossRef]
- Lovell, P.G.; Ruxton, G.D.; Langridge, K.V.; Spencer, K.A. Egg-laying substrate selection for optimal camouflage by quail. Curr. Biol. 2013, 23, 260–264. [Google Scholar] [CrossRef]
- Moreno, J.; Osorno, J.L. Avian egg colour and sexual selection: Does eggshell pigmentation reflect female condition and genetic quality? Ecol. Lett. 2003, 6, 803–806. [Google Scholar] [CrossRef]
- Wisocki, P.A.; Kennelly, P.; Rojas Rivera, I.; Cassey, P.; Burkey, M.L.; Hanley, D. The global distribution of avian eggshell colours suggest a thermoregulatory benefit of darker pigmentation. Nat. Ecol. Evol. 2020, 4, 148–155. [Google Scholar] [CrossRef]
- Gosler, A.G.; Connora, O.R.; Bonserb, R.H.C. Protoporphyrin and eggshell strength: Preliminary findings from a passerine bird. Avian Biol. Res. 2011, 4, 214–223. [Google Scholar] [CrossRef]
- García-Navas, V.; Sanz, J.J.; Merino, S.; Martínez de la Fuente, J.; Lobato, E.; del Cerro, S.; Rivero, J.; Ruíz de Casteñeda, R.; Moreno, J. Experimental evidence for the role of calcium in eggshell pigmentation pattern and breeding performance in Blue Tits Cyanistes caeruleus. J. Ornithol. 2011, 152, 71–82. [Google Scholar] [CrossRef]
- Hargitai, R.; Nagy, G.; Herényi, M.; Török, J. Effects of experimental calcium availability, egg parameters and laying order on Great Tit Parus major eggshell pigmentation patterns. Ibis 2013, 155, 561–570. [Google Scholar] [CrossRef]
- Ishikawa, S.I.; Suzuki, K.; Fukuda, E.; Arihara, K.; Yamamoto, Y.; Mukai, T.; Itoh, M. Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett. 2010, 584, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Fargallo, J.A.; López-Rull, I.; Mikšík, I.; Eckhardt, A.; Peralta-Sánchez, J.M. Eggshell pigmentation has no evident effects on offspring viability in common kestrels. Evol. Ecol. 2014, 28, 627–637. [Google Scholar] [CrossRef]
- Maurer, G.; Portugal, S.J.; Cassey, P. Review: An embryo’s eye view of avian eggshell pigmentation. J. Avian Biol. 2011, 42, 494–504. [Google Scholar] [CrossRef]
- Morales, J. Eggshell biliverdin as an antioxidant maternal effect biliverdin as an antioxidant resource in oviparous animals. BioEssays 2020, 42, 2000010. [Google Scholar] [CrossRef] [PubMed]
- Stocker, R.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Antioxidant activities of bile pigments: Biliverdin and bilirubin. Methods Enzymol. 1990, 186, 301–309. [Google Scholar] [PubMed]
- Jansen, T.; Daiber, A. Direct antioxidant properties of bilirubin and biliverdin. Is there a role for biliverdin reductase? Front. Pharmacol. 2012, 3, 30. [Google Scholar] [CrossRef]
- Jayanti, S.; Vítek, L.; Tiribelli, C.; Gazzin, S. The Role of Bilirubin and the Other “Yellow Players” in Neurodegenerative Diseases. Antioxidants 2020, 9, 900. [Google Scholar] [CrossRef]
- Afonso, S.; Vanore, G.; Batlle, A. Protoporphyrin IX and oxidative stress. Free. Radic. Res. 1999, 31, 161–170. [Google Scholar] [CrossRef]
- Martínez, A.; Rodríguez-Gironés, M.A.; Barbosa, A.; Costas, M. Donator Acceptor Map for Carotenoids, Melatonin and Vitamins. J. Phys. Chem. A 2008, 112, 9037–9042. [Google Scholar] [CrossRef]
- Martínez, A.; Barbosa, A. Antiradical Power of Carotenoids and Vitamin E: Testing the Hydrogen Atom Transfer Mechanism. J. Phys. Chem. B 2008, 112, 16945–16951. [Google Scholar] [CrossRef]
- Martínez, A.; Vargas, R.; Galano, A. What is Important to Prevent Oxidative Stress? A Theoretical Study on Electron-Transfer Reactions between Carotenoids and Free Radicals. J. Phys. Chem. B 2009, 113, 12113–12120. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Rodríguez-Gironés, M.Á.; Barbosa, A. Can bird carotenoids play an antioxidant role oxidizing other substances? Ardeola 2009, 56, 287–294. [Google Scholar]
- Galano, A.; Vargas, R.; Martínez, A. Carotenoids can act as antioxidants by oxidizing the superoxide radical anion. Phys. Chem. Chem. Phys. 2010, 12, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.08, Wallingford, CT, 2009; D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Petersson, G.A.; Al-Laham, M.A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 1991, 94, 6081–6090. [Google Scholar] [CrossRef]
- Dunnning, T.H., Jr.; Hay, P.J. Modern Theoretical Chemistry; Schaefer, H.F., III, Ed.; Plenum: New York, NY, USA, 1977; Volume 3, pp. 1–28. [Google Scholar]
- Adamo, C.; Jacquemin, D. The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. [Google Scholar] [CrossRef]
- Laurent, A.D.; Adamo, C.; Jacquemin, D. Dye chemistry with time-dependent density functional theory. Phys. Chem. Chem. Phys. 2014, 16, 14334–14356. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Geerlings, P.; Chamorro, E.; Chattaraj, P.K.; De Proft, F.; Gázquez, J.L.; Liu, S.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P. Conceptual density functional theory: Status, prospects, issues. Theor. Chem. Acc. 2020, 139, 36. [Google Scholar] [CrossRef]
- Gázquez, J.L.; Cedillo, A.; Vela, A. Electrodonating and Electroaccepting Powers. J. Phys. Chem. A 2007, 111, 1966–1970. [Google Scholar] [CrossRef]
- Gázquez, J.L. Perspectives on the density functional theory of chemical reactivity. J. Mex. Chem. Soc. 2008, 52, 3–10. [Google Scholar]
- Pearson, R.G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 1968, 45, 581–587. [Google Scholar] [CrossRef]
- Alfaro, R.A.D.; Gomez-Sandoval, Z.; Mammino, L. Evaluation of the antiradical activity of hyperjovinol-A utilizing donor-acceptor maps. J. Mol. Model. 2014, 20, 2337. [Google Scholar] [CrossRef] [PubMed]
- Becker, P.M. Antireduction: An ancient strategy fit for future. Biosci. Rep. 2016, 36, e00367. [Google Scholar] [CrossRef]
- Colominas-Ciuró, R.; Bertellotti, M.; D’amico, V.L.; Carabajal, E.; Benzal, J.; Vidal, V.; Motas, M.; Barbosa, A. Sex matters? Association between foraging behaviour, diet, and physiology in Magellanic penguins. Mar. Biol. 2022, 169, 21. [Google Scholar] [CrossRef]
- Trigo, S.; Mota, P.G. What is the value of a yellow patch? Assessing the signalling role of yellow colouration in the European serin. Behav. Ecol. Sociobiol. 2015, 69, 481–490. [Google Scholar] [CrossRef]
- Papa, T.B.R.; Pinho, V.D.; do Nascimento, E.S.P.; Santos, W.G.; Burtoloso, A.C.B.; Skibsted, L.H.; Cardoso, D.R. Astaxanthin diferulate as a bifunctional antioxidant. Free. Radic. Res. 2015, 49, 102–111. [Google Scholar] [CrossRef]
- Kopena, R.; López, P.; Martín, J. What are carotenoids signaling? Immunostimulatory effects of dietary vitamin E, but not of carotenoids, in Iberian green lizards. Naturwissenschaften 2014, 101, 1107–1114. [Google Scholar] [CrossRef]
- Runemark, A.; Gabirot, M.; Svensson, E.I. Population divergence in chemical signals and the potential for premating isolation between islet- and mainland populations of the Skyros wall lizard (Podarcis gaigeae). J. Evol. Biol. 2011, 24, 795–809. [Google Scholar] [CrossRef]
- García-de Blas, E.; Mateo, R.; Alonso-Alvarez, C. Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals. PeerJ 2016, 4, e2237. [Google Scholar] [CrossRef] [PubMed]
- del Val, E.; Senar, J.C.; Garrido-Fernández, J.; Jarén, M.; Borràs, A.; Cabrera, J.; Negro, J.J. The liver but not the skin is the site for conversion of a red carotenoid in a passerine bird. Naturwissenschaften 2009, 96, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Skibsted, L.H. Carotenoids in Antioxidant Networks. Colorants or Radical Scavengers. J. Agric. Food Chem. 2012, 60, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Abbas, G.; Alagawany, M.; Kamboh, A.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Chao, S. Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol. 2019, 84, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, M. Current Trends in Computational Quantum Chemistry Studies on Antioxidant Radical Scavenging Activity. J. Chem. Inf. Model. 2022, 62, 2639–2658. [Google Scholar] [CrossRef]
- Spiegel, M.; Gamian, A.; Sroka, Z. A Statistically Supported Antioxidant Activity DFT Benchmark—The Effects of Hartree–Fock Exchange and Basis Set Selection on Accuracy and Resources Uptake. Molecules 2021, 26, 5058. [Google Scholar] [CrossRef]
- Kirschweng, B.; Tátraaljai, D.; Földes, E.; Pukánszky, B. Natural antioxidants as stabilizers for polymers. Polym. Degrad. Stab. 2017, 145, 25–40. [Google Scholar] [CrossRef]
- Fathia, P.; Roslenda, A.; Mehtab, K.; Moitrac, P.; Zhangb, K.; Pana, D. UV-trained and metal-enhanced fluorescence of biliverdin and biliverdin nanoparticle. Nanoscale 2021, 13, 4785–4798. [Google Scholar] [CrossRef]
System | E (Triplet) | Singlet | ΔE (t-s) |
---|---|---|---|
PP | −1835.725452 | −1835.791581 | 1.80 eV |
BV | −1948.107976 | −1948.158904 | 1.39 eV |
PP-Ca | −2512.278101 | −2512.345637 | 1.84 eV |
BV-Ca | −2624.627534 | −2624.677715 | 1.37 eV |
O2 | −150.313875 | −150.291324 | −0.61 eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, A.; López-Rull, I.; Fargallo, J.A. To Prevent Oxidative Stress, What about Protoporphyrin IX, Biliverdin, and Bilirubin? Antioxidants 2023, 12, 1662. https://doi.org/10.3390/antiox12091662
Martínez A, López-Rull I, Fargallo JA. To Prevent Oxidative Stress, What about Protoporphyrin IX, Biliverdin, and Bilirubin? Antioxidants. 2023; 12(9):1662. https://doi.org/10.3390/antiox12091662
Chicago/Turabian StyleMartínez, Ana, Isabel López-Rull, and Juan A. Fargallo. 2023. "To Prevent Oxidative Stress, What about Protoporphyrin IX, Biliverdin, and Bilirubin?" Antioxidants 12, no. 9: 1662. https://doi.org/10.3390/antiox12091662
APA StyleMartínez, A., López-Rull, I., & Fargallo, J. A. (2023). To Prevent Oxidative Stress, What about Protoporphyrin IX, Biliverdin, and Bilirubin? Antioxidants, 12(9), 1662. https://doi.org/10.3390/antiox12091662