Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment?
Abstract
:1. Introduction
2. Thyroid Cancer: Epidemiology and Classification
2.1. Genetic Setting in Thyroid Cancer
2.1.1. RAS
2.1.2. BRAF
2.1.3. RET/PTC
2.1.4. PAX8/PPARγ
2.1.5. PTEN
2.1.6. TERT
2.1.7. TP53
Gene | Original Function | Alterations | Frequency in TC | References |
---|---|---|---|---|
RAS | Encoding GTP-binding proteins within the MAPK/ERK and PI3K-AKT signaling pathways | Point mutations generate three variants: NRAS (the most frequent), HRAS, and KRAS. | 68% in FTC 20–40% in ATC 10–30% in PTC | [35,37,48] |
BRAF | Encoding a serine-threonine kinase of the RAF family, which is activated in the MPAK/ERK pathway | Point mutations: BRAF V600E are the most common. | Up to 70% in PTC 20–45% in ATC | [35,37] |
RET/PTC | Transmembrane receptor-type tyrosine kinase stimulating both MAPK/ERK and PIP3/AKT pathways | Chromosomal rearrangements: RET/PTC1 and RET/PTC3 are the most common. | 20% in PTC (up to 70–80% in radiation-exposed subjects) | [60,61] |
PAX8/PPARγ | PAX8 encoding a thyroid-specific transcription factor and PPARγ encoding a member of the steroid/thyroid nuclear receptor family | Chromosomal rearrangements | 12–60% in FTC up to 16% in PTC | [35,37,64] |
PTEN | Negative regulator of PI3K/AKT pathway | Point mutations | 4–33% PDTC 11–20% ATC 0–2% PTC 0–14% FTC | [68] |
TERT | Encoding the telomerase reverse transcriptase of the enzyme telomerase | Point mutations in the gene promoter: C228T and C250T are the most common. | 10–15% in PTC 17% in FTC | [37,71] |
22% in OCA | ||||
37% in PDTC | ||||
40% in ATC | ||||
TP53 | Encoding the tumor suppressor protein p53 | Point mutations are generally located in the exons 5–8. | 60–78% in ATC 7–12% in OCA 10% in PDTC | [35,78,79] |
3. Oxidative Stress: The Role of Oxidases in the Thyroid
Oxidative Stress in Thyroid Cancer
4. Management of Thyroid Cancer
4.1. Differentiated Thyroid Cancers
4.2. Anaplastic Thyroid Cancer
5. Vitamin C: General Features
5.1. Effects of Vitamin C on Cancer
5.2. The Relationship between Vitamin C and Thyroid Cancer: The Epidemiological Evidence
Study Design—Study Period | Country | Population | Overall Effect | Limitations—Pitfalls | Reference |
---|---|---|---|---|---|
Case-control 1986–1992 | Italy | A total of 399 subjects (291 F, 108 M, age 16–72 years) diagnosed with any TC type within 2 years prior to interview. 691 control subjects (427 F, 190 M, age 16–74 years) | Weak evidence of inverse association between increasing quartiles of dietary vitamin C intake and risk for TC | Possibility of recall bias related to food frequencies. Selection bias of controls who may have had different dietary habits. | [182] |
Case-control 2008–2010 | Republic of Korea | Only women: 111 pairs of malignant TC (90% PTC) and controls (mean age 45.9 and 45.2 years, respectively) and 115 pairs of benign cases and controls (mean age 46.8 and 46.5 years, respectively). Patients were asked to report their food intake over a 12-month period, starting 3 years prior to the time of the interview. | No significant differences in vitamin C intake between patients with and without TC and controls | Small sample size and no possibility to evaluate differences by TC type and risk factors such as radiation exposure. | [183] |
Prospective cohort 1995–1996 | United States | A total of 482,807 subjects (287,944 M, 194,863 F, age 50–71 years). 592 incident PTC or FTC cases (257 M, 335 F). | Significantly positive association between increasing quintiles of dietary vitamin C intake and risk for TC | Only patients with DTC were included. There was a possibility of residual confounders related to a healthy lifestyle/consciousness. | [184] |
Prospective, single -blind RCT | China | A total of 72 patients aged ≥ 18 years were diagnosed with PTC and FTC and treated with 100 mCi for 4–6 weeks after total thyroidectomy. Subjects were divided into 4 groups: 18, 18, 19, and 17 of them started vitamin C administration at 1,5,13, and 25 h after RAI therapy, respectively. | No significant effect of vitamin C administration at any time on salivary absorbed 131I of TC patients undergoing RAI. | Only patients with DTC were included. There was a lack of investigation on the salivary function and symptoms after RAI. | [185] |
Retrospective clinical 2014–2020 | China | A total of 872 patients were diagnosed with DTC treated for the first time with RAI after thyroidectomy. Subjects were divided into 2 groups: 324 (mean age 45.06 years) starting vitamin C administration at 2 h after RAI therapy and 548 (mean age 45.29 years) starting vitamin C administration at 24 h after RAI. | Significantly higher protective effect of vitamin C on the salivary glands at 2 h than at 24 h after receiving 131I. | Only patients with DTC were included. Follow-up ended at 6 months. Inability of vitamin C to restore salivary gland function after 131I was observed. | [188] |
RCT 2019–2021 | China | A total of 89 patients (35M, 54F, age 22–68 years) with DTC and tumor-node-metastasis at stages I/II underwent total thyroidectomy. Subjects were divided into 3 groups:
| No significant effects of vitamin C alone on salivary gland parameters but only combined with supragingival scaling | Only patients with DTC were included. There was a limited number of subjects for each group. The follow-up period was too short. No measurement of salivary gland amylase was made either in the initial period or in the long term after RAI treatment. Patients with multiple 131I treatments were not included in the study. | [189] |
Prospective RCT August 2019– November 2021 | China | A total of 69 postoperative patients with DTC Were divided into 3 groups:
| Significant improvement in salivary gland functions following treatment with combined therapy of vitamin C and Se. | Only patients with DTC were included. There was a limited number of subjects for each group. The follow-up period was too short. | [191] |
Prospective clinical May 2013–March 2014 | Brazil | A total of 40 patients with DTC undergoing thyroidectomy (33 F, 7 M, age 18–60 years) were divided into 2 groups: the first 20 subjects were without supplements; the following 20 subjects were treated with 2000 mg vitamin C, 1000 mg vitamin E, and 400 µg Se for 21 days before RAI treatment. | Attenuation of RAI-induced oxidative stress by supplementation of vitamin C and other antioxidants. | No conclusions were made on the real effect of vitamin C. There were possible side effects of antioxidant supplementation. | [192] |
RCT March–July 2017 | Iran | A total of 45 patients (age 23–78 years) were diagnosed with DTC and underwent 150 mCi RAI. Subjects were divided into 4 groups:
| Antioxidant effect of vitamin C against serum oxidative stress induced by RAI. Radioprotective action of vitamin C to be preferred to its mitigating effects. | Only patients with DTC were included. Small sample size. | [194] |
The Mechanism Underlying the Association between Vitamin C and Thyroid Cancer
- As reported above in the text, ascorbate promotes pro-oxidants effects in the presence of H2O2 and labile iron, which is primarily located in the cytosol in small pools bound to low-affinity ligands, generating ROS through the Fenton reaction [168,170]. Increased levels of ROS are a hallmark of cancer, stimulating cell proliferation and affecting genetic stability; however, excessive amounts of ROS may lead to cell death. Intravenous ascorbate can kill tumor cells even in the absence of Fe2+ by inducing the generation of extracellular H2O2 via spontaneous autoxidation. On the other hand, the tumor microenvironment is enriched in labile Fe3+, which can promote the oxidation of ascorbate resulting in the production of DHA, Fe2+, and superoxide anion, the latter converted to H2O2 by SOD. Furthermore, extracellular H2O2, reacting with extracellular or intracellular Fe2+, generates hydroxyl radicals, responsible for selective toxicity to cancer cells [23]. Indeed, tumor cells show greater sensitivity to ascorbate than normal cells due to increased levels of labile iron pools resulting from impaired oxidative metabolism in mitochondria, characterized by increased H2O2 and superoxide anion [168,198]. In addition, H2O2 generated from ascorbate may disrupt intracellular Fe–S bonds, thus leading to a further increase in labile iron pools in cancer cells [198]. However, it is unlikely that the Fenton reaction, demonstrated in vitro, occurs in vivo at physiological concentrations of Fe2+ and Fe3+, which are also normally chelated by metal-binding proteins [170,199,200]. Moreover, the hypoxic tumor microenvironment may not be favorable for the generation of H2O2, which is strictly dependent on the oxygen level [169].
- As discussed in Section “Oxidative Stress in Thyroid Cancer”, tumor cells exhibit an increased rate of glycolysis, which allows for enhanced cell survival and proliferation. Upregulation of the glucose transporter GLUT1 by KRAS or BRAF mutations may further contribute to the glycolytic phenotype. Due to its structural similarity to glucose, DHA is transported into cells mainly via GLUT1 and GLUT3, and this may explain the selective toxicity of high-dose vitamin C observed in cultured colorectal cells harboring KRAS or BRAF mutations [169,201]. Indeed, the reduction of DHA to ascorbate inside cells results in the consumption of GSH and the production of ROS, which, in turn, leads to the inactivation of glyceraldehyde 3-phosphate dehydrogenase (GADPH), with consequent inhibition of glycolysis and ATP production, up to cell death [23,200]. Alternatively, GADPH activity can be suppressed through activation of poly(ADP-ribose) polymerase, which plays a crucial role in DNA repair and preservation of genome integrity, thereby depleting cellular stores of GADPH cofactor NAD+ [168,201,202]. It should be noted, however, that decreased glycolysis-related markers in KRAS and BRAF cells can be equally induced by H2O2-mediated toxicity [169]. Additionally, the half-life of DHA at physiological pH is approximately 1.5 h; therefore, its concentration in vivo may not be sufficient to compete with glucose for transport via GLUT1 [169].
- Hypermethylation of DNA and histones are recognized as hallmarks of cancer that prevent tumor cells from responding to the signals and effects of chemotherapy [203]. Ascorbate may act as an epigenetic modulator by enhancing the reaction of TET proteins (TET1, TET2, TET3), DNA hydroxylases responsible for DNA demethylation through the conversion of 5-methylcytosine (5 mC) to 5-hydroxymethylcytosine, promoting antitumor effects (see Section 5.1) [170]. TET2 frequently exhibits loss-of-function mutations in hematologic malignancies resulting in overall DNA hypermethylation [23,203]. Ascorbate administration, which induces TET activity by recycling Fe3+ to Fe2+, restores TET2 phenotypes and DNA demethylation, enhances chemosensitivity, and drives an increased expression of tumor suppressor genes and genes critical for cell differentiation [23,204,205]. Patients with acute myeloid leukemia have genomes with mutual exclusivity in mutations in TET and in genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2), the latter promoting aberrant DNA methylation through increased production of 2-hydroxyglutarate that inhibits the hydroxylation of 5 mC and induces disease [206]. Vitamin C treatment, in addition to TET activation, reduces proliferation induced by neomorphic mutations in IDH and promotes differentiation of myeloid progenitor cells [24,205]. Vitamin C is also required for the normal function of Jumonji C domain-containing histone demethylases, which catalyze histone demethylation by producing highly reactive oxoferryl species that, through substrate hydroxylation, induce loss of the methyl group [206].
- Vitamin C is also a cofactor of collagen prolyl-4-hydroxylases (P4Hs), which belong to a superfamily of iron and 2-oxoglutarate-dependent hydroxylases and catalyze the post-translational hydroxylation of peptidyl–proline residues to 4-hydroxyproline in the presence of oxygen [169,207]. In particular, HIF-P4Hs, enzymes located in the cytoplasm and nucleus, together with asparagine hydroxylase (also known as factor-inhibiting HIF—FIH) are responsible for the regulation of HIF1, a key transcription factor expressed in various types of solid cancers where it modulates both angiogenesis and glycolytic system (see Section “Oxidative Stress in Thyroid Cancer”) [170]. HIF1 is a heterodimer composed of two subunits, the oxygen-regulated HIF-1α in the cytoplasm and the constitutively expressed HIF-1β in the nucleus. Thus, while under normal oxygen conditions, HIF-1α activity is downregulated by HIF-P4H and FIH, and under conditions of hypoxia and oxidative stress or ascorbate deficiency, typical of tumors, HIF-P4H and FIH are inhibited and HIF-1α induces gene transcription, neoangiogenesis, tumor growth, and progression, as well as lack of responsiveness to RAI and chemotherapy [23,115,208]. Interestingly, HIF activation, a phenomenon occurring during the process of carcinogenesis, enhances the cytotoxicity of vitamin C on a variety of cancer cell lines by promoting the uptake of DHA (whose production from ascorbate is increased in tumors) via GLUT1, which is also a transcriptional target of HIF [209].
- Contrary to the above findings, pharmaceutical doses of vitamin C inhibit cell proliferation and induce apoptosis in TC cells regardless of BRAF mutation status at physiological glucose levels, and this effect is mediated by increased cellular ROS levels [195]. The same authors also observed a reduction in TC volume and weight in xenograft and transgenic mice after intraperitoneal injection of vitamin C [195]. In combination with vemurafenib (PLX4032), a selective oral inhibitor of BRAF V600E associated with improved overall survival of patients with metastatic melanoma, vitamin C synergistically suppresses the proliferation and induces cell apoptosis and cycle arrest of BRAF-mutated TC cells, potentiating the effects of chemotherapy drug used as monotherapy [196,210]. Furthermore, a combination therapy of vitamin C and PLX403 enhances tumor growth reduction in vivo compared with either agent alone [196]. In contrast to metastatic melanoma, PLX4032 appears to have mild efficacy in colorectal cancer and TC due to transient inhibition of MAPK signaling, which ultimately leads to drug resistance [211]. Consistently, treatment with PLX403 monotherapy results in increased ERK and AKT phosphorylation in BRAF-mutant TC cells, while the combination of vitamin C and PLX403 inhibits the ROS-dependent feedback activation of MAPK/ERK pathways and AKT increase (see next point) [196].
- As reported in Section 2.1, MAPK/ERK and PI3K/AKT represent the two major pathways implicated in thyroid tumorigenesis and TC progression; therefore, they are ideally the most suitable therapeutic target in TC. Regardless of BRAF mutation status, vitamin C treatment can substantially inhibit the activity of both pathways in a dose-dependent manner through a ROS-dependent decrease in total AKT levels, as well as ERK and AKT phosphorylation [195]. Two mechanisms have been hypothesized to explain the inhibition of ERK phosphorylation: (a) in BRAF mutated cells, vitamin C blocks the production of ATP (see point 1 in this subsection), which frequently donates the phosphate group to protein kinases; (b) in BRAF wild-type TC cells, vitamin C-induced ROS generation results in reduced release of epidermal growth factor (EGF), which, binding to the EGF receptor (EGFR), leads to ERK phosphorylation. Therefore, suppression of EGF release and phosphorylation inhibits MAPK/ERK signaling and ERK phosphorylation [195]. EGFR is a tyrosine kinase receptor whose mutations and overexpression can promote a vast number of pro-oncogenic biological processes, such as cell proliferation and motility, adhesion, angiogenesis, inhibition of apoptosis, and metastasis [212]. Furthermore, EGFR overexpression in TC cells seems to be responsible for the progression toward a dedifferentiated phenotype presenting with poorly differentiated and anaplastic areas [213]. The action of vitamin C on AKT instability is instead mediated by the upregulation of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), which promotes ubiquitination of AKT via a ROS-dependent pathway [195].
- Ferroptosis, an iron-dependent type of cell death highly related to ROS and with lipid peroxidation as its hallmark, has distinctive morphological and biochemical features compared with other regulated forms of cell death (apoptosis, autophagy, cuproptosis, necroptosis, and pyroptosis) [214,215,216] (see also Section “Oxidative Stress in Thyroid Cancer”) Vitamin C can significantly block the growth of ATC cells by activating ferroptosis through a dramatic increase in ROS-induced MDA levels and downregulation of GPX4, in dose- and time-dependent manners [197,215]. GPX4, considered a key inhibitor of phospholipid peroxidation, catalyzes the conversion of lipid peroxides into the corresponding alcohols, also contributing to the maintenance of the integrity of the cell membrane and regulates the metabolism of iron by preventing it from participating in the Fenton reaction, which is the crucial step for ferroptosis [217]. The effects of vitamin C observed in ATC cells are probably mediated by ferritinophagy, a novel autophagy process associated with ferroptosis, which plays a crucial role in a variety of physiological processes such as cell differentiation and erythropoiesis and whose impairment is linked to several diseases, including cancer and hemochromatosis, the latter due to iron overload [218]. Ferritinophagy involves ferritin degradation in a process promoted by the nuclear receptor coactivator 4, thereby resulting in the release of iron into the cytoplasm, which, when in excess, can generate ROS and cause cell death [216,218]. Thus, ferritinophagy promoted by vitamin C leads to the release of iron, which, as reported in the previous sections, may give rise to lipid peroxidation via the production of ROS in the Fenton reaction [197].
- Vitamin C administration to selected PTC-derived cells, all carrying TERT promoter mutations and other specific mutations/rearrangements, causes a significant increase in cell death in all cell lines [25]. In contrast, a slight increase in apoptosis only occurs in cells with BRAF V600E and TP53 mutations, which also show significantly higher production of ROS and decreased GSH/oxidized glutathione ratio after vitamin C treatment compared with corresponding untreated cells [25]. In cells harboring BRAF V600E (with concomitant or not TP53 mutations), exposure to high-dose vitamin C leads to a reduced cysteine/cystine ratio, with cysteine being the major component of GSH and participating in numerous redox reactions [25,219]. The described redox imbalance, triggered by an increase in vitamin C-induced ROS production, is likely responsible for a metabolic deterioration characterized by reduced glucose uptake and glycolysis, depletion of nicotinamide adenine dinucleotide (NAD+), a key molecule regulating energy metabolism, resulting in impaired tricarboxylic acid cycle (TCA), and increased levels of upstream metabolites in glycolysis and TCA [25,220,221]. Alternatively, high vitamin C concentration may inhibit the activity of chrome-b5-oxidoreductase-3 (Cyb5R3), which, under normal conditions, catalyzes the conversion of ascorbyl free radical to ascorbate using NADH, thus contributing to maintaining the NAD+/NADH ratio in cells [25,218]. Conversely, the downregulation of Cyb5R3 results in a decline of NAD+/NADH ratio, compromising mitochondrial respiration and, consequently, ATP production [222].
6. New Strategies for Vitamin C Intake through Food
Beneficial Edible Compounds Production and Sensory Characteristics
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPK | Adenosine monophosphate-activated protein kinase |
ATC | Anaplastic thyroid cancer |
BRAF | v-raf murine sarcoma viral oncogene homolog B1 |
CAT | Catalase |
DHA | Dehydroascorbic acid |
DIT | Diiodotyrosine |
DTC | Differentiated thyroid cancer |
DUOX | Dual oxidases |
EFV-PTC | Encapsulated follicular variant papillary thyroid cancer |
EGF | Epidermal growth factor |
EGFR | Epidermal growth factor receptor |
FIH | Factor-inhibiting hypoxia-inducible transcription factor |
FTC | Follicular thyroid cancer |
GADPH | Glyceraldehyde 3-phosphate dehydrogenase |
GLUT | Glucose transporters |
GPX4 | Glutathione peroxidase |
GSH | Glutathione (reduced form) |
H2O2 | Hydrogen peroxide |
HIF-1α | Hypoxia-inducible transcription factor 1 alpha |
IDH | Isocitrate dehydrogenase |
IL | Interleukin |
MAPK/ERK | Mitogen-activated protein kinase/extracellular signal-regulated kinase |
mCi | Millicurie |
MDA | Malondialdehyde |
MIT | Monoiodotyrosine |
mTOR | Mammalian target of rapamycin |
NAD+ | Nicotinamide adenine dinucleotide (oxidized form) |
NAPH | Nicotinamide adenine dinucleotide phosphate (reduced form) |
NIFTP | Noninvasive follicular thyroid neoplasm with papillary-like nuclear features |
NIS | Sodium/iodide symporter |
NOX | Nicotinamide adenine dinucleotide phosphate oxidases |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
OGG1 | 8-oxoguanine DNA glycosylase |
oxoG | 8-oxoguanine |
PAX8 | Paired box gene 8 |
PGC-1α | Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
PRDX1 | Peroxiredoxin 1 |
P4H | Prolyl-4-hydroxylase |
PTC | Papillary thyroid cancer |
PTEN | Phosphatase and tensin homolog |
QoL | Quality of life |
RAS | Rat sarcoma |
RCT | Randomized controlled trial |
RET | Rearranged during transfection |
ROS | Reactive oxygen species |
SMAD3 | Mothers against decapentaplegic homolog 3 |
SOD | Superoxide dismutase |
SVCT | Sodium-ascorbate co-transporters |
TC | Thyroid cancer |
TCA | Tricarboxylic acid |
TERT | Telomerase reverse transcriptase |
TET | Ten-eleven-translocation |
TG | Thyroglobulin |
TH | Thyroid hormones |
TNF-α | Tumor necrosis factor-alpha |
TP53 | p53 tumor suppressor |
TPO | Thyroperoxidase |
TGF-β | Transforming growth factor-beta |
TSH | Thyroid stimulating hormone |
References
- Balajam, N.Z.; Mousavian, A.H.; Sheidaei, A.; Gohari, K.; Tavangar, S.M.; Ghanbari-Motlagh, A.; Ostovar, A.; Shafiee, G.; Heshmat, R. The 15-year national trends of endocrine cancers incidence among Iranian men and women; 2005–2020. Sci. Rep. 2023, 13, 7632. [Google Scholar] [CrossRef] [PubMed]
- Shank, J.B.; Are, C.; Wenos, C.D. Thyroid Cancer: Global Burden and Trends. Indian J. Surg. Oncol. 2022, 13, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; La Vecchia, C.; Vaccarella, S. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, C.H.; Cao, Y.; Zhang, L.Y.; Zhao, Y.; Liu, Y.W.; Liu, H.F.; Lin, Y.S.; Li, X.Y. Survival prognostic factors for differentiated thyroid cancer patients with pulmonary metastases: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 990154. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, C.M.; Schneider, A.B. Epidemiology of Thyroid Cancer. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1284–1297. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef] [PubMed]
- Jukić, T.; Blažeković, I.; Franceschi, M.; Ovčariček, P.P.; Butković, M.B.; Dabelić, N.; Granić, R.; Punda, M.; Sonicki, Z.; Vagić, D.; et al. Long-Term Outcome of Differentiated Thyroid Cancer Patients-Fifty Years of Croatian Thyroid Disease Referral Centre Experience. Diagnostics 2022, 12, 866. [Google Scholar] [CrossRef]
- Juhlin, C.C.; Mete, O.; Baloch, Z.W. The 2022 WHO classification of thyroid tumors: Novel concepts in nomenclature and grading. Endocr. Relat. Cancer 2022, 30, e220293. [Google Scholar]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simões, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct Res. 2015, 35, 600–604. [Google Scholar] [CrossRef]
- Vuong, H.G.; Duong, U.N.; Altibi, A.M.; Ngo, H.T.; Pham, T.Q.; Tran, H.M.; Gandolfi, G.; Hassell, L. A meta-analysis of prognostic roles of molecular markers in papillary thyroid carcinoma. Endocr. Connect. 2017, 6, R8–R17. [Google Scholar] [CrossRef]
- Tabriz, N.; Grone, J.; Uslar, V.; Tannapfel, A.; Weyhe, D. BRAF V600E mutation correlates with aggressive clinico-pathological features but does not influence tumor recurrence in papillary thyroid carcinoma-10-year single-center results. Gland. Surg. 2020, 9, 1902–1913. [Google Scholar] [CrossRef] [PubMed]
- Al-Masri, M.; Al-Shobaki, T.; Al-Najjar, H.; Iskanderian, R.; Younis, E.; Abdallah, N.; Tbakhi, A.; Haddad, H.; Al-Masri, M.; Obeid, Z.; et al. BRAF V600E mutation in papillary thyroid carcinoma: It’s relation to clinical features and oncologic outcomes in a single cancer centre experience. Endocr. Connect. 2021, 10, 1531–1537. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Song, S.Y.; Kim, M.K.; Na, H.G.; Bae, C.H.; Kim, Y.D.; Choi, Y.S. Complete response of metastatic BRAF V600-mutant anaplastic thyroid cancer following adjuvant dabrafenib and trametinib treatment: A case report. World J. Clin. Cases. 2023, 11, 6664–6669. [Google Scholar] [CrossRef]
- Macvanin, M.T.; Gluvic, Z.; Zafirovic, S.; Gao, X.; Essack, M.; Isenovic, E.R. The protective role of nutritional antioxidants against oxidative stress in thyroid disorders. Front. Endocrinol. 2023, 13, 1092837. [Google Scholar] [CrossRef]
- Ameziane El Hassani, R.; Buffet, C.; Leboulleux, S.; Dupuy, C. Oxidative stress in thyroid carcinomas: Biological and clinical significance. Endocr. Relat. Cancer. 2019, 26, R131–R143. [Google Scholar] [CrossRef] [PubMed]
- Muzza, M.; Pogliaghi, G.; Colombo, C.; Carbone, E.; Cirello, V.; Palazzo, S.; Frattini, F.; Gentilini, D.; Gazzano, G.; Persani, L.; et al. Oxidative Stress Correlates with More Aggressive Features in Thyroid Cancer. Cancers 2022, 14, 5857. [Google Scholar] [CrossRef]
- Martinez-Cadenas, C.; Bosch, N.; Peñas, L.; Flores-Couce, E.; Ochoa, E.; Munárriz, J.; Aracil, J.P.; Tajahuerce, M.; Royo, R.; Lozoya, R.; et al. Malignant melanoma arising from a perianal fistula and harbouring a BRAF gene mutation: A case report. BMC Cancer 2011, 11, 343. [Google Scholar] [CrossRef]
- Azouzi, N.; Cailloux, J.; Cazarin, J.M.; Knauf, J.A.; Cracchiolo, J.; Al Ghuzlan, A.; Hartl, D.; Polak, M.; Carré, A.; El Mzibri, M.; et al. NADPH Oxidase NOX4 Is a Critical Mediator of BRAFV600E-Induced Downregulation of the Sodium/Iodide Symporter in Papillary Thyroid Carcinomas. Antioxid. Redox. Signal. 2017, 26, 864–877. [Google Scholar] [CrossRef]
- Granger, M.; Eck, P. Dietary Vitamin C in Human Health. Adv. Food Nutr. Res. 2018, 83, 281–310. [Google Scholar]
- Pawlowska, E.; Szczepanska, J.; Blasiak, J. Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations. Oxid. Med. Cell. Longev. 2019, 2019, 7286737. [Google Scholar] [CrossRef] [PubMed]
- Farasati Far, B.; Behnoush, A.H.; Ghondaghsaz, E.; Habibi, M.A.; Khalaji, A. The interplay between vitamin C and thyroid. Endocrinol. Diabetes Metab. 2023, 6, e432. [Google Scholar] [CrossRef] [PubMed]
- Ngo, B.; Van Riper, J.M.; Cantley, L.C.; Yun, J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer 2019, 19, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Böttger, F.; Vallés-Martí, A.; Cahn, L.; Jimenez, C.R. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. J. Exp. Clin. Cancer Res. 2021, 40, 343. [Google Scholar] [CrossRef]
- Tronci, L.; Serreli, G.; Piras, C.; Frau, D.V.; Dettori, T.; Deiana, M.; Murgia, F.; Santoru, M.L.; Spada, M.; Leoni, V.P.; et al. Vitamin C Cytotoxicity and Its Effects in Redox Homeostasis and Energetic Metabolism in Papillary Thyroid Carcinoma Cell Lines. Antioxidants 2021, 10, 809. [Google Scholar] [CrossRef]
- Hajeer, M.H.; Awad, H.A.; Abdullah, N.I.; Almuhaisen, G.H.; Abudalu, L.E. The rising trend in papillary thyroid carcinoma. True increase or over diagnosis? Saudi Med. J. 2018, 39, 147–153. [Google Scholar] [CrossRef]
- Vigneri, R.; Malandrino, P.; Russo, M. Is Thyroid Cancer Increasing in Incidence and Aggressiveness? J. Clin. Endocrinol. Metab. 2020, 105, dgaa223. [Google Scholar] [CrossRef]
- Li, Y.; Che, W.; Yu, Z.; Zheng, S.; Xie, S.; Chen, C.; Qiao, M.; Lyu, J. The Incidence Trend of Papillary Thyroid Carcinoma in the United States During 2003–2017. Cancer Control 2022, 29, 10732748221135447. [Google Scholar] [CrossRef]
- Yu, J. Trends in the incidence of thyroid cancer among US persons from 2000 to 2019. Eur. J. Cancer Prev. 2024, 33, 5–10. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Seethala, R.R.; Tallini, G.; Baloch, Z.W.; Basolo, F.; Thompson, L.D.; Barletta, J.A.; Wenig, B.M.; Al Ghuzlan, A.; Kakudo, K.; et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol. 2016, 2, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Basolo, F.; Macerola, E.; Poma, A.M.; Torregrossa, L. The 5th edition of WHO classification of tumors of endocrine organs: Changes in the diagnosis of follicular-derived thyroid carcinoma. Endocrine 2023, 80, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xing, M. TERT promoter mutations in thyroid cancer. Endocr. Relat. Cancer 2016, 23, R143–R155. [Google Scholar] [CrossRef]
- Colombo, C.; Pogliaghi, G.; Tosi, D.; Muzza, M.; Bulfamante, G.; Persani, L.; Fugazzola, L.; Cirello, V. Thyroid cancer harboring PTEN and TP53 mutations: A peculiar molecular and clinical case report. Front. Oncol. 2022, 12, 949098. [Google Scholar] [CrossRef]
- Hlozek, J.; Pekova, B.; Rotnágl, J.; Holý, R.; Astl, J. Genetic Changes in Thyroid Cancers and the Importance of Their Preoperative Detection in Relation to the General Treatment and Determination of the Extent of Surgical Intervention-A Review. Biomedicines 2022, 10, 1515. [Google Scholar] [CrossRef]
- Hsiao, S.J.; Nikiforov, Y.E. Molecular approaches to thyroid cancer diagnosis. Endocr. Relat. Cancer 2014, 21, T301–T313. [Google Scholar] [CrossRef]
- Prete, A.; Borges de Souza, P.; Censi, S.; Muzza, M.; Nucci, N.; Sponziello, M. Update on Fundamental Mechanisms of Thyroid Cancer. Front. Endocrinol. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef]
- Deng, S.; Leong, H.C.; Datta, A.; Gopal, V.; Kumar, A.P.; Yap, C.T. PI3K/AKT Signaling Tips the Balance of Cytoskeletal Forces for Cancer Progression. Cancers 2022, 14, 1652. [Google Scholar] [CrossRef]
- Singh, A.; Ham, J.; Po, J.W.; Niles, N.; Roberts, T.; Lee, C.S. The Genomic Landscape of Thyroid Cancer Tumourigenesis and Implications for Immunotherapy. Cells 2021, 10, 1082. [Google Scholar] [CrossRef]
- Guerra, A.; Zeppa, P.; Bifulco, M.; Vitale, M. Concomitant BRAF(V600E) mutation and RET/PTC rearrangement is a frequent occurrence in papillary thyroid carcinoma. Thyroid 2014, 24, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Baitei, E.Y.; Alzahrani, A.S.; BinHumaid, F.S.; Alkhafaji, D.; Al-Rijjal, R.A.; Meyer, B.F.; Shi, Y. Concomitant RAS, RET/PTC, or BRAF mutations in advanced stage of papillary thyroid carcinoma. Thyroid 2014, 4, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Master, S.R.; Mathias, P.M.; Burns, B. Medullary Thyroid Cancer. 2023. In Treasure Island; StatPearls Publishing: Petersburg, FL, USA, 2024. [Google Scholar]
- Accardo, G.; Conzo, G.; Esposito, D.; Gambardella, C.; Mazzella, M.; Castaldo, F.; Di Donna, C.; Polistena, A.; Avenia, N.; Colantuoni, V.; et al. Genetics of medullary thyroid cancer: An overview. Int. J. Surg. 2017, 41, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Khatami, F.; Tavangar, S.M. Multiple Endocrine Neoplasia Syndromes from Genetic and Epigenetic Perspectives. Biomark Insights 2018, 13, 1177271918785129. [Google Scholar] [CrossRef]
- Fu, G.; Chazen, R.S.; MacMillan, C.; Witterick, I.J. Discriminating Interpatient Variabilities of RAS Gene Variants for Precision Detection of Thyroid Cancer. JAMA Netw. Open 2024, 7, e2411919. [Google Scholar] [CrossRef] [PubMed]
- Saswata, S.; Amit, J.; Vanita, N.; Vijay, P.; Nandini, M.; Ajay, S.; Omshree1, S.; Neha1, M.; Pratik, C.; Anuradha, C.; et al. NRAS mutation in differentiated thyroid cancer. Cancer Res. Stat. Treat. 2022, 5, 722–727. [Google Scholar]
- De Vita, G.; Bauer, L.; da Costa, V.M.; De Felice, M.; Baratta, M.G.; De Menna, M.; Di Lauro, R. Dose-dependent inhibition of thyroid differentiation by RAS oncogenes. Mol. Endocrinol. 2005, 19, 76–89. [Google Scholar] [CrossRef]
- Dupain, C.; Ali, H.M.; Mouhoub, T.A.; Urbinati, G.; Massaad-Massade, L. Induction of TTF-1 or PAX-8 expression on proliferation and tumorigenicity in thyroid carcinomas. Int. J. Oncol. 2016, 49, 1248–1258. [Google Scholar] [CrossRef]
- Occhi, G.; Barollo, S.; Regazzo, D.; Bertazza, L.; Galuppini, F.; Guzzardo, V.; Jaffrain-Rea, M.L.; Vianello, F.; Ciato, D.; Ceccato, F.; et al. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC. Oncotarget 2015, 6, 32104–32114. [Google Scholar] [CrossRef]
- Owsley, J.; Stein, M.K.; Porter, J.; In, G.K.; Salem, M.; O’Day, S.; Elliott, A.; Poorman, K.; Gibney, G.; VanderWalde, A. Prevalence of class I-III BRAF mutations among 114,662 cancer patients in a large genomic database. Exp. Biol. Med. 2021, 246, 31–39. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, W.; Liu, C.; Li, J. Tall cell variant of papillary thyroid carcinoma: Current evidence on clinicopathologic features and molecular biology. Oncotarget 2016, 7, 40792–40799. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, J.; Xv, J.; Wang, J.; Wang, G.; Zhao, Y. Genetic alterations and allele frequency of BRAF V600E and TERT mutation in papillary thyroid carcinoma with intermediate-to-high recurrence risk: A retrospective study. Clin. Exp. Med. 2024, 24, 76. [Google Scholar] [CrossRef] [PubMed]
- Abdulhaleem, M.; Bandargal, S.; Pusztaszeri, M.P.; Rajab, M.; Greenspoon, H.; Krasner, J.R.; Da Silva, S.D.; Forest, V.-I.; Payne, R.J. The Impact of BRAF V600E Mutation Allele Frequency on the Histopathological Characteristics of Thyroid Cancer. Cancers 2024, 16, 113. [Google Scholar] [CrossRef]
- Attia, A.S.; Hussein, M.; Issa, P.P.; Elnahla, A.; Farhoud, A.; Magazine, B.M.; Youssef, M.R.; Aboueisha, M.; Shama, M.; Toraih, E.; et al. Association of BRAFV600E Mutation with the Aggressive Behavior of Papillary Thyroid Microcarcinoma: A Meta-Analysis of 33 Studies. Int. J. Mol. Sci. 2022, 23, 15626. [Google Scholar] [CrossRef]
- Romei, C.; Ciampi, R.; Elisei, R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat. Rev. Endocrinol. 2016, 12, 192–202. [Google Scholar] [CrossRef]
- Romei, C.; Ciampi, R.; Casella, F.; Tacito, A.; Torregrossa, L.; Ugolini, C.; Basolo, F.; Materazzi, G.; Vitti, P.; Elisei, R. RET mutation heterogeneity in primary advanced medullary thyroid cancers and their metastases. Oncotarget 2018, 9, 9875–9884. [Google Scholar] [CrossRef] [PubMed]
- Musholt, T.J.; Staubitz, J.I.; Antonio Cámara, R.J.; Musholt, P.B.; Humberg, D.; Springer, E.; Schad, A. Detection of RET rearrangements in papillary thyroid carcinoma using RT-PCR and FISH techniques—A molecular and clinical analysis. Eur. J. Surg. Oncol. 2019, 45, 1018–1024. [Google Scholar] [CrossRef]
- Su, X.; Li, Z.; He, C.; Chen, W.; Fu, X.; Yang, A. Radiation exposure, young age, and female gender are associated with high prevalence of RET/PTC1 and RET/PTC3 in papillary thyroid cancer: A meta-analysis. Oncotarget 2016, 7, 16716–16730. [Google Scholar] [CrossRef]
- Romei, C.; Elisei, R. RET/PTC Translocations and Clinico-Pathological Features in Human Papillary Thyroid Carcinoma. Front. Endocrinol. 2012, 3, 54. [Google Scholar] [CrossRef]
- Nikiforov, Y.E. RET/PTC rearrangement in thyroid tumors. Endocr. Pathol. 2002, 13, 3–16. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.Y.; Ma, S.X.; Kim, S.M.; Shin, S.J.; Lee, Y.S.; Chang, H.; Chang, H.S.; Park, C.S.; Lim, S.B. PPARγ Targets-Derived Diagnostic and Prognostic Index for Papillary Thyroid Cancer. Cancers 2021, 13, 5110. [Google Scholar] [CrossRef] [PubMed]
- Raman, P.; Koenig, R.J. Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nat. Rev. Endocrinol. 2014, 10, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Asya, O.; Yumuşakhuylu, A.C.; Bağcı, P.; Kaya, H.; Gönen, A.; Gündoğdu, Y.; Muradov, T.; Şahin, A.; Oysu, Ç. Relationship of PPARG overexpression with prognostic parameters in papillary thyroid carcinoma. ACTA Otorhinolaryngol. Ital. 2022, 42, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, M.N.; Lynch, R.A.; Biddinger, P.W.; Alexander, E.K.; Dorn, G.W., 2nd; Tallini, G.; Kroll, T.G.; Nikiforov, Y.E. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: Evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 2003, 88, 2318–2326. [Google Scholar] [CrossRef]
- French, C.A.; Alexander, E.K.; Cibas, E.S.; Nose, V.; Laguette, J.; Faquin, W.; Garber, J.; Moore, F., Jr.; Fletcher, J.A.; Larsen, P.R.; et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am. J. Pathol. 2003, 162, 1053–1060. [Google Scholar] [CrossRef]
- Bandargal, S.; Rajab, M.; Forest, V.I.; Pusztaszeri, M.P.; Hier, M.P.; da Silva, S.D.; Payne, R.J. Characteristics of PTEN Mutation in Thyroid Tumours: A Retrospective Chart Review. Cancers 2023, 15, 1575. [Google Scholar] [CrossRef]
- Macerola, E.; Poma, A.M.; Vignali, P.; Basolo, A.; Ugolini, C.; Torregrossa, L.; Santini, F.; Basolo, F. Molecular Genetics of Follicular-Derived Thyroid Cancer. Cancers 2021, 13, 1139. [Google Scholar] [CrossRef]
- Dratwa, M.; Wysoczańska, B.; Łacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT-Regulation and Roles in Cancer Formation. Front. Immunol. 2020, 11, 589929. [Google Scholar] [CrossRef]
- McKelvey, B.A.; Umbricht, C.B.; Zeiger, M.A. Telomerase Reverse Transcriptase (TERT) Regulation in Thyroid Cancer: A Review. Front. Endocrinol. 2020, 11, 485. [Google Scholar] [CrossRef]
- Ganly, I.; Makarov, V.; Deraje, S.; Dong, Y.; Reznik, E.; Seshan, V.; Nanjangud, G.; Eng, S.; Bose, P.; Kuo, F.; et al. Integrated Genomic Analysis of Hürthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes. Cancer Cell 2018, 34, 256–270.e5. [Google Scholar] [CrossRef]
- Matsuse, M.; Mitsutake, N. TERT promoter mutations in thyroid cancer. Endocr. J. 2023, 70, 1035–1049. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Do, H.T.T.; Lee, C.H.; Cho, J. Chemokines and their Receptors: Multifaceted Roles in Cancer Progression and Potential Value as Cancer Prognostic Markers. Cancers 2020, 12, 287. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, C.; Körner, H.; Ge, C. Tumor Necrosis Factor: What Is in a Name? Cancers 2022, 14, 5270. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, T.; Su, W.; Dou, Z.; Zhao, D.; Jin, X.; Lei, H.; Wang, J.; Xie, X.; Cheng, B.; et al. Mutant p53 in cancer: From molecular mechanism to therapeutic modulation. Cell Death Dis. 2022, 13, 974. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Lertpiriyapong, K.; Fitzgerald, T.L.; Martelli, A.M.; Cocco, L.; Rakus, D.; Gizak, A.; Libra, M.; Cervello, M.; Montalto, G.; et al. Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Adv. Biol. Regul. 2017, 63, 32–48. [Google Scholar] [CrossRef]
- Haroon Al Rasheed, M.R.; Xu, B. Molecular Alterations in Thyroid Carcinoma. Surg. Pathol. Clin. 2019, 12, 921–930. [Google Scholar] [CrossRef]
- Ibrahimpasic, T.; Xu, B.; Landa, I.; Dogan, S.; Middha, S.; Seshan, V.; Deraje, S.; Carlson, D.L.; Migliacci, J.; Knauf, J.A.; et al. Genomic Alterations in Fatal Forms of Non-Anaplastic Thyroid Cancer: Identification of MED12 and RBM10 as Novel Thyroid Cancer Genes Associated with Tumor Virulence. Clin. Cancer Res. 2017, 23, 5970–5980. [Google Scholar] [CrossRef]
- de Biase, D.; Torricelli, F.; Ragazzi, M.; Donati, B.; Kuhn, E.; Visani, M.; Acquaviva, G.; Pession, A.; Tallini, G.; Piana, S.; et al. Not the same thing: Metastatic PTCs have a different background than ATCs. Endocr. Connect. 2018, 7, 1370–1379. [Google Scholar] [CrossRef]
- Ragazzi, M.; Torricelli, F.; Donati, B.; Ciarrocchi, A.; de Biase, D.; Tallini, G.; Zanetti, E.; Bisagni, A.; Kuhn, E.; Giordano, D.; et al. Coexisting well-differentiated and anaplastic thyroid carcinoma in the same primary resection specimen: Immunophenotypic and genetic comparison of the two components in a consecutive series of 13 cases and a review of the literature. Virchows Arch. 2021, 478, 265–281. [Google Scholar] [CrossRef]
- Volante, M.; Lam, A.K.; Papotti, M.; Tallini, G. Molecular Pathology of Poorly Differentiated and Anaplastic Thyroid Cancer: What Do Pathologists Need to Know? Endocr. Pathol. 2021, 32, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Xing, M. Oxidative stress: A new risk factor for thyroid cancer. Endocr. Relat. Cancer 2012, 19, C7–C11. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Gorini, F.; Tonacci, A. Tumor Microbial Communities and Thyroid Cancer Development-The Protective Role of Antioxidant Nutrients: Application Strategies and Future Directions. Antioxidants 2023, 12, 1898. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef]
- Villanueva, I.; Alva-Sánchez, C.; Pacheco-Rosado, J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxid. Med. Cell. Longev. 2013, 2013, 218145. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, A.; Pula, G. The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int. J. Mol. Sci. 2018, 19, 3824. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Benvenga, S.; Nordio, M.; Laganà, A.S.; Unfer, V. The Role of Inositol in Thyroid Physiology and in Subclinical Hypothyroidism Management. Front. Endocrinol. 2021, 12, 662582. [Google Scholar] [CrossRef]
- Rigutto, S.; Hoste, C.; Grasberger, H.; Milenkovic, M.; Communi, D.; Dumont, J.E.; Corvilain, B.; Miot, F.; De Deken, X. Activation of dual oxidases Duox1 and Duox2: Differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J. Biol. Chem. 2009, 284, 6725–6734. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; Zhao, J.; Yao, J.; Shang, H.; Zhu, H.; Liao, L.; Dong, J. Association between sodium iodide symporter and differentiated Thyroid cancer: A meta-analysis of 9 studies. Int. J. Clin. Exp. Med. 2015, 8, 17986–17994. [Google Scholar] [PubMed]
- Szanto, I.; Pusztaszeri, M.; Mavromati, M. H2O2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants 2019, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.P.; Dupuy, C. Role of the NADPH Oxidases DUOX and NOX4 in Thyroid Oxidative Stress. Eur. Thyroid J. 2013, 2, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Faria, C.C.; Fortunato, R.S. The role of dual oxidases in physiology and cancer. Genet. Mol. Biol. 2020, 43, e20190096. [Google Scholar] [CrossRef]
- Ameziane-El-Hassani, R.; Schlumberger, M.; Dupuy, C. NADPH oxidases: New actors in thyroid cancer? Nat. Rev. Endocrinol. 2016, 12, 485–494. [Google Scholar] [CrossRef]
- Weyemi, U.; Lagente-Chevallier, O.; Boufraqech, M.; Prenois, F.; Courtin, F.; Caillou, B.; Talbot, M.; Dardalhon, M.; Al Ghuzlan, A.; Bidart, J.M.; et al. ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 2012, 31, 1117–1129. [Google Scholar] [CrossRef]
- Wang, D.; Feng, J.F.; Zeng, P.; Yang, Y.H.; Luo, J.; Yang, Y.W. Total oxidant/antioxidant status in sera of patients with thyroid cancers. Endocr. Relat. Cancer 2011, 18, 773–782. [Google Scholar] [CrossRef]
- Ramli, N.S.F.; Mat Junit, S.; Leong, N.K.; Razali, N.; Jayapalan, J.J.; Abdul Aziz, A. Analyses of antioxidant status and nucleotide alterations in genes encoding antioxidant enzymes in patients with benign and malignant thyroid disorders. PeerJ 2017, 5, e3365. [Google Scholar] [CrossRef]
- Gorini, F.; Sabatino, L.; Pingitore, A.; Vassalle, C. Selenium: An Element of Life Essential for Thyroid Function. Molecules 2021, 26, 7084. [Google Scholar] [CrossRef]
- Gorini, F.; Vassalle, C. Selenium and Selenoproteins at the Intersection of Type 2 Diabetes and Thyroid Pathophysiology. Antioxidants 2022, 11, 1188. [Google Scholar] [CrossRef]
- Erdamar, H.; Cimen, B.; Gülcemal, H.; Saraymen, R.; Yerer, B.; Demirci, H. Increased lipid peroxidation and impaired enzymatic antioxidant defense mechanism in thyroid tissue with multinodular goiter and papillary carcinoma. Clin. Biochem. 2010, 43, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Eng, Z.H.; Abdul Aziz, A.; Ng, K.L.; Mat Junit, S. Changes in antioxidant status and DNA repair capacity are corroborated with molecular alterations in malignant thyroid tissue of patients with papillary thyroid cancer. Front. Mol. Biosci. 2023, 10, 1237548. [Google Scholar] [CrossRef]
- Popov, A.V.; Yudkina, A.V.; Vorobjev, Y.N.; Zharkov, D.O. Catalytically Competent Conformation of the Active Site of Human 8-Oxoguanine-DNA Glycosylase. Biochemistry 2020, 85, 192–204. [Google Scholar] [CrossRef]
- Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef] [PubMed]
- Perkins, A.; Nelson, K.J.; Parsonage, D.; Poole, L.B.; Karplus, P.A. Peroxiredoxins: Guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 2015, 40, 435–445. [Google Scholar] [CrossRef]
- Sekhar, K.R.; Hanna, D.N.; Cyr, S.; Baechle, J.J.; Kuravi, S.; Balusu, R.; Rathmell, K.; Baregamian, N. Glutathione peroxidase 4 inhibition induces ferroptosis and mTOR pathway suppression in thyroid cancer. Sci. Rep. 2022, 12, 19396. [Google Scholar] [CrossRef]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Luxen, S.; Belinsky, S.A.; Knaus, U.G. Silencing of DUOX NADPH oxidases by promoter hypermethylation in lung cancer. Cancer Res. 2008, 68, 1037–1045. [Google Scholar] [CrossRef]
- Ling, Q.; Shi, W.; Huang, C.; Zheng, J.; Cheng, Q.; Yu, K.; Chen, S.; Zhang, H.; Li, N.; Chen, M. Epigenetic silencing of dual oxidase 1 by promoter hypermethylation in human hepatocellular carcinoma. Am. J. Cancer Res. 2014, 4, 508–517. [Google Scholar]
- Wu, Y.; Antony, S.; Hewitt, S.M.; Jiang, G.; Yang, S.X.; Meitzler, J.L.; Juhasz, A.; Lu, J.; Liu, H.; Doroshow, J.H.; et al. Functional activity and tumor-specific expression of dual oxidase 2 in pancreatic cancer cells and human malignancies characterized with a novel monoclonal antibody. Int. J. Oncol. 2013, 42, 1229–1238. [Google Scholar] [CrossRef]
- Ameziane-El-Hassani, R.; Talbot, M.; de Souza Dos Santos, M.C.; Al Ghuzlan, A.; Hartl, D.; Bidart, J.M.; De Deken, X.; Miot, F.; Diallo, I.; de Vathaire, F.; et al. NADPH oxidase DUOX1 promotes long-term persistence of oxidative stress after an exposure to irradiation. Proc. Natl. Acad. Sci. USA 2015, 112, 5051–5056. [Google Scholar] [CrossRef] [PubMed]
- Detours, V.; Delys, L.; Libert, F.; Weiss Solís, D.; Bogdanova, T.; Dumont, J.E.; Franc, B.; Thomas, G.; Maenhaut, C. Genome-wide gene expression profiling suggests distinct radiation susceptibilities in sporadic and post-Chernobyl papillary thyroid cancers. Br. J. Cancer 2007, 97, 818–825. [Google Scholar] [CrossRef]
- Fenniche, S.; Oukabli, M.; Oubaddou, Y.; Chahdi, H.; Damiri, A.; Alghuzlan, A.; Laraqui, A.; Dakka, N.; Bakri, Y.; Dupuy, C.; et al. A Comparative Analysis of NOX4 Protein Expression in Malignant and Non-Malignant Thyroid Tumors. Curr. Issues Mol. Biol. 2023, 45, 5811–5823. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ling, L.; van Dam, H.; Zhou, F.; Zhang, L. TGF-β signaling in cancer metastasis. Acta Biochim. Biophys. Sin. 2018, 50, 121–132. [Google Scholar] [CrossRef]
- Wang, Y.; He, H.; Liyanarachchi, S.; Genutis, L.K.; Li, W.; Yu, L.; Phay, J.E.; Shen, R.; Brock, P.; de la Chapelle, A. The role of SMAD3 in the genetic predisposition to papillary thyroid carcinoma. Genet. Med. 2018, 20, 927–935. [Google Scholar] [CrossRef]
- Costamagna, E.; García, B.; Santisteban, P. The functional interaction between the paired domain transcription factor Pax8 and Smad3 is involved in transforming growth factor-beta repression of the sodium/iodide symporter gene. J. Biol. Chem. 2004, 279, 3439–3446. [Google Scholar] [CrossRef]
- Choi, Y.W.; Kim, H.J.; Kim, Y.H.; Park, S.H.; Chwae, Y.J.; Lee, J.; Soh, E.Y.; Kim, J.H.; Park, T.J. B-RafV600E inhibits sodium iodide symporter expression via regulation of DNA methyltransferase 1. Exp. Mol. Med. 2014, 46, e120. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, D.; Murugan, A.K.; Liu, Z.; Xing, M. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocr. Relat. Cancer 2014, 21, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Deng, Y.; Pan, L.; Ouyang, W.; Feng, H.; Wu, J.; Chen, P.; Wang, J.; Chen, Y.; Luo, J. Clinical significance of the BRAFV600E mutation in PTC and its effect on radioiodine therapy. Endocr. Connect. 2019, 8, 754–776. [Google Scholar] [CrossRef]
- Szanto, I. NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation. Int. J. Mol. Sci. 2022, 23, 2702. [Google Scholar] [CrossRef]
- Tang, P.; Dang, H.; Huang, J.; Xu, T.; Yuan, P.; Hu, J.; Sheng, J.F. NADPH oxidase NOX4 is a glycolytic regulator through mROS-HIF1α axis in thyroid carcinomas. Sci. Rep. 2018, 8, 15897. [Google Scholar] [CrossRef] [PubMed]
- Diebold, I.; Petry, A.; Hess, J.; Görlach, A. The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol. Biol. Cell. 2010, 21, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Diebold, I.; Flügel, D.; Becht, S.; Belaiba, R.S.; Bonello, S.; Hess, J.; Kietzmann, T.; Görlach, A. The hypoxia-inducible factor-2alpha is stabilized by oxidative stress involving NOX4. Antioxid. Redox Signal. 2010, 13, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell. Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Cazarin, J.M.; Coelho, R.G.; Hecht, F.; Andrade, B.M.; Carvalho, D.P. 5′-AMP-Activated Protein Kinase Regulates Papillary (TPC-1 and BCPAP) Thyroid Cancer Cell Survival, Migration, Invasion, and Epithelial-to-Mesenchymal Transition. Thyroid 2016, 26, 933–942. [Google Scholar] [CrossRef]
- Awwad, O.; Coperchini, F.; Pignatti, P.; Denegri, M.; Massara, S.; Croce, L.; Di Buduo, C.A.; Abbonante, V.; Balduini, A.; Chiovato, L.; et al. The AMPK-activator AICAR in thyroid cancer: Effects on CXCL8 secretion and on CXCL8-induced neoplastic cell migration. J. Endocrinol. Investig. 2018, 41, 1275–1282. [Google Scholar] [CrossRef]
- Rabinovitch, R.C.; Samborska, B.; Faubert, B.; Ma, E.H.; Gravel, S.P.; Andrzejewski, S.; Raissi, T.C.; Pause, A.; St-Pierre, J.; Jones, R.G. AMPK Maintains Cellular Metabolic Homeostasis through Regulation of Mitochondrial Reactive Oxygen Species. Cell Rep. 2017, 21, 1–9. [Google Scholar] [CrossRef]
- Abu Shelbayeh, O.; Arroum, T.; Morris, S.; Busch, K.B. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants 2023, 12, 1075. [Google Scholar] [CrossRef]
- Eid, A.A.; Ford, B.M.; Block, K.; Kasinath, B.S.; Gorin, Y.; Ghosh-Choudhury, G.; Barnes, J.L.; Abboud, H.E. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J. Biol. Chem. 2010, 285, 37503–37512. [Google Scholar] [CrossRef]
- Sato, N.; Takasaka, N.; Yoshida, M.; Tsubouchi, K.; Minagawa, S.; Araya, J.; Saito, N.; Fujita, Y.; Kurita, Y.; Kobayashi, K.; et al. Metformin attenuates lung fibrosis development via NOX4 suppression. Respir. Res. 2016, 17, 107. [Google Scholar] [CrossRef]
- Araque, K.A.; Gubbi, S.; Klubo-Gwiezdzinska, J. Updates on the Management of Thyroid Cancer. Horm. Metab. Res. 2020, 52, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Kościuszko, M.; Buczyńska, A.; Krętowski, A.J.; Popławska-Kita, A. Could Oxidative Stress Play a Role in the Development and Clinical Management of Differentiated Thyroid Cancer? Cancers 2023, 15, 3182. [Google Scholar] [CrossRef]
- Song, J.Y.; Sun, S.R.; Dong, F.; Huang, T.; Wu, B.; Zhou, J. Predictive Value of BRAFV600E Mutation for Lymph Node Metastasis in Papillary Thyroid Cancer: A Meta-analysis. Curr. Med. Sci. 2018, 38, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, R.; Fang, J.; Zhong, Q.; Chen, X.; Hou, L.; Feng, L.; Chen, X.; Huang, Z.; Zhao, H. A meta-analysis evaluating the relationship between B-type Raf kinase mutation and cervical lymphatic metastasis in papillary thyroid cancer. Medicine 2020, 9, e18917. [Google Scholar] [CrossRef] [PubMed]
- Pacini, F.; Fuhrer, D.; Elisei, R.; Handkiewicz-Junak, D.; Leboulleux, S.; Luster, M.; Schlumberger, M.; Smit, J.W. 2022 ETA Consensus Statement: What are the indications for post-surgical radioiodine therapy in differentiated thyroid cancer? Eur. Thyroid J. 2022, 11, e210046. [Google Scholar] [CrossRef]
- Evans, C.; Tennant, S.; Perros, P. Thyroglobulin in differentiated thyroid cancer. Clin. Chim. Acta 2015, 444, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ren, C.; Gong, Y.; Ye, F.; Tang, Y.; Xu, J.; Guo, C.; Huang, J. The Role of Thyroglobulin in Preoperative and Postoperative Evaluation of Patients With Differentiated Thyroid Cancer. Front. Endocrinol. 2022, 13, 872527. [Google Scholar] [CrossRef]
- Van Nostrand, D. Selected Controversies of Radioiodine Imaging and Therapy in Differentiated Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2017, 46, 783–793. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef]
- Saraçoğlu, S.; Güven, O.; Babacan, G.B.; Karyağar, S.; Özülker, T.; Ergür, S.; Sağlampınar Karyağar, S. Comparison of Radioactive Iodine Activities in Terms of Short- and Long-term Results in Ablation Therapy in Patients with Low-risk Differentiated Thyroid Cancer. Mol. Imaging Radionucl. Ther. 2023, 32, 112–116. [Google Scholar] [CrossRef]
- Signore, A.; Campagna, G.; Marinaccio, J.; Vitis, M.; Lauri, C.; Berardinelli, F.; Tofani, A.; Chianelli, M.; Borro, M.; Gentile, G.; et al. Analysis of Short-Term and Stable DNA Damage in Patients with Differentiated Thyroid Cancer Treated with 131I in Hypothyroidism or with Recombinant Human Thyroid-Stimulating Hormone for Remnant Ablation. J. Nucl. Med. 2022, 63, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Buczyńska, A.; Sidorkiewicz, I.; Rogucki, M.; Siewko, K.; Adamska, A.; Kościuszko, M.; Maliszewska, K.; Kozłowska, G.; Szumowski, P.; Myśliwiec, J.; et al. Oxidative stress and radioiodine treatment of differentiated thyroid cancer. Sci. Rep. 2021, 11, 17126. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, E.; Medina, J.; Sánchez, J.C.; Viúdez, A.; Grande, E.; Porras, I.; Ramón, Y.; Cajal, T.; Trigo, J.; Iglesias, L.; et al. SEOM clinical guideline thyroid cancer (2019). Clin. Transl. Oncol. 2020, 22, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhong, L.; Yi, H. A review on the mechanism of iodide metabolic dysfunction in differentiated thyroid cancer. Mol. Cell. Endocrinol. 2019, 479, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Perrier, N.D.; Brierley, J.D.; Tuttle, R.M. Differentiated and anaplastic thyroid carcinoma: Major changes in the American joint committee on cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2018, 68, 55–63. [Google Scholar] [CrossRef]
- American Thyroid Association. Thyroid Cancer. 2024. Available online: https://www.thyroid.org/anaplastic-thyroid-cancer/ (accessed on 10 August 2024).
- Jannin, A.; Escande, A.; Al Ghuzlan, A.; Blanchard, P.; Hartl, D.; Chevalier, B.; Deschamps, F.; Lamartina, L.; Lacroix, L.; Dupuy, C.; et al. Anaplastic Thyroid Carcinoma: An Update. Cancers 2022, 14, 1061. [Google Scholar] [CrossRef]
- Gugnoni, M.; Lorenzini, E.; Faria do Valle, I.; Remondini, D.; Castellani, G.; Torricelli, F.; Sauta, E.; Donati, B.; Ragazzi, M.; Ghini, F.; et al. Adding pieces to the puzzle of differentiated-to-anaplastic thyroid cancer evolution: The oncogene E2F7. Cell Death Dis. 2023, 14, 99. [Google Scholar] [CrossRef]
- Bible, K.C.; Kebebew, E.; Brierley, J.; Brito, J.P.; Cabanillas, M.E.; Clark, T.J., Jr.; Di Cristofano, A.; Foote, R.; Giordano, T.; Kasperbauer, J.; et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid 2021, 31, 337–386. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.C.; Cabanillas, M.E.; Boran, A.; et al. Dabrafenib plus trametinib in patients with BRAF V600E-mutant anaplastic thyroid cancer: Updated analysis from the phase II ROAR basket study. Ann. Oncol. 2022, 33, 406–415. [Google Scholar] [CrossRef]
- Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct. Target. Ther. 2023, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Wagle, N.; Grabiner, B.C.; Van Allen, E.M.; Amin-Mansour, A.; Taylor-Weiner, A.; Rosenberg, M.; Gray, N.; Barletta, J.A.; Guo, Y.; Swanson, S.J.; et al. Response and acquired resistance to everolimus in anaplastic thyroid cancer. N. Engl. J. Med. 2014, 371, 1426–1433. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.C.; de Wit, D.; Links, T.P.; van Erp, N.P.; van der Hoeven, J.J.; Gelderblom, H.; Roozen, I.C.; Bos, M.; Corver, W.E.; van Wezel, T.; et al. Everolimus in Patients With Advanced Follicular-Derived Thyroid Cancer: Results of a Phase II Clinical Trial. J. Clin. Endocrinol. Metab. 2017, 102, 698–707. [Google Scholar] [CrossRef]
- Hudson, K.; Cross, N.; Jordan-Mahy, N.; Leyland, R. The Extrinsic and Intrinsic Roles of PD-L1 and Its Receptor PD-1: Implications for Immunotherapy Treatment. Front. Immunol. 2020, 11, 568931. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Hsu, J.M.; Yang, W.H.; Hung, M.C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics. Nat. Rev. Clin. Oncol. 2022, 19, 287–305. [Google Scholar] [CrossRef]
- Capdevila, J.; Wirth, L.J.; Ernst, T.; Ponce Aix, S.; Lin, C.C.; Ramlau, R.; Butler, M.O.; Delord, J.P.; Gelderblom, H.; Ascierto, P.A.; et al. PD-1 Blockade in Anaplastic Thyroid Carcinoma. J. Clin. Oncol. 2020, 38, 2620–2627. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; Dadu, R.; Ferrarotto, R.; Liu, S.; Fellman, B.M.; Gross, N.D.; Gule-Monroe, M.; Lu, C.; Grosu, H.; Williams, M.D.; et al. Atezolizumab Combinations with Targeted Therapy for Anaplastic Thyroid Carcinoma (ATC). J. Clin. Oncol. 2020, 38, 6514. [Google Scholar] [CrossRef]
- Dierks, C.; Seufert, J.; Aumann, K.; Ruf, J.; Klein, C.; Kiefer, S.; Rassner, M.; Boerries, M.; Zielke, A.; la Rosee, P.; et al. Combination of Lenvatinib and Pembrolizumab Is an Effective Treatment Option for Anaplastic and Poorly Differentiated Thyroid Carcinoma. Thyroid 2021, 31, 1076–1085. [Google Scholar] [CrossRef]
- EFSA, European Food Safety Authority. Scientific Opinion on Dietary Reference Values for vitamin C. EFSA J. 2013, 11, 3418. [Google Scholar]
- Zheng, H.; Xu, Y.; Liehn, E.A.; Rusu, M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int. J. Mol. Sci. 2024, 25, 3114. [Google Scholar] [CrossRef]
- Villagran, M.; Ferreira, J.; Martorell, M.; Mardones, L. The Role of Vitamin C in Cancer Prevention and Therapy: A Literature Review. Antioxidants 2021, 10, 1894. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK225480/ (accessed on 11 August 2024).
- Gandhi, M.; Elfeky, O.; Ertugrul, H.; Chela, H.K.; Daglilar, E. Scurvy: Rediscovering a Forgotten Disease. Diseases 2023, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.; Carr, A.C. Global Vitamin C Status and Prevalence of Deficiency: A Cause for Concern? Nutrients 2020, 12, 2008. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta 2012, 1826, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, D.; Pelosi, E.; Castelli, G.; Lo-Coco, F.; Testa, U. Mechanisms of anti-cancer effects of ascorbate: Cytotoxic activity and epigenetic modulation. Blood Cells Mol. Dis. 2018, 69, 57–64. [Google Scholar] [CrossRef]
- Vissers, M.C.M.; Das, A.B. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front. Physiol. 2018, 9, 809. [Google Scholar] [CrossRef]
- Maekawa, T.; Miyake, T.; Tani, M.; Uemoto, S. Diverse antitumor effects of ascorbic acid on cancer cells and the tumor microenvironment. Front. Oncol. 2022, 12, 981547. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Du, Z.; Zhang, Y.; Li, M.; Gao, R.; Qin, L.; Wang, H. The Association Between Vitamin C and Cancer: A Two-Sample Mendelian Randomization Study. Front. Genet. 2022, 13, 868408. [Google Scholar] [CrossRef]
- Wang, F.; He, M.M.; Xiao, J.; Zhang, Y.Q.; Yuan, X.L.; Fang, W.J.; Zhang, Y.; Wang, W.; Hu, X.H.; Ma, Z.G.; et al. A Randomized, Open-Label, Multicenter, Phase 3 Study of High-Dose Vitamin C Plus FOLFOX ± Bevacizumab versus FOLFOX ± Bevacizumab in Unresectable Untreated Metastatic Colorectal Cancer (VITALITY Study). Clin. Cancer Res. 2022, 28, 4232–4239. [Google Scholar] [CrossRef]
- Fritz, H.; Flower, G.; Weeks, L.; Cooley, K.; Callachan, M.; McGowan, J.; Skidmore, B.; Kirchner, L.; Seely, D. Intravenous Vitamin C and Cancer: A Systematic Review. Integr. Cancer Ther. 2014, 13, 280–300. [Google Scholar] [CrossRef]
- Jacobs, C.; Hutton, B.; Ng, T.; Shorr, R.; Clemons, M. Is there a role for oral or intravenous ascorbate (vitamin C) in treating patients with cancer? A systematic review. Oncologist 2015, 20, 210–323. [Google Scholar] [PubMed]
- van Gorkom, G.N.Y.; Lookermans, E.L.; Van Elssen, C.H.M.J.; Bos, G.M.J. The Effect of Vitamin C (Ascorbic Acid) in the Treatment of Patients with Cancer: A Systematic Review. Nutrients 2019, 11, 977. [Google Scholar] [CrossRef]
- Hoppe, C.; Freuding, M.; Büntzel, J.; Münstedt, K.; Hübner, J. Clinical efficacy and safety of oral and intravenous vitamin C use in patients with malignant diseases. J. Cancer Res. Clin. Oncol. 2021, 147, 3025–3042. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Y.; Cao, D.; Qiu, S.; Chen, B.; Li, J.; Bao, Y.; Wei, Q.; Han, P.; Liu, L. Vitamin C Intake and Cancers: An Umbrella Review. Front. Nutr. 2022, 8, 812394. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Cook, J. Intravenous Vitamin C for Cancer Therapy–Identifying the Current Gaps in Our Knowledge. Front. Physiol. 2018, 9, 1182. [Google Scholar] [CrossRef] [PubMed]
- Dharshini, L.C.P.; Rasmi, R.R.; Kathirvelan, C.; Kumar, K.M.; Saradhadevi, K.M.; Sakthivel, K.M. Regulatory Components of Oxidative Stress and Inflammation and Their Complex Interplay in Carcinogenesis. Appl. Biochem. Biotechnol. 2023, 195, 2893–2916. [Google Scholar] [CrossRef]
- Mehdi, W.A.; Zainulabdeen, J.A.; Mehde, A.A. Investigation of the antioxidant status in multiple myeloma patients: Effects of therapy. Asian Pac. J. Cancer Prev. 2013, 14, 3663–3667. [Google Scholar] [CrossRef]
- White, R.; Nonis, M.; Pearson, J.F.; Burgess, E.; Morrin, H.R.; Pullar, J.M.; Spencer, E.; Vissers, M.C.M.; Robinson, B.A.; Dachs, G.U. Low Vitamin C Status in Patients with Cancer Is Associated with Patient and Tumor Characteristics. Nutrients 2020, 12, 2338. [Google Scholar] [CrossRef]
- D’Avanzo, B.; Ron, E.; La Vecchia, C.; Francaschi, S.; Negri, E.; Zleglar, R. Selected micronutrient intake and thyroid carcinoma risk. Cancer 1997, 79, 2186–2192. [Google Scholar] [CrossRef]
- Jung, S.K.; Kim, K.; Tae, K.; Kong, G.; Kim, M.K. The effect of raw vegetable and fruit intake on thyroid cancer risk among women: A case-control study in South Korea. Br. J. Nutr. 2013, 109, 118–128. [Google Scholar] [CrossRef]
- O’Grady, T.J.; Kitahara, C.M.; DiRienzo, A.G.; Gates, M.A. The association between selenium and other micronutrients and thyroid cancer incidence in the NIH-AARP Diet and Health Study. PLoS ONE. 2014, 9, e110886. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Kuang, A.; Huang, R.; Zhao, Z.; Zeng, Y.; Wang, J.; Tian, R. Influence of vitamin C on salivary absorbed dose of 131I in thyroid cancer patients: A prospective, randomized, single-blind, controlled trial. J. Nucl. Med. 2010, 51, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Auttara-Atthakorn, A.; Sungmala, J.; Anothaisintawee, T.; Reutrakul, S.; Sriphrapradang, C. Prevention of salivary gland dysfunction in patients treated with radioiodine for differentiated thyroid cancer: A systematic review of randomized controlled trials. Front. Endocrinol. 2022, 13, 960265. [Google Scholar] [CrossRef]
- Marcott, S.; Dewan, K.; Kwan, M.; Baik, F.; Lee, Y.J.; Sirjani, D. Where Dysphagia Begins: Polypharmacy and Xerostomia. Fed. Pract. 2020, 37, 234–241. [Google Scholar] [PubMed]
- Liu, Y.; Wang, Y.; Zhang, W. Optimal administration time of vitamin C after 131I therapy in differentiated thyroid cancer based on propensity score matching. Front. Surg. 2022, 9, 993712. [Google Scholar] [CrossRef]
- Cheng, Y.; Tong, H.; Li, X.; Zhang, X.; Fang, J.; Yue, R.; Huang, N.; Tian, J.; Yu, F.; Gao, Y. Effect of vitamin E and supragingival scaling on salivary gland function in patients with differentiated thyroid cancer treated with 131I. Nucl. Med. Commun. 2022, 43, 995–1003. [Google Scholar] [CrossRef]
- De Felice, F.; Tombolini, M.; Musella, A.; Marampon, F.; Tombolini, V.; Musio, D. Radiation therapy and serum salivary amylase in head and neck cancer. Oncotarget 2017, 8, 90496–90500. [Google Scholar] [CrossRef]
- Tong, H.; Yue, R.; Fang, J.; Li, X.; Yang, S.; Hou, Y.; Wang, R.; Zhang, B.; Liu, H.; Wu, Z.; et al. Effects of postoperative antioxidants on the salivary glands in patients with thyroid cancer undergoing radioactive iodine-131 treatment. Nucl. Med. Commun. 2024, 45, 312–320. [Google Scholar] [CrossRef]
- Rosário, P.W.; Batista, K.C.; Calsolari, M.R. Radioiodine-induced oxidative stress in patients with differentiated thyroid carcinoma and effect of supplementation with vitamins C and E and selenium (antioxidants). Arch. Endocrinol. Metab. 2016, 60, 328–332. [Google Scholar] [CrossRef]
- Yuan, J.M.; Grouls, M.; Carmella, S.G.; Wang, R.; Heskin, A.; Jiang, Y.; Tan, Y.T.; Adams-Haduch, J.; Gao, Y.T.; Hecht, S.S. Prediagnostic levels of urinary 8-epi-prostaglandin F2α and prostaglandin E2 metabolite, biomarkers of oxidative damage and inflammation, and risk of hepatocellular carcinoma. Carcinogenesis 2019, 40, 989–997. [Google Scholar] [CrossRef]
- Jafari, E.; Alavi, M.; Zal, F. The evaluation of protective and mitigating effects of vitamin C against side effects induced by radioiodine therapy. Radiat. Environ. Biophys. 2018, 57, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Shen, Z.; Yang, Q.; Sui, F.; Pu, J.; Ma, J.; Ma, S.; Yao, D.; Ji, M.; Hou, P. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics 2019, 9, 4461–4473. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Li, P.; Han, B.; Jia, H.; Liang, Q.; Wang, H.; Gu, M.; Cai, J.; Li, S.; Zhou, Y.; et al. Vitamin C sensitizes BRAFV600E thyroid cancer to PLX4032 via inhibiting the feedback activation of MAPK/ERK signal by PLX4032. J. Exp. Clin. Cancer. Res. 2021, 40, 34. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Zhang, L.; Cheng, X.; Yu, H.; Bao, J.; Lu, R. Vitamin C induces ferroptosis in anaplastic thyroid cancer cells by ferritinophagy activation. Biochem. Biophys. Res. Commun. 2021, 551, 46–53. [Google Scholar] [CrossRef]
- Schoenfeld, J.D.; Sibenaller, Z.A.; Mapuskar, K.A.; Wagner, B.A.; Cramer-Morales, K.L.; Furqan, M.; Sandhu, S.; Carlisle, T.L.; Smith, M.C.; Abu Hejleh, T.; et al. O2⋅- and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate. Cancer Cell 2017, 31, 487–500.e8. [Google Scholar] [CrossRef]
- Abe, C.; Miyazawa, T.; Miyazawa, T. Current Use of Fenton Reaction in Drugs and Food. Molecules 2022, 27, 5451. [Google Scholar] [CrossRef]
- Ďuračková, Z. Some current insights into oxidative stress. Physiol. Res. 2010, 59, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Mullarky, E.; Lu, C.; Bosch, K.N.; Kavalier, A.; Rivera, K.; Roper, J.; Chio, I.I.; Giannopoulou, E.G.; Rago, C.; et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 2015, 350, 1391–1396. [Google Scholar] [CrossRef]
- Curtin, N.J.; Szabo, C. Poly(ADP-ribose) polymerase inhibition: Past, present and future. Nat. Rev. Drug Discov. 2020, 19, 711–736. [Google Scholar] [CrossRef]
- Lee Chong, T.; Ahearn, E.L.; Cimmino, L. Reprogramming the Epigenome With Vitamin C. Front. Cell Dev. Biol. 2019, 7, 128. [Google Scholar] [CrossRef]
- Cimmino, L.; Dolgalev, I.; Wang, Y.; Yoshimi, A.; Martin, G.H.; Wang, N.V.; Xia, B.; Witkowski, M.T.; Mitchell-Flack, M.; Grillo, I.; et al. Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression. Cell 2017, 170, 1079–1095.e20. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, N.; Bhagat, T.; Nieves, E.; Stenson, M.; Lawson, J.; Choudhary, G.S.; Habermann, T.; Nowakowski, G.; Singh, R.; Wu, X.; et al. Upregulation of TET activity with ascorbic acid induces epigenetic modulation of lymphoma cells. Blood Cancer J. 2017, 7, e587. [Google Scholar] [CrossRef]
- Mingay, M.; Chaturvedi, A.; Bilenky, M.; Cao, Q.; Jackson, L.; Hui, T.; Moksa, M.; Heravi-Moussavi, A.; Humphries, R.K.; Heuser, M.; et al. Vitamin C-induced epigenomic remodelling in IDH1 mutant acute myeloid leukaemia. Leukemia 2018, 32, 11–20. [Google Scholar] [CrossRef]
- Myllykoski, M.; Sutinen, A.; Koski, M.K.; Kallio, J.P.; Raasakka, A.; Myllyharju, J.; Wierenga, R.K.; Koivunen, P. Structure of transmembrane prolyl 4-hydroxylase reveals unique organization of EF and dioxygenase domains. J. Biol. Chem. 2021, 296, 100197. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, C.; Dachs, G.U.; Currie, M.J.; Vissers, M.C. Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response. Free Radic. Biol. Med. 2014, 69, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Wang, Y.; Xu, Y.; Guo, X.; Wang, B.; Sun, L.; Liu, L.; Cui, F.; Zhuang, Q.; Bao, X.; et al. The hypoxia-inducible factor renders cancer cells more sensitive to vitamin C-induced toxicity. J. Biol. Chem. 2014, 289, 3339–3351. [Google Scholar] [CrossRef]
- Larkin, J.; Del Vecchio, M.; Ascierto, P.A.; Krajsova, I.; Schachter, J.; Neyns, B.; Espinosa, E.; Garbe, C.; Sileni, V.C.; Gogas, H.; et al. Vemurafenib in patients with BRAF(V600) mutated metastatic melanoma: An open-label, multicentre, safety study. Lancet Oncol. 2014, 15, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Montero-Conde, C.; Ruiz-Llorente, S.; Dominguez, J.M.; Knauf, J.A.; Viale, A.; Sherman, E.J.; Ryder, M.; Ghossein, R.A.; Rosen, N.; Fagin, J.A. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 2013, 3, 520–533. [Google Scholar] [CrossRef]
- Wee, P.; Wang, Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef]
- Landriscina, M.; Pannone, G.; Piscazzi, A.; Toti, P.; Fabiano, A.; Tortorella, S.; Occhini, R.; Ambrosi, A.; Bufo, P.; Cignarelli, M. Epidermal growth factor receptor 1 expression is upregulated in undifferentiated thyroid carcinomas in humans. Thyroid 2011, 21, 1227–1234. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Abdul Razak, S.R.; Han, T.; Ahmad, N.H.; Li, X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis. 2023, 14, 460. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef]
- Feng, S.; Tang, D.; Wang, Y.; Li, X.; Bao, H.; Tang, C.; Dong, X.; Li, X.; Yang, Q.; Yan, Y.; et al. The mechanism of ferroptosis and its related diseases. Mol. Biomed. 2023, 4, 33. [Google Scholar]
- Sun, K.; Li, C.; Liao, S.; Yao, X.; Ouyang, Y.; Liu, Y.; Wang, Z.; Li, Z.; Yao, F. Ferritinophagy, a form of autophagic ferroptosis: New insights into cancer treatment. Front. Pharmacol. 2022, 13, 1043344. [Google Scholar] [CrossRef]
- Wang, J.; Wu, N.; Peng, M.; Oyang, L.; Jiang, X.; Peng, Q.; Zhou, Y.; He, Z.; Liao, Q. Ferritinophagy: Research advance and clinical significance in cancers. Cell Death Discov. 2023, 9, 463. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.D.; Sbodio, J.I.; Snyder, S.H. Cysteine Metabolism in Neuronal Redox Homeostasis. Trends Pharmacol. Sci. 2018, 39, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Amjad, S.; Nisar, S.; Bhat, A.A.; Shah, A.R.; Frenneaux, M.P.; Fakhro, K.; Haris, M.; Reddy, R.; Patay, Z.; Baur, J.; et al. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol. Metab. 2021, 49, 101195. [Google Scholar] [CrossRef]
- Uetaki, M.; Tabata, S.; Nakasuka, F.; Soga, T.; Tomita, M. Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress. Sci. Rep. 2015, 5, 13896. [Google Scholar] [CrossRef]
- Bakalova, R.; Zhelev, Z.; Miller, T.; Aoki, I.; Higashi, T. Vitamin C versus Cancer: Ascorbic Acid Radical and Impairment of Mitochondrial Respiration? Oxid. Med. Cell. Longev. 2020, 2020, 1504048. [Google Scholar] [CrossRef]
- Silalahi, J. Anticancer and health protective properties of citrus fruit components. Asia Pac. J. Clin. Nutr. 2002, 11, 79–84. [Google Scholar] [CrossRef]
- Barrea, L.; Gallo, M.; Ruggeri, R.M.; Giacinto, P.D.; Sesti, F.; Prinzi, N.; Adinolfi, V.; Barucca, V.; Renzelli, V.; Muscogiuri, G.; et al. Nutritional status and follicular-derived thyroid cancer: An update. Crit. Rev. Food Sci. Nutr. 2021, 61, 25–59. [Google Scholar] [CrossRef] [PubMed]
- Moncayo, R.; Kroiss, A.; Oberwinkler, M.; Karakolcu, F.; Starzinger, M.; Kapelari, K.; Talasz, H.; Moncayo, H. The role of selenium, vitamin C, and zinc in benign thyroid diseases and of selenium in malignant thyroid diseases: Low selenium levels are found in subacute and silent thyroiditis and in papillary and follicular carcinoma. BMC Endocr. Disord. 2008, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Bellastella, G.; Scappaticcio, L.; Caiazzo, F.; Tomasuolo, M.; Carotenuto, R.; Caputo, M.; Arena, S.; Caruso, P.; Maiorino, M.I.; Esposito, K. Mediterranean Diet and Thyroid: An Interesting Alliance. Nutrients 2022, 14, 4130. [Google Scholar] [CrossRef] [PubMed]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Friesen, M.C.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H.; Ma, X.; et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2015, 72, 736–744. [Google Scholar] [CrossRef]
- European Commission. Circular Economy Action Plan. Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on 28 August 2024).
- European Commission. Farm to Fork Strategy. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 28 August 2024).
- van Leeuwen, S.P.J.; Verschoor, A.M.; van der Fels-Klerx, H.J.; van de Schans, M.G.M.; Berendsen, B.J.A. A novel approach to identify critical knowledge gaps for food safety in circular food systems. NPJ Sci. Food 2024, 8, 34. [Google Scholar] [CrossRef]
- Heres, L.; Hoogenboom, R.; Herbes, R.; Traag, W.A.; Urlings, H.A.P. Tracing and analytical results of the dioxin contamination incident in 2008 originating from the Republic of Ireland. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 1733–1744. [Google Scholar] [CrossRef]
- Fernandes, A.; Mortimer, D.; Rose, M.; Smith, F.; Panton, S.; Garcia-Lopez, M. Bromine content and brominated flame retardants in food and animal feed from the UK. Chemosphere 2016, 150, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Jibrin, M.; Abdulhameed, A.; Nayaya, A.J.; Ezra, A.G. Health risk effect of heavy metals from pesticides in vegetables and soils: A review. Dutse J. Pure Appl. Sci. 2021, 7, 24–32. [Google Scholar] [CrossRef]
- Dinnella, C.; Pierguidi, L.; Spinelli, S.; Borgogno, M.; Gallina Toschi, T.; Predieri, S.; Lavezzi, G.; Trapani, F.; Tura, M.; Magli, M.; et al. Remote testing: Sensory test during COVID-19 pandemic and beyond. Food Qual. Prefer. 2022, 96, 104437. [Google Scholar] [CrossRef]
- Valli, E.; Bendini, A.; Popp, M.; Bongartz, A. Sensory analysis and consumer acceptance of 140 high-quality extra virgin olive oils. J. Sci. Food Agric. 2014, 94, 2124–2132. [Google Scholar] [CrossRef]
- Tonacci, A.; Scalzini, G.; Díaz-Guerrero, P.; Sanmartin, C.; Taglieri, I.; Ferroni, G.; Flamini, G.; Odello, L.; Billeci, L.; Venturi, F. Chemosensory analysis of emotional wines: Merging of explicit and implicit methods to measure emotions aroused by red wines. Food Res. Int. 2024, 190, 114611. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Delgado-Pando, G. Sensory Analysis and Consumer Research in New Meat Products Development. Foods 2021, 10, 429. [Google Scholar] [CrossRef] [PubMed]
- Hammad, I.; Dornier, M.; Lebrun, M.; Maraval, I.; Poucheret, P.; Dhuique-Mayer, C. Impact of crossflow microfiltration on aroma and sensory profiles of a potential functional citrus-based food. J. Sci. Food Agric. 2022, 102, 5768–5777. [Google Scholar] [CrossRef]
- Lubinska-Szczygeł, M.; Polkowska, Ż.; Dymerski, T.; Gorinstein, S. Comparison of the Physical and Sensory Properties of Hybrid Citrus Fruit Jaffa® Sweetie in Relation to the Parent Fruits. Molecules 2020, 25, 2748. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Suh, J.H.; Gmitter, F.G.; Wang, Y. Differentiation between Flavors of Sweet Orange (Citrus sinensis) and Mandarin (Citrus reticulata). J. Agric. Food Chem. 2018, 66, 203–211. [Google Scholar] [CrossRef]
- Miyazaki, T.; Plotto, A.; Baldwin, E.A.; Reyes-De-Corcuera, J.I.; Gmitter, F.G., Jr. Aroma characterization of tangerine hybrids by gas-chromatography-olfactometry and sensory evaluation. J. Sci. Food Agric. 2012, 92, 727–735. [Google Scholar] [CrossRef]
- Ren, J.N.; Tai, Y.N.; Dong, M.; Shao, J.H.; Yang, S.Z.; Pan, S.Y.; Fan, G. Characterisation of free and bound volatile compounds from six different varieties of citrus fruits. Food Chem. 2015, 185, 25–32. [Google Scholar] [CrossRef]
Type | Genetic Alterations | Subtypes | Invasion | Prognosis |
---|---|---|---|---|
FTC | Mostly RAS mutations | Minimally invasive Encapsulated angioinvasive Widely invasive | Invasion of the tumor capsule or the blood vessels | Generally excellent but depending on the extent of the invasion |
IEFV-PTC | RAS mutations | Minimally invasive Encapsulated angioinvasive Widely invasive | Invasion of the tumor capsule (or adjacent tissue) or the blood vessels | Generally excellent but depending on the extent of the invasion |
PTC | Mostly BRAF mutations TERT promoter mutations RET/PTC rearrangements | Infiltrative follicular Tall cell Columnar cell Hobnail Diffuse sclerosing Solid/trabecular Oncocytic Warthin-like | Perineural and lymphatic invasion Lymphatic and vascular invasion Diffuse lymphatic infiltration Vascular invasion Lymphatic infiltration Lymphoplasmacytic invasion | Generally excellent in the absence of vascular invasion Possibility of aggressive clinical course in diffuse sclerosing and solid subtypes |
OCA | Mitochondrial DNA mutations in ETC Complex I subunit RAS mutations TERT promoter mutations | Minimally invasive Encapsulated angioinvasive Widely invasive | Capsular, focal, or extensive vascular invasion | Depending on distant metastasis at diagnosis |
DHGTC | Mostly BRAF mutations TERT promoter mutations TP53 mutations | - | Vascular, lymphatic, perineural, and extrathyroidal invasion | Intermediate |
PDTC | Mostly RAS mutations TERT promoter mutations TP53 mutations | - | Vascular, lymphatic, perineural, and extrathyroidal invasion | Intermediate |
ATC | BRAF mutations RAS mutations TERT promoter mutations TP53 mutations | Squamous cell carcinoma | Local and extrathyroidal invasion | Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorini, F.; Tonacci, A. Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment? Antioxidants 2024, 13, 1242. https://doi.org/10.3390/antiox13101242
Gorini F, Tonacci A. Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment? Antioxidants. 2024; 13(10):1242. https://doi.org/10.3390/antiox13101242
Chicago/Turabian StyleGorini, Francesca, and Alessandro Tonacci. 2024. "Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment?" Antioxidants 13, no. 10: 1242. https://doi.org/10.3390/antiox13101242
APA StyleGorini, F., & Tonacci, A. (2024). Vitamin C in the Management of Thyroid Cancer: A Highway to New Treatment? Antioxidants, 13(10), 1242. https://doi.org/10.3390/antiox13101242