Anthocyanin Effects on Vascular and Endothelial Health: Evidence from Clinical Trials and Role of Gut Microbiota Metabolites
Abstract
:1. Introduction
2. Markers of Vascular and Endothelial Function
3. Clinical Studies on Anthocyanin-Containing Whole Fruits
4. Clinical Studies on Anthocyanin-Containing Fruit Juices
5. Clinical Studies on Anthocyanin-Containing Extracts
6. Clinical Studies on Anthocyanins Administered in Capsules/Tablets
7. Anthocyanins and Their Gut-Microbiota Derived Metabolites on CVD
8. Strengths and Limitations of Existing Evidence
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021, 398, 957–980. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Oliveras, A.; de la Sierra, A. Resistant hypertension: Patient characteristics, risk factors, co-morbidities and outcomes. J. Hum. Hypertens. 2014, 28, 213–217. [Google Scholar] [CrossRef]
- GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [CrossRef]
- Zhao, D.; Qi, Y.; Zheng, Z.; Wang, Y.; Zhang, X.-Y.; Li, H.-J.; Liu, H.-H.; Zhang, X.-T.; Du, J.; Liu, J. Dietary factors associated with hypertension. Nat. Rev. Cardiol. 2011, 8, 456–465. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2017, 8, 793–803. [Google Scholar] [CrossRef]
- Alappat, B.; Alappat, J. Anthocyanin pigments: Beyond aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef]
- Speer, H.; D’Cunha, N.M.; Alexopoulos, N.I.; McKune, A.J.; Naumovski, N. Anthocyanins and Human Health-A Focus on Oxidative Stress, Inflammation and Disease. Antioxidants 2020, 9, 366. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef]
- Micek, A.; Godos, J.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose-Response Meta-Analysis. Mol. Nutr. Food Res. 2021, 65, e2001019. [Google Scholar] [CrossRef]
- Godos, J.; Vitale, M.; Micek, A.; Ray, S.; Martini, D.; Del Rio, D.; Riccardi, G.; Galvano, F.; Grosso, G. Dietary Polyphenol Intake, Blood Pressure, and Hypertension: A Systematic Review and Meta-Analysis of Observational Studies. Antioxidants 2019, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Hair, R.; Sakaki, J.R.; Chun, O.K. Anthocyanins, microbiome and health benefits in aging. Molecules 2021, 26, 537. [Google Scholar] [CrossRef]
- Bencivenga, L.; De Souto Barreto, P.; Rolland, Y.; Hanon, O.; Vidal, J.-S.; Cestac, P.; Vellas, B.; Rouch, L. Blood pressure variability: A potential marker of aging. Ageing Res. Rev. 2022, 80, 101677. [Google Scholar] [CrossRef]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef]
- Goncharov, N.V.; Nadeev, A.D.; Jenkins, R.O.; Avdonin, P.V. Markers and biomarkers of endothelium: When something is rotten in the state. Oxid. Med. Cell. Longev. 2017, 2017, 9759735. [Google Scholar] [CrossRef]
- Farah, C.; Michel, L.Y.M.; Balligand, J.-L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 2018, 15, 292–316. [Google Scholar] [CrossRef]
- Defagó, M.D.; Marchiori, G.N. Biomarkers of endothelial dysfunction in relation to nutrition. In Biomarkers in Nutrition; Patel, V.B., Preedy, V.R., Eds.; Biomarkers in disease: Methods, discoveries and applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–21. ISBN 978-3-030-81304-8. [Google Scholar]
- Lawson, C.; Wolf, S. ICAM-1 signaling in endothelial cells. Pharmacol. Rep. 2009, 61, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Cook-Mills, J.M.; Marchese, M.E.; Abdala-Valencia, H. Vascular cell adhesion molecule-1 expression and signaling during disease: Regulation by reactive oxygen species and antioxidants. Antioxid. Redox Signal. 2011, 15, 1607–1638. [Google Scholar] [CrossRef]
- Forester, S.C.; Choy, Y.Y.; Waterhouse, A.L.; Oteiza, P.I. The anthocyanin metabolites gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde decrease human colon cancer cell viability by regulating pro-oncogenic signals. Mol. Carcinog. 2014, 53, 432–439. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Hashimoto, Y.; Kobayashi, R.; Nakazato, K.; Willems, M.E.T. Effects of blackcurrant extract on arterial functions in older adults: A randomized, double-blind, placebo-controlled, crossover trial. Clin. Exp. Hypertens. 2020, 42, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Erlund, I.; Koli, R.; Alfthan, G.; Marniemi, J.; Puukka, P.; Mustonen, P.; Mattila, P.; Jula, A. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am. J. Clin. Nutr. 2008, 87, 323–331. [Google Scholar] [CrossRef]
- Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010, 140, 1582–1587. [Google Scholar] [CrossRef]
- Curtis, P.J.; van der Velpen, V.; Berends, L.; Jennings, A.; Feelisch, M.; Umpleby, A.M.; Evans, M.; Fernandez, B.O.; Meiss, M.S.; Minnion, M.; et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 1535–1545. [Google Scholar] [CrossRef]
- Schell, J.; Betts, N.M.; Lyons, T.J.; Basu, A. Raspberries Improve Postprandial Glucose and Acute and Chronic Inflammation in Adults with Type 2 Diabetes. Ann. Nutr. Metab. 2019, 74, 165–174. [Google Scholar] [CrossRef]
- Kimble, R.; Murray, L.; Keane, K.M.; Haggerty, K.; Howatson, G.; Lodge, J.K. The influence of tart cherries (Prunus cerasus) on vascular function and the urinary metabolome: A randomised placebo-controlled pilot study. J. Nutr. Sci. 2021, 10, e73. [Google Scholar] [CrossRef]
- Siasos, G.; Tousoulis, D.; Kokkou, E.; Oikonomou, E.; Kollia, M.-E.; Verveniotis, A.; Gouliopoulos, N.; Zisimos, K.; Plastiras, A.; Maniatis, K.; et al. Favorable effects of concord grape juice on endothelial function and arterial stiffness in healthy smokers. Am. J. Hypertens. 2014, 27, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Ray, S.; Craigie, A.M.; Kennedy, G.; Hill, A.; Barton, K.L.; Broughton, J.; Belch, J.J.F. Lowering of oxidative stress improves endothelial function in healthy subjects with habitually low intake of fruit and vegetables: A randomized controlled trial of antioxidant- and polyphenol-rich blackcurrant juice. Free Radic. Biol. Med. 2014, 72, 232–237. [Google Scholar] [CrossRef]
- Loo, B.-M.; Erlund, I.; Koli, R.; Puukka, P.; Hellström, J.; Wähälä, K.; Mattila, P.; Jula, A. Consumption of chokeberry (Aronia mitschurinii) products modestly lowered blood pressure and reduced low-grade inflammation in patients with mildly elevated blood pressure. Nutr. Res. 2016, 36, 1222–1230. [Google Scholar] [CrossRef]
- Whyte, A.R.; Cheng, N.; Fromentin, E.; Williams, C.M. A Randomized, Double-Blinded, Placebo-Controlled Study to Compare the Safety and Efficacy of Low Dose Enhanced Wild Blueberry Powder and Wild Blueberry Extract (ThinkBlueTM) in Maintenance of Episodic and Working Memory in Older Adults. Nutrients 2018, 10, 660. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.C.; Davis, K.; Wright, R.S.; Kuczmarski, M.F.; Zhang, Z. Impact of tart cherry juice on systolic blood pressure and low-density lipoprotein cholesterol in older adults: A randomized controlled trial. Food Funct. 2018, 9, 3185–3194. [Google Scholar] [CrossRef]
- Li, L.; Lyall, G.K.; Martinez-Blazquez, J.A.; Vallejo, F.; A Tomas-Barberan, F.; Birch, K.M.; Boesch, C. Blood Orange Juice Consumption Increases Flow-Mediated Dilation in Adults with Overweight and Obesity: A Randomized Controlled Trial. J. Nutr. 2020, 150, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Lynn, A.; Mathew, S.; Moore, C.T.; Russell, J.; Robinson, E.; Soumpasi, V.; Barker, M.E. Effect of a tart cherry juice supplement on arterial stiffness and inflammation in healthy adults: A randomised controlled trial. Plant Foods Hum. Nutr. 2014, 69, 122–127. [Google Scholar] [CrossRef]
- Lamport, D.J.; Lawton, C.L.; Merat, N.; Jamson, H.; Myrissa, K.; Hofman, D.; Chadwick, H.K.; Quadt, F.; Wightman, J.D.; Dye, L. Concord grape juice, cognitive function, and driving performance: A 12-wk, placebo-controlled, randomized crossover trial in mothers of preteen children. Am. J. Clin. Nutr. 2016, 103, 775–783. [Google Scholar] [CrossRef]
- Desai, T.; Bottoms, L.; Roberts, M. The effects of Montmorency tart cherry juice supplementation and FATMAX exercise on fat oxidation rates and cardio-metabolic markers in healthy humans. Eur. J. Appl. Physiol. 2018, 118, 2523–2539. [Google Scholar] [CrossRef]
- Aviram, M.; Rosenblat, M.; Gaitini, D.; Nitecki, S.; Hoffman, A.; Dornfeld, L.; Volkova, N.; Presser, D.; Attias, J.; Liker, H.; et al. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin. Nutr. 2004, 23, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Fu, D.X.; Wilkinson, M.; Simmons, B.; Wu, M.; Betts, N.M.; Du, M.; Lyons, T.J. Strawberries decrease atherosclerotic markers in subjects with metabolic syndrome. Nutr. Res. 2010, 30, 462–469. [Google Scholar] [CrossRef]
- Dohadwala, M.M.; Holbrook, M.; Hamburg, N.M.; Shenouda, S.M.; Chung, W.B.; Titas, M.; Kluge, M.A.; Wang, N.; Palmisano, J.; Milbury, P.E.; et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am. J. Clin. Nutr. 2011, 93, 934–940. [Google Scholar] [CrossRef]
- Ruel, G.; Lapointe, A.; Pomerleau, S.; Couture, P.; Lemieux, S.; Lamarche, B.; Couillard, C. Evidence that cranberry juice may improve augmentation index in overweight men. Nutr. Res. 2013, 33, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Amani, R.; Moazen, S.; Shahbazian, H.; Ahmadi, K.; Jalali, M.T. Flavonoid-rich beverage effects on lipid profile and blood pressure in diabetic patients. World J. Diabetes 2014, 5, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Sahebkar, A.; Afshani, M.R.; Keshvari, M.; Haghjooyjavanmard, S.; Rafieian-Kopaei, M. Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phytother. Res. 2014, 28, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Tjelle, T.E.; Holtung, L.; Bøhn, S.K.; Aaby, K.; Thoresen, M.; Wiik, S.Å.; Paur, I.; Karlsen, A.S.; Retterstøl, K.; Iversen, P.O.; et al. Polyphenol-rich juices reduce blood pressure measures in a randomised controlled trial in high normal and hypertensive volunteers. Br. J. Nutr. 2015, 114, 1054–1063. [Google Scholar] [CrossRef]
- Kent, K.; Charlton, K.; Roodenrys, S.; Batterham, M.; Potter, J.; Traynor, V.; Gilbert, H.; Morgan, O.; Richards, R. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur. J. Nutr. 2017, 56, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Moazzen, H.; Alizadeh, M. Effects of Pomegranate Juice on Cardiovascular Risk Factors in Patients with Metabolic Syndrome: A Double-Blinded, Randomized Crossover Controlled Trial. Plant Foods Hum. Nutr. 2017, 72, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Stull, A.J.; Cash, K.C.; Johnson, W.D.; Champagne, C.M.; Cefalu, W.T. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010, 140, 1764–1768. [Google Scholar] [CrossRef]
- Basu, A.; Betts, N.M.; Ortiz, J.; Simmons, B.; Wu, M.; Lyons, T.J. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr. Res. 2011, 31, 190–196. [Google Scholar] [CrossRef]
- Krikorian, R.; Boespflug, E.L.; Fleck, D.E.; Stein, A.L.; Wightman, J.D.; Shidler, M.D.; Sadat-Hossieny, S. Concord grape juice supplementation and neurocognitive function in human aging. J. Agric. Food Chem. 2012, 60, 5736–5742. [Google Scholar] [CrossRef]
- Flammer, A.J.; Martin, E.A.; Gössl, M.; Widmer, R.J.; Lennon, R.J.; Sexton, J.A.; Loeffler, D.; Khosla, S.; Lerman, L.O.; Lerman, A. Polyphenol-rich cranberry juice has a neutral effect on endothelial function but decreases the fraction of osteocalcin-expressing endothelial progenitor cells. Eur. J. Nutr. 2013, 52, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Betts, N.M.; Nguyen, A.; Newman, E.D.; Fu, D.; Lyons, T.J. Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. J. Nutr. 2014, 144, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.A.; Baer, D.J.; Khoo, C.; Gebauer, S.K.; Charron, C.S. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J. Nutr. 2015, 145, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Stote, K.S.; Sweeney, M.I.; Kean, T.; Baer, D.J.; Novotny, J.A.; Shakerley, N.L.; Chandrasekaran, A.; Carrico, P.M.; Melendez, J.A.; Gottschall-Pass, K.T. The effects of 100% wild blueberry (Vaccinium angustifolium) juice consumption on cardiometablic biomarkers: A randomized, placebo-controlled, crossover trial in adults with increased risk for type 2 diabetes. BMC Nutr. 2017, 3, 45. [Google Scholar] [CrossRef]
- Kojadinovic, M.I.; Arsic, A.C.; Debeljak-Martacic, J.D.; Konic-Ristic, A.I.; Kardum, N.D.; Popovic, T.B.; Glibetic, M.D. Consumption of pomegranate juice decreases blood lipid peroxidation and levels of arachidonic acid in women with metabolic syndrome. J. Sci. Food Agric. 2017, 97, 1798–1804. [Google Scholar] [CrossRef]
- Hollands, W.J.; Armah, C.N.; Doleman, J.F.; Perez-Moral, N.; Winterbone, M.S.; Kroon, P.A. 4-Week consumption of anthocyanin-rich blood orange juice does not affect LDL-cholesterol or other biomarkers of CVD risk and glycaemia compared with standard orange juice: A randomised controlled trial. Br. J. Nutr. 2018, 119, 415–421. [Google Scholar] [CrossRef]
- Espinosa-Moncada, J.; Marín-Echeverri, C.; Galvis-Pérez, Y.; Ciro-Gómez, G.; Aristizábal, J.C.; Blesso, C.N.; Fernandez, M.L.; Barona-Acevedo, J. Evaluation of Agraz Consumption on Adipocytokines, Inflammation, and Oxidative Stress Markers in Women with Metabolic Syndrome. Nutrients 2018, 10, 1639. [Google Scholar] [CrossRef]
- Pokimica, B.; García-Conesa, M.-T.; Zec, M.; Debeljak-Martačić, J.; Ranković, S.; Vidović, N.; Petrović-Oggiano, G.; Konić-Ristić, A.; Glibetić, M. Chokeberry juice containing polyphenols does not affect cholesterol or blood pressure but modifies the composition of plasma phospholipids fatty acids in individuals at cardiovascular risk. Nutrients 2019, 11, 850. [Google Scholar] [CrossRef]
- Johnson, S.A.; Navaei, N.; Pourafshar, S.; Jaime, S.J.; Akhavan, N.S.; Alvarez-Alvarado, S.; Proaño, G.V.; Litwin, N.S.; Clark, E.A.; Foley, E.M.; et al. Effects of Montmorency Tart Cherry Juice Consumption on Cardiometabolic Biomarkers in Adults with Metabolic Syndrome: A Randomized Controlled Pilot Trial. J. Med. Food 2020, 23, 1238–1247. [Google Scholar] [CrossRef]
- Jiménez, J.P.; Serrano, J.; Tabernero, M.; Arranz, S.; Díaz-Rubio, M.E.; García-Diz, L.; Goñi, I.; Saura-Calixto, F. Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutrition 2008, 24, 646–653. [Google Scholar] [CrossRef]
- Ras, R.T.; Zock, P.L.; Zebregs, Y.E.M.P.; Johnston, N.R.; Webb, D.J.; Draijer, R. Effect of polyphenol-rich grape seed extract on ambulatory blood pressure in subjects with pre- and stage I hypertension. Br. J. Nutr. 2013, 110, 2234–2241. [Google Scholar] [CrossRef]
- Terauchi, M.; Horiguchi, N.; Kajiyama, A.; Akiyoshi, M.; Owa, Y.; Kato, K.; Kubota, T. Effects of grape seed proanthocyanidin extract on menopausal symptoms, body composition, and cardiovascular parameters in middle-aged women: A randomized, double-blind, placebo-controlled pilot study. Menopause 2014, 21, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Istas, G.; Wood, E.; Le Sayec, M.; Rawlings, C.; Yoon, J.; Dandavate, V.; Cera, D.; Rampelli, S.; Costabile, A.; Fromentin, E.; et al. Effects of aronia berry (poly)phenols on vascular function and gut microbiota: A double-blind randomized controlled trial in adult men. Am. J. Clin. Nutr. 2019, 110, 316–329. [Google Scholar] [CrossRef]
- Ahles, S.; Stevens, Y.R.; Joris, P.J.; Vauzour, D.; Adam, J.; de Groot, E.; Plat, J. The Effect of Long-Term Aroniamelanocarpa Extract Supplementation on Cognitive Performance, Mood, and Vascular Function: A Randomized Controlled Trial in Healthy, Middle-Aged Individuals. Nutrients 2020, 12, 2475. [Google Scholar] [CrossRef]
- Hansen, A.S.; Marckmann, P.; Dragsted, L.O.; Finné Nielsen, I.L.; Nielsen, S.E.; Grønbaek, M. Effect of red wine and red grape extract on blood lipids, haemostatic factors, and other risk factors for cardiovascular disease. Eur. J. Clin. Nutr. 2005, 59, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.D.; Myers, S.D.; Blacker, S.D.; Willems, M.E.T. New Zealand blackcurrant extract improves cycling performance and fat oxidation in cyclists. Eur. J. Appl. Physiol. 2015, 115, 2357–2365. [Google Scholar] [CrossRef] [PubMed]
- Schell, J.; Scofield, R.H.; Barrett, J.R.; Kurien, B.T.; Betts, N.; Lyons, T.J.; Zhao, Y.D.; Basu, A. Strawberries Improve Pain and Inflammation in Obese Adults with Radiographic Evidence of Knee Osteoarthritis. Nutrients 2017, 9, 949. [Google Scholar] [CrossRef]
- Kimble, R.; Keane, K.M.; Lodge, J.K.; Howatson, G. The Influence of Tart Cherry (Prunus cerasus, cv Montmorency) Concentrate Supplementation for 3 Months on Cardiometabolic Risk Factors in Middle-Aged Adults: A Randomised, Placebo-Controlled Trial. Nutrients 2021, 13, 1417. [Google Scholar] [CrossRef] [PubMed]
- Riso, P.; Klimis-Zacas, D.; Del Bo’, C.; Martini, D.; Campolo, J.; Vendrame, S.; Møller, P.; Loft, S.; De Maria, R.; Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961. [Google Scholar] [CrossRef]
- Thompson, K.; Hosking, H.; Pederick, W.; Singh, I.; Santhakumar, A.B. The effect of anthocyanin supplementation in modulating platelet function in sedentary population: A randomised, double-blind, placebo-controlled, cross-over trial. Br. J. Nutr. 2017, 118, 368–374. [Google Scholar] [CrossRef]
- Naruszewicz, M.; Laniewska, I.; Millo, B.; Dłuzniewski, M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 2007, 194, e179–e184. [Google Scholar] [CrossRef] [PubMed]
- Barona, J.; Aristizabal, J.C.; Blesso, C.N.; Volek, J.S.; Fernandez, M.L. Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. J. Nutr. 2012, 142, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Stull, A.J.; Cash, K.C.; Champagne, C.M.; Gupta, A.K.; Boston, R.; Beyl, R.A.; Johnson, W.D.; Cefalu, W.T. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2015, 7, 4107–4123. [Google Scholar] [CrossRef] [PubMed]
- Feresin, R.G.; Johnson, S.A.; Pourafshar, S.; Campbell, J.C.; Jaime, S.J.; Navaei, N.; Elam, M.L.; Akhavan, N.S.; Alvarez-Alvarado, S.; Tenenbaum, G.; et al. Impact of daily strawberry consumption on blood pressure and arterial stiffness in pre- and stage 1-hypertensive postmenopausal women: A randomized controlled trial. Food Funct. 2017, 8, 4139–4149. [Google Scholar] [CrossRef]
- Arevström, L.; Bergh, C.; Landberg, R.; Wu, H.; Rodriguez-Mateos, A.; Waldenborg, M.; Magnuson, A.; Blanc, S.; Fröbert, O. Freeze-dried bilberry (Vaccinium myrtillus) dietary supplement improves walking distance and lipids after myocardial infarction: An open-label randomized clinical trial. Nutr. Res. 2019, 62, 13–22. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, M.; Yang, Y.; Liu, F.; Li, Z.; Hao, Y.; Mi, M.; Jin, T.; Ling, W. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin. Chem. 2011, 57, 1524–1533. [Google Scholar] [CrossRef]
- Jeong, H.S.; Kim, S.; Hong, S.J.; Choi, S.C.; Choi, J.-H.; Kim, J.-H.; Park, C.-Y.; Cho, J.Y.; Lee, T.-B.; Kwon, J.-W.; et al. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial. J. Med. Food 2016, 19, 346–352. [Google Scholar] [CrossRef]
- Curtis, P.J.; Kroon, P.A.; Hollands, W.J.; Walls, R.; Jenkins, G.; Kay, C.D.; Cassidy, A. Cardiovascular disease risk biomarkers and liver and kidney function are not altered in postmenopausal women after ingesting an elderberry extract rich in anthocyanins for 12 weeks. J. Nutr. 2009, 139, 2266–2271. [Google Scholar] [CrossRef]
- Hassellund, S.S.; Flaa, A.; Sandvik, L.; Kjeldsen, S.E.; Rostrup, M. Effects of anthocyanins on blood pressure and stress reactivity: A double-blind randomized placebo-controlled crossover study. J. Hum. Hypertens. 2012, 26, 396–404. [Google Scholar] [CrossRef]
- Davinelli, S.; Bertoglio, J.C.; Zarrelli, A.; Pina, R.; Scapagnini, G. A Randomized Clinical Trial Evaluating the Efficacy of an Anthocyanin-Maqui Berry Extract (Delphinol®) on Oxidative Stress Biomarkers. J. Am. Coll. Nutr. 2015, 34 (Suppl. S1), 28–33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, Y.; Song, F.; Yao, Y.; Ya, F.; Li, D.; Ling, W.; Yang, Y. Effects of purified anthocyanin supplementation on platelet chemokines in hypocholesterolemic individuals: A randomized controlled trial. Nutr. Metab. 2016, 13, 86. [Google Scholar] [CrossRef]
- Estévez-Santiago, R.; Silván, J.M.; Can-Cauich, C.A.; Veses, A.M.; Alvarez-Acero, I.; Martinez-Bartolome, M.A.; San-Román, R.; Cámara, M.; Olmedilla-Alonso, B.; de Pascual-Teresa, S. Lack of a Synergistic Effect on Cardiometabolic and Redox Markers in a Dietary Supplementation with Anthocyanins and Xanthophylls in Postmenopausal Women. Nutrients 2019, 11, 1533. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, F.; Wang, Y.; Chen, J.; Tao, J.; Tian, G.; Wu, S.; Liu, W.; Cui, Q.; Geng, B.; et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017, 5, 14. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Oniszczuk, T.; Gancarz, M.; Szymańska, J. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases. Molecules 2021, 26, 1172. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Bi, J.; Chen, Q.; Cui, H.; Bao, Y.; Tian, J.; Shu, C.; Wang, Y.; Tan, H.; Zhang, W.; et al. Effect of Blueberry Anthocyanin-Rich Extracts on Peripheral and Hippocampal Antioxidant Defensiveness: The Analysis of the Serum Fatty Acid Species and Gut Microbiota Profile. J. Agric. Food Chem. 2021, 69, 3658–3666. [Google Scholar] [CrossRef]
- Liu, J.; Hao, W.; He, Z.; Kwek, E.; Zhu, H.; Ma, N.; Ma, K.Y.; Chen, Z.-Y. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet. Eur. J. Nutr. 2021, 60, 2735–2746. [Google Scholar] [CrossRef]
- Pan, P.; Lam, V.; Salzman, N.; Huang, Y.-W.; Yu, J.; Zhang, J.; Wang, L.-S. Black Raspberries and Their Anthocyanin and Fiber Fractions Alter the Composition and Diversity of Gut Microbiota in F-344 Rats. Nutr. Cancer 2017, 69, 943–951. [Google Scholar] [CrossRef]
- Gu, J.; Thomas-Ahner, J.M.; Riedl, K.M.; Bailey, M.T.; Vodovotz, Y.; Schwartz, S.J.; Clinton, S.K. Dietary black raspberries impact the colonic microbiome and phytochemical metabolites in mice. Mol. Nutr. Food Res. 2019, 63, e1800636. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, S.; Wang, J.; Shi, J.; Sun, Y.; Wang, W.; Ning, G.; Hong, J.; Liu, R. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol. Nutr. Food Res. 2017, 61, 1601082. [Google Scholar] [CrossRef] [PubMed]
- Overall, J.; Bonney, S.A.; Wilson, M.; Beermann, A.; Grace, M.H.; Esposito, D.; Lila, M.A.; Komarnytsky, S. Metabolic Effects of Berries with Structurally Diverse Anthocyanins. Int. J. Mol. Sci. 2017, 18, 422. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Godos, J.; Currenti, W.; Micek, A.; Falzone, L.; Libra, M.; Giampieri, F.; Forbes-Hernández, T.Y.; Quiles, J.L.; Battino, M.; et al. The effect of dietary polyphenols on vascular health and hypertension: Current evidence and mechanisms of action. Nutrients 2022, 14, 545. [Google Scholar] [CrossRef]
- Krga, I.; Milenkovic, D.; Morand, C.; Monfoulet, L.E. An update on the role of nutrigenomic modulations in mediating the cardiovascular protective effect of fruit polyphenols. Food Funct. 2016, 7, 3656–3676. [Google Scholar] [CrossRef] [PubMed]
- Festa, J.; Da Boit, M.; Hussain, A.; Singh, H. Potential benefits of berry anthocyanins on vascular function. Mol. Nutr. Food Res. 2021, 65, e2100170. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut microbiota and cardiovascular disease. Circ. Res. 2020, 127, 553–570. [Google Scholar] [CrossRef]
- Blumberg, J.B.; Basu, A.; Krueger, C.G.; Lila, M.A.; Neto, C.C.; Novotny, J.A.; Reed, J.D.; Rodriguez-Mateos, A.; Toner, C.D. Impact of cranberries on gut microbiota and cardiometabolic health: Proceedings of the cranberry health research conference 2015. Adv. Nutr. 2016, 7, 759S–770S. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and human health: The role of bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Najjar, R.S.; Turner, C.G.; Wong, B.J.; Feresin, R.G. Berry-Derived Polyphenols in Cardiovascular Pathologies: Mechanisms of Disease and the Role of Diet and Sex. Nutrients 2021, 13, 387. [Google Scholar] [CrossRef]
- van Dijk, C.; Driessen, A.J.; Recourt, K. The uncoupling efficiency and affinity of flavonoids for vesicles. Biochem. Pharmacol. 2000, 60, 1593–1600. [Google Scholar] [CrossRef]
- Phipps, A.N.; Stewart, J.; Wright, B.; Wilson, I.D. Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity. Xenobiotica 1998, 28, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, B.L.; Ruthven, C.R.; Sandler, M. Gut flora and the origin of some urinary aromatic phenolic compounds. Biochem. Pharmacol. 1994, 47, 2294–2297. [Google Scholar] [CrossRef] [PubMed]
- Aura, A.-M.; Martin-Lopez, P.; O’Leary, K.A.; Williamson, G.; Oksman-Caldentey, K.-M.; Poutanen, K.; Santos-Buelga, C. In vitro metabolism of anthocyanins by human gut microflora. Eur. J. Nutr. 2005, 44, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, W. Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xia, M.; Yan, X.; Li, D.; Wang, L.; Xu, Y.; Jin, T.; Ling, W. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ. Res. 2012, 111, 967–981. [Google Scholar] [CrossRef]
- Hu, R.; He, Z.; Liu, M.; Tan, J.; Zhang, H.; Hou, D.-X.; He, J.; Wu, S. Dietary protocatechuic acid ameliorates inflammation and up-regulates intestinal tight junction proteins by modulating gut microbiota in LPS-challenged piglets. J. Anim. Sci. Biotechnol. 2020, 11, 92. [Google Scholar] [CrossRef]
- Radtke, O.A.; Kiderlen, A.F.; Kayser, O.; Kolodziej, H. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid. Planta Med. 2004, 70, 924–928. [Google Scholar] [CrossRef]
- Kang, N.; Lee, J.-H.; Lee, W.; Ko, J.-Y.; Kim, E.-A.; Kim, J.-S.; Heu, M.-S.; Kim, G.H.; Jeon, Y.-J. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ. Toxicol. Pharmacol. 2015, 39, 764–772. [Google Scholar] [CrossRef]
- Clark, M.; Centner, A.M.; Ukhanov, V.; Nagpal, R.; Salazar, G. Gallic acid ameliorates atherosclerosis and vascular senescence and remodels the microbiome in a sex-dependent manner in ApoE-/- mice. J. Nutr. Biochem. 2022, 110, 109132. [Google Scholar] [CrossRef]
- Srinivasulu, C.; Ramgopal, M.; Ramanjaneyulu, G.; Anuradha, C.M.; Suresh Kumar, C. Syringic acid (SA)—A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed. Pharmacother. 2018, 108, 547–557. [Google Scholar] [CrossRef]
- Mirza, A.C.; Panchal, S.S.; Allam, A.A.; Othman, S.I.; Satia, M.; Mandhane, S.N. Syringic acid ameliorates cardiac, hepatic, renal and neuronal damage induced by chronic hyperglycaemia in wistar rats: A behavioural, biochemical and histological analysis. Molecules 2022, 27, 6722. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, B.-F.; Hu, Q.; Liu, X.-P.; Chen, J. Syringic acid mitigates myocardial ischemia reperfusion injury by activating the PI3K/Akt/GSK-3β signaling pathway. Biochem. Biophys. Res. Commun. 2020, 531, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Li, D.; Wang, R.; Wang, A.; Strappe, P.; Wu, Q.; Shang, W.; Wang, X.; Zhuang, M.; Blanchard, C.; et al. Gut microbiota derived structural changes of phenolic compounds from colored rice and its corresponding fermentation property. Food Funct. 2022, 13, 10759–10768. [Google Scholar] [CrossRef] [PubMed]
- Yalameha, B.; Nejabati, H.R.; Nouri, M. Cardioprotective potential of vanillic acid. Clin. Exp. Pharmacol. Physiol. 2023, 50, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Prahalathan, P.; Saravanakumar, M.; Raja, B. Vanillic acid prevents the deregulation of lipid metabolism, endothelin 1 and up regulation of endothelial nitric oxide synthase in nitric oxide deficient hypertensive rats. Eur. J. Pharmacol. 2014, 743, 117–125. [Google Scholar] [CrossRef]
- Lashgari, N.-A.; Roudsari, N.M.; Momtaz, S.; Abdolghaffari, A.H.; Atkin, S.L.; Sahebkar, A. Regulatory Mechanisms of Vanillic acid in Cardiovascular Diseases: A Review. Curr. Med. Chem. 2022, 30, 2562–2576. [Google Scholar] [CrossRef] [PubMed]
- Dianat, M.; Radmanesh, E.; Badavi, M.; Goudarzi, G.; Mard, S.A. The effects of PM10 on electrocardiogram parameters, blood pressure and oxidative stress in healthy rats: The protective effects of vanillic acid. Environ. Sci. Pollut. Res. Int. 2016, 23, 19551–19560. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.; Sun, H.; Xu, J.; Li, Y.; Chen, G.; Yu, Q.; Deng, C.; Zhu, W.; Song, J. Vanillic acid attenuates H2O2-induced injury in H9c2 cells by regulating mitophagy via the PINK1/Parkin/Mfn2 signaling pathway. Front. Pharmacol. 2022, 13, 976156. [Google Scholar] [CrossRef]
- Tan, J.; Li, Y.; Hou, D.-X.; Wu, S. The Effects and Mechanisms of Cyanidin-3-Glucoside and Its Phenolic Metabolites in Maintaining Intestinal Integrity. Antioxidants 2019, 8, 479. [Google Scholar] [CrossRef]
- Manach, C.; Milenkovic, D.; Van de Wiele, T.; Rodriguez-Mateos, A.; de Roos, B.; Garcia-Conesa, M.T.; Landberg, R.; Gibney, E.R.; Heinonen, M.; Tomás-Barberán, F.; et al. Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Mol. Nutr. Food Res. 2017, 61, 1600557. [Google Scholar] [CrossRef]
- Sahebkar, A.; Ferri, C.; Giorgini, P.; Bo, S.; Nachtigal, P.; Grassi, D. Effects of pomegranate juice on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2017, 115, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Luís, Â.; Domingues, F.; Pereira, L. Association between berries intake and cardiovascular diseases risk factors: A systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Food Funct. 2018, 9, 740–757. [Google Scholar] [CrossRef]
- Hadi, A.; Askarpour, M.; Miraghajani, M.; Symonds, M.E.; Sheikhi, A.; Ghaedi, E. Effects of strawberry supplementation on cardiovascular risk factors: A comprehensive systematic review and meta-analysis of randomized controlled trials. Food Funct. 2019, 10, 6987–6998. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J.; Hires, C.; Baker, C.; Keenan, L.; Bush, M. Daily supplementation with aronia melanocarpa (chokeberry) reduces blood pressure and cholesterol: A meta analysis of controlled clinical trials. J. Diet. Suppl. 2021, 18, 517–530. [Google Scholar] [CrossRef]
- García-Conesa, M.-T.; Chambers, K.; Combet, E.; Pinto, P.; Garcia-Aloy, M.; Andrés-Lacueva, C.; de Pascual-Teresa, S.; Mena, P.; Konic Ristic, A.; Hollands, W.J.; et al. Meta-Analysis of the Effects of Foods and Derived Products Containing Ellagitannins and Anthocyanins on Cardiometabolic Biomarkers: Analysis of Factors Influencing Variability of the Individual Responses. Int. J. Mol. Sci. 2018, 19, 694. [Google Scholar] [CrossRef]
- Fallah, A.A.; Sarmast, E.; Fatehi, P.; Jafari, T. Impact of dietary anthocyanins on systemic and vascular inflammation: Systematic review and meta-analysis on randomised clinical trials. Food Chem. Toxicol. 2020, 135, 110922. [Google Scholar] [CrossRef] [PubMed]
Author, Year, Country | Study Design | Participants (Mean Age) | Duration | Treatment | Polyphenol Constituent (Daily Intake) | Comparison | Main Findings |
---|---|---|---|---|---|---|---|
Okamoto, 2020, Japan [25] | Double-blind crossover, RCT | 14 adults (73 y) | 2 × 7 d (4 wk washout) | 600 mg/day New Zealand blackcurrant | 210 mg anthocyanins | Placebo containing microcrystalline cellulose | Carotid-femoral PWV (p = 0.03) and central BP (p = 0.02), brachial SBP (p = 0.03), DBP (p = 0.02), MBP (p = 0.01) and AIX (p = 0.03) decreased after the intervention. |
Erlund, 2008, Finland [26] | Single-blind, placebo-controlled, RCT | 71 individuals with mild hypertension, elevated blood glucose, serum total cholesterol or triacylglycerol and low HDL cholesterol (58 y) | 8 wk | 2 portions of berries daily (including bilberries, ligonberries, black currant and strawberry purée, chokeberry and raspberry juice) | 275 mg anthocyanins (bilberries), 24 mg anthocyanins (ligonberries), 96 mg anthocyanins (black currant and strawberry purée), 120 mg anthocyanins (chokeberry and raspberry juice) | Control products (2 dL sugar-water, 100 g sweet semolina porridge, 100 g sweet rice porridge, and 40 g marmalade sweets) | A significant decrease in mean SBP (p = 0.024) in the intervention group in subjects with higher BP at baseline and a significant increase in CADP-CT (p = 0.018). |
Basu, 2010, USA [27] | Single-blind, controlled, RCT | 48 individuals with MetS (50 y) | 8 wk | 50 g freeze-dried blueberry | 742 mg anthocyanins | 960 mL/day water | A significant reduction in SBP (p = 0.003) and DBP (p = 0.04) was reported in the blueberry group. |
Curtis, 2019, USA [28] | Double-blind, placebo-controlled parallel, RCT | 115 individuals with MetS (63 y) | 6 mo | (i) 1 cup blueberries; (ii) 1/2 cup blueberries | (i) 364 mg anthocyanins; (ii) 182 mg anthocyanins | Placebo | A significant improvement was reported in FMD (p = 0.003) and systemic arterial stiffness (p = 0.04) after the daily intake of 1 cup of blueberries. |
Schell, 2019, USA [29] | Crossover, RCT | 22 adults with elevated waist circumference and diabetes (54 y) | 2 × 4 wk (2 wk washout) | 250 g/day frozen red raspberries | 225 mg anthocyanins | Control | A decreasing trend in SBP was reported in the raspberry group compared to the control group (p < 0.1). |
Kimble, 2021, UK [30] | Double-blind, placebo-controlled parallel, RCT | 23 healthy volunteers (tart cherry group: 24.7 y; placebo group: 22 y) | 4 wk | 60 mL/day Montmorency tart cherry | 73.6 mg anthocyanins | Placebo | Intervention had no significant effects on SBP and DBP compared to placebo. |
Siasos, 2014, Greece [31] | Double-blind, placebo-controlled, crossover, RCT | 26 healthy smokers (26 y) | 2 × 2 wk (4 wk washout) period | 7 cc/kg/day CGJ | 472.8 mg total polyphenols, anthocyanins 296 μmol/L in 240 mL of CGJ | Grapefruit juice without polyphenols | CGJ significantly improved FMD (p = 0.02) and PWV (p = 0.04). |
Khan, 2014, UK [32] | Double-blind, placebo-controlled, parallel, RCT | 64 participants (52 y) | 6 wk | (i) 1000 mL/day low blackcurrant juice drink; (ii) 1000 mL/day high blackcurrant juice drink | (i) 273 mg total polyphenols, 40 mg anthocyanins; (ii) 815 mg total polyphenols, 142 mg anthocyanins | 1000 mL/day Placebo | Higher doses led to a significant increase in FMD compared to the placebo group (p = 0.022). |
Loo, 2016, Finland [33] | Single-blind crossover, intervention, RCT | 37 subjects with a SBP of 130–159 mmHg or a DBP of 85–99 mmHg, (55 y) | 2 × 8 wk (no washout) | 300 mL/day cold-pressed 100% chokeberry juice and 3 g/day oven-dried chokeberry powder | Mean daily intake from the chokeberry products (juice and powder): 2194 mg polyphenols, 1024 mg anthocyanins | 300 mL/day placebo juice and 3 g/day powder products | Treatment decreased the daytime ambulatory DBP (p = 0.02), and tended to decrease the 24-h DBP (p = 0.084) and the true awake ambulatory SBP (p = 0.077) and DBP (p = 0.057). |
Whyte, 2018, UK [34] | Double-blind, placebo-controlled, RCT | 112 healthy volunteers (70 y) | 6 mo | (i) 1000 mg wild blueberry powder; (ii) 500 mg wild blueberry powder; (iii) 111 mg wild blueberry extract | (i) 2.7 mg anthocyanins; (ii) 1.35 mg anthocyanin; (iii) 7 mg anthocyanins | Placebo containing maltodextrin | A significant reduction in SBP compared to the placebo group (p = 0.039). |
Chai, 2018, USA [35] | RCT | 34 participants (17 men and 17 women) (72 y) | 12 wk | 480 mL tart cherry juice | 450.6 mg total phenolics (gallic acid equivalent), 95.9 mg total tannins | Control drink | Treated group showed a reduced SBP compared to the control group (p = 0.04). |
Li, 2020, UK [36] | Single-blind crossover, RCT | 15 healthy participants (28 y) | 2 × 2 wk (1 wk washout) | 400 mL/day blood orange juice | 960 mg anthocyanins | Control drink | A significant increase in FMD compared to the control drink (p = 0.001). |
Lynn, 2014, UK [37] | Open-label, placebo-controlled, RCT | 47 healthy adults (40 y) | 6 wk | 250 mL/day cherry drink | 273.5 mg total anthocyanins | 250 mL/day placebo | No effects were found after treatment. |
Lamport, 2016, UK [38] | Double-blind crossover, RCT | 19 healthy mothers of preteen children employed for ≥30 h/wk (45 y) | 2 × 12 wk (4 wk washout) | 355 mL/day CGJ | 777 mg total polyphenols, 167 mg anthocyanins as malvidin equivalent, 334 mg proanthocyanidins as catechin equivalent | Energy, taste, and appearance matched placebo | There were no significant effects of interest for SBP and DBP. |
Desai, 2018, UK [39] | Single-blind (blinded to participants), placebo-controlled, crossover, RCT | 11 healthy participants (30 y) | 20 days | 260 mL/day MTCJ | 540 mg total anthocyanin | Placebo | No differences were observed after treatment. |
Aviram, 2004, Israel [40] | Placebo-controlled RCT | 19 atherosclerotic patients with carotid artery stenosis | 1 y | 50 mL/day pomegranate juice | 19.2 mg anthocyanins | Placebo | After 1 year of treatment, common carotid intima-media thickness increased by 9% in the placebo group (p < 0.01), whereas in the intervention group, it decreased by up to 30% (p < 0.01). |
Basu, 2010, USA [41] | Controlled, RCT | 27 individuals with MetS (47 y) | 8 wk | 2 cups strawberry beverage (50 g freeze-dried strawberry) | 154 mg anthocyanins | 4 cups water/d | A significant decrease in VCAM (p < 0.05) was reported compared to control. |
Dohadwala, 2011, USA [42] | Double-blind crossover RCT | 44 overweight individuals with high prevalence of risk factors (juice first: 61 y; placebo first: 63 y) | 2 × 4 wk (2 wk washout) | 480 mL/day double-strength cranberry juice | 94 mg anthocyanins | Placebo beverage not containing polyphenols | No significant results were detected after supplementation |
Ruel, 2013, Canada [43] | Placebo-controlled, double-blind crossover, RCT | 35 sedentary and healthy overweight men (n = 13 MetS+ and n = 22 MetS−) (45 y) | 2 × 4 wk (4 wk washout) | 500 mL/day CJC | 400 mg total polyphenols, 20.8 mg anthocyanins | 500 mL PJ | No differences were observed in AIX between treatments. Significant differences within the groups were observed in AIX (p = 0.027) and its response to salbutamol (p = 0.04); a significant change in global endothelial function in the CJC group (p = 0.02). |
Amani, 2014, Iran [44] | Double-blind, controlled, RCTl | 36 participants with T2D (51 y) | 6 wk | FDS beverage | 2006 mg total phenols, 154 mg total anthocyanins | Placebo drink | DBP was significantly reduced in the FDS group compared to placebo (p = 0.01). |
Asgary, 2014, Iran [45] | Single-blind RCT | 21 hypertensive participants (48 y) | 2 wk | 150 mL/day pomegranate juice | 8.7 mg anthocyanins | 150 mL water | A significant reduction in SBP (p = 0.008), DBP (p = 0.046), VCAM-1 (p = 0.008) and a significant increase in FMD (p = 0.034) compared to baseline. |
Tjelle, 2015, Norway [46] | Double-blind, placebo-controlled, RCT | 130 healthy individuals with high normal range BP (130/85–139/89 mmHg) or stage 1–2 hypertension (140/90–179/109 mmHg) (62 y) | 12 wk | (i) 500 mL/day polyphenol-rich juice based on red grapes, cherries, chokeberries and bilberries; (ii) 500 mL/day similar juice with polyphenol-rich extracts from blackcurrant press-residue | (i) 245.5 mg/100 g polyphenols, 11.9 mg/100 g anthocyanins (ii) 305.2 mg/100 g polyphenols, 41.3 mg/100 g anthocyanin | 500 mL/day placebo | A significant decrease in SBP was more pronounced in the hypertensive subjects when analyzed separately (p = 0.04). The variation in the BP measurements was significantly reduced in the pooled juice group compared with the placebo group (p = 0.03). |
Kent, 2017, Australia [47] | Controlled, RCT | 42 older adults with mild-to moderate dementia (Alzheimer’s type )(+70 y) | 12 wk | 200 mL/day cherry juice | 138 mg red pigment (anthocyanin) | 200 mL/day commercially prepared apple juice | Cherry juice consumption determined a significant reduction in SBP (p = 0.038) and a trend for DBP (p = 0.160) reduction. |
Moazzen and Alizaden, 2017, Iran [48] | Double-blind crossover, RCT | 30 patients with metabolic syndrome (51 y) | 2 × 1 wk (1 wk washout) | 500 mL/day of pure pomegranate juice | 50.26 mg anthocyanins, 34.5 mg total phenolics, 119.02 mg total flavonoids | 500 mL/day placebo | Pomegranate juice consumption lead to a significant decrease in SBP (p < 0.0001) and DBP (p = 0.02). |
Stull, 2010, USA [49] | Double-blind, placebo-controlled, RCT | 32 obese, nondiabetic and insulin-resistant individuals (blueberry group: 54 y; placebo group: 49 y) | 6 wk | Smoothie containing 45 g blueberry bioactives | 668 mg anthocyanins | Placebo not containing polyphenols | No significant findings were observed in SBP and DBP in the blueberry group. |
Basu, 2011, USA [50] | Double-blind, placebo-controlled, RCT | 36 individuals with MetS (52 y) | 8 wk | 480 mL/day cranberry juice | 24.8 mg anthocyanins | Placebo juice | No significant changes were observed after treatment. |
Krikorian, 2012, USA [51] | Double-blind, placebo-controlled, RCT | 21 participants (76 y) | 16 wk | Grape juice | (i) 742.3 mg total polyphenols, 150.9 mg anthocyanins, 315.2 mg proanthocyanidins; (ii) 928.4 mg total polyphenols, 188.7 mg anthocyanins, 394.3 mg proanthocyanidins; (iii) 1112.4 mg total polyphenols, 226.1 mg anthocyanins, 472.4 mg proanthocyanidins; (iv) 1298.5 mg total polyphenols, 263.9 mg anthocyanins, 551.5 mg proanthocyanidins | Placebo beverage | No differences in BP were observed in the treated group. |
Flammer, 2013, USA [52] | Double-blind, controlled, RCT | 69 participants with peripheral endothelial dysfunction and cardiovascular risk factors (49 y) | 4 mo | 460 mL/day of cranberry juice | 800.4 mg total phenolic, 69.46 mg anthocyanins, 1224.52 mg proanthocyanidins | 460 mL/day isocaloric placebo juice | Significant reduction in OCN positive EPC (p = 0.019). |
Basu, 2014, USA [53] | Dose-response, controlled, RCT | 60 volunteers with abdominal adiposity and elevated serum lipids (49 y) | 12 wk | (i) high-dose freeze-dried strawberry beverage; (ii) low-dose freeze-dried strawberry beverage | (i) 155 mg anthocyanins; (ii) 78 mg anthocyanins | Control beverages | No significant differences were noted in SBP and DBP. |
Novotny, 2015, USA [54] | Double-blind, placebo-controlled, parallel, RCT | 56 volunteers (50 y) | 8 wk | 480 mL/day low-calorie cranberry juice | 236 mg proanthocyanidins | Placebo beverage | DBP was significantly reduced (p < 0.048) in the low-calorie cranberry juice group. |
Stote, 2017, USA [55] | Single-blind, placebo-controlled, crossover, RCT | 19 women at risk of T2DM (53 y) | 2 × 1 wk (8 d washout) | 240 mL/day wild blueberry juice | 314 mg anthocyanins | Placebo beverage | No significant results in BP were reported. However, a significant increase of NO index production was observed in the blueberry group compared to the placebo group (p = 0.039). |
Kojadinovic, 2017, Serbia [56] | RCT | 23 women with MetS (50 y) | 6 wk | 300 mL/day pomegranate juice | 881.4 mg total phenolic expressed as gallic acid equivalents, 54.9 mg total flavonoids expressed as quercetin acid equivalents, 6.3 mg total anthocyanins expressed as cyanidin-3-glucoside chloride equivalents | Glass of water | Pomegranate juice consumption showed no significant tendency to decrease SBP. |
Hollands, 2018, UK [57] | Open label, two-arm crossover, RCT | 41 participants with a waist measurement > 94 cm (men) and > 80 (women) (54 y) | 28 d | 500 mL blood orange juice | 50 mg anthocyanins | 500 mL blonde orange juice without anthocyanin | No significant differences were observed after treatment. |
Espinosa-Moncada, 2018, Colombia [58] | Double-blind crossover, RCT | 40 women with MetS (47 y) | 2 × 4 wk (4 wk washout) | 200 mL/day agraz nectar | 4.66 mg anthocyanins | Placebo | SBP and DBP were not affected by the agraz nectar intervention. |
Pokimica, 2019, Serbia [59] | Double-blind, placebo-controlled, parallel, RCT | 80 volunteers at cardiovascular risk (41 y) | 4 wk | 100 mL/day chokeberry juice with different doses of polyphenols | (i) 113.3 mg cyanidin-3-glucoside; (ii) 28.3 mg cyanidin-3-glucoside | Placebo | A non-significant reduction in SBP and DBP, compared to the placebo. |
Johnson, 2020, USA [60] | Single-blind, placebo-controlled parallel, RCT | 26 participants with MetS (tart cherry group: 29.3 y; control group: 44 y) | 12 wk | 480 mL/day tart cherry juice | 176 mg anthocyanins | 480 mL/day calorie-matched placebo-control drink | No significant findings were reported in SBP and DBP in the tart cherry group. |
Jiménez, 2008, Spain [61] | Controlled, parallel, RCT | 43 non-smoking adults (33 y) | 16 wk | 7.5 g/day grape antioxidant dietary fiber | 60 mg anthocyanins | Control | A significant reduction in SBP and DBP was observed in the intervention group (p < 0.05). |
Ras, 2013, Netherland [62] | Double-blind, placebo-controlled, parallel-group, RCT | 70 male and postmenopausal women (63 y) | 8 wk | GSE capsule | Monomeric procyanidins (4.3%), dimeric procyanidins (6.1%), trimeric procyanidins (2.5%), gallic acid (4.8%) | Placebo capsule | Significant reduction in SBP and DBP compared to baseline but not versus placebo (p < 0.01). |
Terauchi, 2014, Japan [63] | Double-blind, placebo-controlled, RCT | 91 women with at least one menopausal symptom (~50 y) | 8 wk | GSE extract with different doses of proanthocyanidins | (i) 200 mg proanthocyanidins; (ii) 100 mg proanthocyanidins | Placebo | At the end of the trial, SBP and DBP decreased in low-dose and high-dose groups (p < 0.001). |
Istas, 2019, UK [64] | Double-blind, placebo-controlled parallel, RCT | 66 healthy men (24 y) | 12 wk | (i) aronia extract capsules; (ii) aronia whole fruit capsules | (i) 30 mg anthocyanins; (ii) 3.6 mg anthocyanins | Placebo containing maltodextrin | A significant increase in FMD was detected after the treatment compared to the placebo group (p = 0.0001). |
Ahles, 2020, The Netherlands [65] | Double-blind, placebo-controlled parallel, RCT | 101 healthy individuals (53 y) | 24 wk | (i) 150 mg/day aronia Melanocarpa extract; (i) 90 mg/day aronia Melanocarpa extract | (i) 27 mg anthocyanins; (ii) 16 mg anthocyanins | Placebo containing maltodextrin | A significant reduction in brachial DBP was observed in subjects who received 150 mg/day of the extract (p = 0.025). |
Hansen, 2005, Denmark [66] | Double-blind, parallel, four-armed, placebo-controlled, RCT | 69 healthy subjects (56 y) | 4 wk | (i) red wine (M: 300 mL, F: 200 mL); (ii) water + red grape extract (wine-equivalent dose of total polyphenol); (iii) water + red grape extract (half dose) | (i) F: 58 mg anthocyanins; M: 87 mg anthocyanins; (ii) F: 48 mg anthocyanins; M: 71 mg anthocyanins; (iii) F: 24 mg anthocyanins; M: 36 mg anthocyanins | Placebo not containing polyphenols | No significant changes were reported in terms of SBP and DBP among the groups. |
Cook, 2015, UK [67] | Double-blind crossover, RCT | 14 healthy men trained cyclists (38 y) | 2 × 7 d (14 d washout) | 300 mg/day NZBC extract | 105 mg anthocyanins | 300 mg/day microcrystalline cellulose | Resting SBP and DBP did not differ between conditions after 7 days of supplementation. |
Schell, 2017, USA [68] | Double-blind crossover, RCT | 17 adults (age 57 y) | 2 × 12 wk (2 wk washout) | 100 g/day freeze-dried strawberry powder | 3170 mg total polyphenols, 132 mg total anthocyanins, 440 mg ellagic acid, 100 mg phytosterols | Control beverage daily (total polyphenols 150 mg/d) | No differences were observed in BP. |
Kimble, 2021, UK [69] | Double-blind, placebo-controlled parallel, RCT | 50 adults (48 y) | 3 mo | 60 mL/day Montmorency tart cherry | 68–73.5 mg anthocyanins | Placebo | No significant findings were observed in SBP and DBP among the groups. |
Riso, 2013, Italy [70] | Repeated measures, crossover, RCT | 18 male (47 y) | 2 × 6 wk (6 wk washout) | 250 mL/day of WB drink | 375 mg anthocyanins, 127.5 mg chlorogenic acid | Placebo drink | No differences were observed after WB intervention. |
Thompson, 2017, Australia [71] | Double-blind, placebo-controlled, crossover, RCT | 16 healthy individuals (38 y) | 2 × 28 d (2 wk washout) | Anthocyanin supplement | 320 mg anthocyanins | Placebo capsules | No significant differences were detected in SBP, DBP, or pulse. |
Naruszewicz, 2007, Poland [72] | Double-blind, placebo-controlled, parallel, RCT | 44 patients who survived myocardial infarction and had received statin therapy for at least 6 mo (66 y) | 6 wk | 3 × 85 mg/day chokeberry flavonoid extract | 21 mg anthocyanins, 42.5 mg monomeric and olygomeric procyanidins | Placebo containing malthodextrin | A significant reduction in SBP, DBP (p < 0.000), sVCAM (p < 0.009), sICAM (p < 0.05) and MCP-1 (p < 0.001) was observed after the aronia flavonoid extract consumption. |
Barona, 2012, USA [73] | Double-blind crossover, RCT | 24 men with MetS (50 y) | 2 × 30 d (3 wk washout) | Grape polyphenol powder | 266.8 mg total phenols, 188.6 mg flavans, 35.42 mg anthocyanins, 1.42 mg quercetin, 0.12 mg myricetin, 0.15 mg kaempferol, 0.07 mg resveratrol | Placebo | A significant reduction in SBP and of sICAM-1 (p < 0.025) was observed. A significant increase in FMD (p < 0.01) in grape group compared to placebo was reported. |
Johnson, 2015, USA [74] | Double-blind, placebo-controlled, RCT | 40 postmenopausal women with pre- and stage 1-hypertension (blueberry: 59 y; placebo: 57 y) | 8 wk | 22 g/day freeze-dried blueberry powder | 185.9 mg phenolics, 103.18 mg anthocyanins | 22 g/day control powder with maltodextrin | In the blueberry group, both SBP and DBP were significantly lower (p < 0.05 and p < 0.01, respectively) compared to baseline levels. There was also a significant (p < 0.01) reduction in brachial-ankle PWV from baseline at 8 weeks and a group × time interaction (p < 0.05). No changes to PWC and BP were observed in the control group. |
Stull, 2015, USA [75] | Double-blind, placebo-controlled RCT | 44 adults with MetS (blueberry: 55 y; placebo: 59 y) | 6 wk | 45 g/day blueberry smoothie with freeze-dried blueberry powder | 1547.2 mg total phenolics, 580.6 mg anthocyanins | Placebo smoothie without the blueberry powder | Improvement of endothelial function in the blueberry group compared to placebo (p = 0.024) after adjusting for confounding factors. |
Feresin, 2017, USA [76] | Double-blind, placebo-controlled, parallel arm, RCT | 60 postmenopausal women with pre- and stage 1-hypertension (59 y) | 8 wk | (i) 50 g/day of FDSP; (ii) 25 g/day of FDSP | Phenolic acid: ellagic acid (3.15 mg/d), gallic acid (0.10 mg/d), synapic acid (0.10 mg/d), p-coumaric acid (0.07 mg/d), 2-hydroxycinnamic acid (0.05 mg/d), 3,4-dihydrobenzoic acid (0.04 mg/d); Anthocyanins: cyanidin-3-glucoside (2.91 mg/d), pelargonidin-3-glucoside (99.22 mg/d); flavonols: kaempferol (0.09 mg/d), tiruloside (0.19 mg/d), quercetin (0.67 mg/d), quercetin-3-O-glucoside (1.66 mg/d); flavanones: rutin (0.84 mg/d); flavanols: (+)-catechin (6.26 mg/d); proanthocyanidins (procyanidin B1 (7.70 mg/d) | 50 g/day placebo | 25 g/day of FDSP led to a significant reduction of SBP (p = 0.02) and baPWV (p = 0.03) and faPWV (p = 0.02). |
Arevström, 2019, Sweden [77] | Open-label, controlled, RCT | 50 subjects with post-myocardial infarction (median age: 68 y) | 8 wk | 40 g/day bilberry powder | 900 mg anthocyanins | Control | A non-significant reduction in SBP, DBP, and HR was reported in the bilberry group compared to the placebo group. |
Zhu, 2011, China [78] | Double-blind, placebo-controlled, parallel, RCT | 146 hypercholesterolemic participants (52 y) | 12 wk | Anthocyanin capsules | 320 mg anthocyanin | Placebo capsules | A significant reduction in SBP (p < 0.05) and a significant increase in FMD (p < 0.001) compared to baseline were reported. |
Jeong, 2016, Korea [79] | Double-blind RCT | 51 individuals with MetS (47 y) | 12 wk | 750 mg/day black raspberry | 100 mg cyanidin, 0.4 mg pelargonidin, 19.5 mg proanthocyanidins | Placebo | In the black raspberry group, the AIX decreased significantly (p < 0.05). |
Curtis, 2009, UK [80] | Double-blind, placebo-controlled, parallel, RCT | 52 healthy postmenopausal women (58 y) | 12 wk | Elderberry extract | 500 mg anthocyanins | Placebo | No significant results for BP and pulse rate were found in the treatment group. |
Hassellund, 2012, Norway [81] | Double-blind, placebo-controlled, crossover, RCT | 27 healthy participants (41 y) | 2 × 4 wk (4 wk washout) | Anthocyanin capsules | 640 mg anthocyanins | Placebo capsules | No differences were observed between treated and placebo groups. |
Davinelli, 2015, Italy [82] | Double-blind, placebo-controlled, RCT | 42 overweight volunteer smokers (55 y) | 4 wk | 3× capsule of extract of maqui berry/day | 162 mg anthocyanins | 3× capsule of maltodextrin/d | No statistical differences in BP among the different groups; thus, no effect of maqui berry supplementation on BP. |
Zhang, 2016, China [83] | Double-blind, placebo-controlled, RCT | 146 hypercholesterolemic subjects (55 y) | 24 wk | 4 anthocyanin capsules/day | 320 mg anthocyanins | 4 placebo cups/d | No significant changes were observed in SBP and DBP among the groups. |
Estévez-Santiago, 2019, Spain [84] | Parallel, RCT | 72 post-menopausal women (59 y) | 8 mo | Soft capsules containing anthocyanins | 60 mg anthocyanins | (i) 6 mg lutein + 2 mg zeaxanthin; (ii) 60 mg anthocyanins + 6 mg lutein + 2 mg zeaxanthin | No significant results were detected in SBP or DBP among the groups. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laudani, S.; Godos, J.; Di Domenico, F.M.; Barbagallo, I.; Randazzo, C.L.; Leggio, G.M.; Galvano, F.; Grosso, G. Anthocyanin Effects on Vascular and Endothelial Health: Evidence from Clinical Trials and Role of Gut Microbiota Metabolites. Antioxidants 2023, 12, 1773. https://doi.org/10.3390/antiox12091773
Laudani S, Godos J, Di Domenico FM, Barbagallo I, Randazzo CL, Leggio GM, Galvano F, Grosso G. Anthocyanin Effects on Vascular and Endothelial Health: Evidence from Clinical Trials and Role of Gut Microbiota Metabolites. Antioxidants. 2023; 12(9):1773. https://doi.org/10.3390/antiox12091773
Chicago/Turabian StyleLaudani, Samuele, Justyna Godos, Federica Martina Di Domenico, Ignazio Barbagallo, Cinzia Lucia Randazzo, Gian Marco Leggio, Fabio Galvano, and Giuseppe Grosso. 2023. "Anthocyanin Effects on Vascular and Endothelial Health: Evidence from Clinical Trials and Role of Gut Microbiota Metabolites" Antioxidants 12, no. 9: 1773. https://doi.org/10.3390/antiox12091773
APA StyleLaudani, S., Godos, J., Di Domenico, F. M., Barbagallo, I., Randazzo, C. L., Leggio, G. M., Galvano, F., & Grosso, G. (2023). Anthocyanin Effects on Vascular and Endothelial Health: Evidence from Clinical Trials and Role of Gut Microbiota Metabolites. Antioxidants, 12(9), 1773. https://doi.org/10.3390/antiox12091773