Recovery of Selenium-Enriched Polysaccharides from Cardamine violifolia Residues: Comparison on Structure and Antioxidant Activity by Different Extraction Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material, Reagents, and Pretreatment
2.2. Extraction of SePSs by Hot Water Method
2.3. Extraction of SePSs by Ultrasonic-Assisted Method
2.4. Evaluation of the Extraction Efficiency of SePSs
2.5. Composition Analysis of SePS Extract
2.6. Particle Size Distribution
2.7. Molecular Weight Determination
2.8. Monosaccharide Composition Determination
2.9. Ultraviolet and Infrared Spectroscopy Determination
2.10. Analysis of Antioxidant Activity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Effect of Extraction Methods on the Recovery of Selenium-Enriched Polysaccharides
3.1.1. Hot Water Extraction
3.1.2. Ultrasonic-Assisted Extraction
3.2. Effect of Extraction Methods on the Total and Organic Selenium Content of Polysaccharides
3.3. Component Analysis of Different Selenium-Enriched Polysaccharides
3.4. Particle Size Distribution Analysis
3.5. Molecular Weight Analysis
3.6. Monosaccharide Composition Analysis
3.7. Ultraviolet and Infrared Spectroscopy Analysis
3.8. In Vitro Antioxidant Activity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, X.L. Editorial: Selenium and human health. Front. Nutr. 2023, 10, 1269204. [Google Scholar] [CrossRef]
- Nie, X.L.; Yang, X.R.; He, J.Y.; Liu, P.; Shi, H.; Wang, T.; Zhang, D.H. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: A review. Front. Bioeng. Biotechnol. 2023, 11, 1167123. [Google Scholar] [CrossRef]
- Rao, S.; Yu, T.; Cong, X.; Lai, X.; Xiang, J.; Cao, J.; Liao, X.; Gou, Y.; Chao, W.; Xue, H.; et al. Transcriptome, proteome, and metabolome reveal the mechanism of tolerance to selenate toxicity in Cardamine violifolia. J. Hazard Mater. 2021, 406, 124283. [Google Scholar] [CrossRef]
- Tian, Y.; Guo, J.; Zhu, S.G.; Li, M.; Zhu, Z.Z.; Cheng, S.Y.; Wang, S.W.; Sun, Y.M.; Cong, X. Protective effects of selenium-enriched peptides from Cardamine violifolia against high-fat diet induced obesity and its associated metabolic disorders in mice. RSC Adv. 2020, 10, 31411–31424. [Google Scholar]
- Wang, D.; Kuang, Y.L.; Lv, Q.Q.; Xie, W.S.; Xu, X.; Zhu, H.L.; Zhang, Y.; Cong, X.; Cheng, S.Y.; Liu, Y.L. Selenium-enriched Cardamine violifolia protects against sepsis-induced intestinal injury by regulating mitochondrial fusion in weaned pigs. Sci. China Life Sci. 2023, 66, 2099–2111. [Google Scholar] [CrossRef]
- Gao, W.L.; Zhang, N.; Li, S.Y.; Li, S.Y.; Zhu, S.Y.; Cong, X.; Cheng, S.Y.; Barba, F.J.; Zhu, Z.Z. Polysaccharides in Selenium-Enriched Tea: Extraction Performance under Innovative Technologies and Antioxidant Activities. Foods 2022, 11, 2545. [Google Scholar] [CrossRef]
- Guan, Q.Y.; Lin, Y.R.; Li, L.Y.; Tang, Z.M.; Zhao, X.H.; Shi, J. In Vitro Immunomodulation of the Polysaccharides from Yam (Dioscorea opposita Thunb.) in Response to a Selenylation of Lower Extent. Foods 2021, 10, 2788. [Google Scholar] [CrossRef]
- Miao, Y.Z.; Lin, Q.; Cao, Y.; He, G.H.; Qiao, D.R.; Cao, Y. Extraction of water-soluble polysaccharides (WSPS) from Chinese truffle and its application in frozen yogurt. Carbohydr. Polym. 2011, 86, 566–573. [Google Scholar] [CrossRef]
- Cheong, K.L.; Wang, L.Y.; Wu, D.T.; Hu, D.J.; Zhao, J.; Li, S.P. Microwave-Assisted Extraction, Chemical Structures, and Chain Conformation of Polysaccharides from a Novel Cordyceps Sinensis Fungus UM01. J. Food Sci. 2016, 81, C2167–C2174. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Q.; Mao, G.H.; Zou, Y.; Feng, W.W.; Zheng, D.H.; Wang, W.; Zhou, L.L.; Zhang, T.X.; Yang, J.; et al. Optimization of enzyme-assisted extraction and characterization of polysaccharides from Hericium erinaceus. Carbohydr. Polym. 2014, 101, 606–613. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, S.W.; Hao, Y.; Zhou, Y.; Ren, X.J.; Wang, J.; Wang, W.D.; Chu, T.W. Ultrasonic-assisted extraction process of crude polysaccharides from Yunzhi mushroom and its effect on hydroxyproline and glycosaminoglycan levels. Carbohydr. Polym. 2010, 81, 93–96. [Google Scholar] [CrossRef]
- Xu, N.; Sun, Y.H.; Guo, X.L.; Liu, C.; Mao, Q.; Hou, J.M. Optimization of ultrasonic-microwave synergistic extraction of polysaccharides from Morchella conica. J. Food Process. Preserv. 2017, 42, e13423. [Google Scholar] [CrossRef]
- Yu, X.Y.; Miao, Z.; Zhang, L.Z.; Zhu, L.Q.; Sheng, H.G. Extraction, purification, structure characteristics, biological activities and pharmaceutical application of Bupleuri Radix Polysaccharide: A review. Int. J. Biol. Macromol. 2023, 237, 124146. [Google Scholar] [CrossRef]
- Feng, S.L.; Zhang, J.; Luo, X.; Xu, Z.; Liu, K.; Chen, T.; Zhou, L.J.; Ding, C.B. Green extraction of polysaccharides from Camellia oleifera fruit shell using tailor-made deep eutectic solvents. Int. J. Biol. Macromol. 2023, 253, 127286. [Google Scholar] [CrossRef]
- Zhang, W.T.; Duan, W.; Huang, G.L.; Huang, H.L. Ultrasonic-assisted extraction, analysis and properties of mung bean peel polysaccharide. Ultrason. Sonochem. 2023, 98, 106487. [Google Scholar] [CrossRef]
- Fan, M.H.; Zhu, J.X.; Qian, Y.L.; Yue, W.; Xu, Y.; Zhang, D.D.; Yang, Y.Q.; Gao, X.Y.; He, H.Y.; Wang, D.F. Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic activities. J. Food Biochem. 2020, 44, e13277. [Google Scholar] [CrossRef]
- Fang, Y.F.; Rui, Z.J.; Xin, X.J.; Fei, N.T.; Xin, L.; Shun, L.M. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Front. Nutr. 2022, 9, 963318. [Google Scholar]
- Matsuhashi, S.; Hatanaka, C. Difference between the free and conjugated galacturonate residues in their color reaction with carbazole or m-hydroxybiphenyl reagents. Biosci. Biotechnol. Biochem. 1992, 56, 1142–1143. [Google Scholar] [CrossRef]
- Wood, I.P.; Elliston, A.; Ryden, P.; Bancroft, I.; Roberts, I.N.; Waldron, K.W. Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy 2012, 44, 117–121. [Google Scholar] [CrossRef]
- Lozzi, I.; Pucci, A.; Pantani, O.L.; D’Acqui, L.P.; Calamai, L. Interferences of suspended clay fraction in protein quantitation by several determination methods. Anal. Biochem. 2008, 376, 108–114. [Google Scholar] [CrossRef]
- Li, S.Y.; Xu, H.; Sui, Y.; Mei, X.; Shi, J.B.; Cai, S.; Xiong, T.; Carrillo, C.; Castagnini, J.M.; Zhu, Z.Z.; et al. Comparing the LC-MS Phenolic Acids Profiles of Seven Different Varieties of Brown Rice (Oryza sativa L.). Foods 2022, 11, 1552. [Google Scholar] [CrossRef]
- Wu, M.L.; Zhu, Z.Z.; Li, S.Y.; Cai, J.; Cong, X.; Yu, T.; Yang, W.; He, J.R.; Cheng, S.Y. Green recovery of Se-rich protein and antioxidant peptides from Cardamine Violifolia: Composition and bioactivity. Food Biosci. 2020, 38, 100743. [Google Scholar] [CrossRef]
- Hu, H.G.; Zhao, Q.L.; Pang, Z.C.; Xie, J.H.; Lin, L.J.; Yao, Q.S. Optimization extraction, characterization and anticancer activities of polysaccharides from mango pomace. Int. J. Biol. Macromol. 2018, 117, 1314–1325. [Google Scholar] [CrossRef]
- Xu, G.G.; Amicucci, M.J.; Cheng, Z.; Galermo, A.G.; Lebrilla, C.B. Revisiting monosaccharide analysis—Quantitation of a comprehensive set of monosaccharides using dynamic multiple reaction monitoring. Analyst 2017, 143, 200–207. [Google Scholar] [CrossRef]
- Sun, J.R.; Li, J.L.; Yao, L.L.; You, F.F.; Yuan, J.F.; Wang, D.H.; Gu, S.B. Synthesis, characterization and antioxidant activity of selenium nanoparticle decorated with polysaccharide from hawthorn. J. Food Meas. Charact. 2023, 17, 6125–6134. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Liu, F.; Gao, H.; Sun, H.; Meng, M.; Zhang, Y.M. Synthesis, characterization and antioxidant activity of selenium polysaccharide from Cordyceps militaris. Int. J. Biol. Macromol. 2016, 93, 1090–1099. [Google Scholar] [CrossRef]
- Zhang, J.J.; Liu, M.; Yang, Y.H.; Lin, L.; Xu, N.; Zhao, H.J.; Jia, L. Purification, characterization and hepatoprotective activities of mycelia zinc polysaccharides by Pleurotus djamor. Carbohydr. Polym. 2016, 136, 588–597. [Google Scholar] [CrossRef]
- Yun, L.Y.; Li, D.Z.; Yang, L.; Zhang, M. Hot water extraction and artificial simulated gastrointestinal digestion of wheat germ polysaccharide. Int. J. Biol. Macromol. 2019, 123, 174–181. [Google Scholar] [CrossRef]
- Wang, Y.F.; Jia, J.X.; Ren, X.J.; Li, B.H.; Zhang, Q. Extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from Oudemansiella radicata mushroom. Int. J. Biol. Macromol. 2018, 120, 1760–1769. [Google Scholar] [CrossRef]
- Zou, Y.; Jiang, A.L.; Tian, M.X. Extraction optimization of antioxidant polysaccharides from Auricularia auricula fruiting bodies. Food Sci. Technol. 2015, 35, 428–433. [Google Scholar] [CrossRef]
- Qiao, D.L.; Hu, B.; Gan, D.; Sun, Y.; Ye, H.; Zeng, X.X. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii. Carbohydr. Polym. 2009, 76, 422–429. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Xu, X.J.; Ye, Q.W.; Dong, L.L. Ultrasound extraction optimization of Acanthopanax senticosus polysaccharides and its antioxidant activity. Int. J. Biol. Macromol. 2013, 59, 290–294. [Google Scholar] [CrossRef]
- Ponmurugan, K.; Al-Dhabi, N.A.; Maran, J.P.; Karthikeyan, K.; Moothy, I.G.; Sivarajasekar, N.; Manoj, J.J.B. Ultrasound assisted pectic polysaccharide extraction and its characterization from waste heads of Helianthus annus. Carbohydr. Polym. 2017, 173, 707–713. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, X.C.; Yang, G.Y.; Zhang, J.J.; Wang, R.; Shen, Y.B.; Li, H.M.; Gatasheh, M.K.; Abbasi, A.M.; Yang, X.Q. Ultrasonic extraction of Moringa oleifera seeds polysaccharides: Optimization, purification, and anti-inflammatory activities. Int. J. Biol. Macromol. 2024, 258, 128833. [Google Scholar] [CrossRef]
- Prakash Maran, J.; Manikandan, S.; Thirugnanasambandham, K.; Vigna Nivetha, C.; Dinesh, R. Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr. Polym. 2013, 92, 604–611. [Google Scholar] [CrossRef]
- Hu, X.T.; Xu, F.R.; Li, J.L.; Li, J.; Mo, C.; Zhao, M.; Wang, L.F. Ultrasonic-assisted extraction of polysaccharides from coix seeds: Optimization, purification, and in vitro digestibility. Food Chem. 2022, 374, 131636. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Huang, G.L. Extraction, purification and antioxidant activity of Juglans regia shell polysaccharide. Chem. Biol. Technol. Agric. 2023, 10, 75. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, M.; Yang, M.; Zhou, J.; Wang, T. Determination of Selenomethionine, Selenocystine, and Methylselenocysteine in Egg Sample by High Performance Liquid Chromatography—Inductively Coupled Plasma Mass Spectrometry. Separations 2022, 9, 21. [Google Scholar] [CrossRef]
- Zhuansun, W.W.; Xu, J.; Liu, H.Z.; Zhao, Y.; Chen, L.L.; Shan, S.F.; Song, S.Q.; Zhang, H.Y.; Dong, T.T.; Zeng, H.W.; et al. Optimisation of the production of a selenium-enriched polysaccharide from Cordyceps cicadae S1 and its structure and antioxidant activity. Front. Nutr. 2022, 9, 1032289. [Google Scholar] [CrossRef]
- Su, J.; Cavaco-Paulo, A. Effect of ultrasound on protein functionality. Ultrason. Sonochem. 2021, 76, 105653. [Google Scholar] [CrossRef]
- Metzger, C.; Drexel, R.; Meier, F.; Briesen, H. Effect of ultrasonication on the size distribution and stability of cellulose nanocrystals in suspension: An asymmetrical flow field-flow fractionation study. Cellulose 2021, 28, 10221–10238. [Google Scholar] [CrossRef]
- Upasani, A.A.; Hirpara, Y.S.; Gogate, P.R. Ultrasound-assisted particle size reduction of palygorskite clay. Chem. Pap. 2023, 78, 779–792. [Google Scholar] [CrossRef]
- Cui, R.B.; Zhu, F. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends Food Sci. Technol. 2021, 107, 491–508. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zheng, Y.; Lai, Z.R.; Hu, X.L.; Wang, L.; Wang, X.Q.; Li, Z.T.; Gao, M.J.; Yang, Y.H.; Wang, Q.; et al. Effect of monosaccharide composition and proportion on the bioactivity of polysaccharides: A review. Int. J. Biol. Macromol. 2024, 254, 127955. [Google Scholar] [CrossRef]
- Cai, Z.N.; Li, W.; Mehmood, S.; Pan, W.J.; Wang, Y.; Meng, F.J.; Wang, X.F.; Lu, Y.M.; Chen, Y. Structural characterization, in vitro and in vivo antioxidant activities of a heteropolysaccharide from the fruiting bodies of Morchella esculenta. Carbohydr. Polym. 2018, 195, 29–38. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.J.; Meng, Z.L. Purification, characterization and anti-tumor activities of polysaccharides extracted from wild Russula griseocarnosa. Int. J. Biol. Macromol. 2018, 109, 1054–1060. [Google Scholar] [CrossRef]
- Wang, L.B.; Li, L.Y.; Gao, J.Y.; Huang, J.; Yang, Y.; Xu, Y.Q.; Liu, S.; Yu, W.Q. Characterization, antioxidant and immunomodulatory effects of selenized polysaccharides from dandelion roots. Carbohydr. Polym. 2021, 260, 117796. [Google Scholar] [CrossRef]
- Wang, Q.H.; Shu, Z.P.; Xu, B.Q.; Xing, N.; Jiao, W.J.; Yang, B.Y.; Kuang, H.X. Structural characterization and antioxidant activities of polysaccharides from Citrus aurantium L. Int. J. Biol. Macromol. 2014, 67, 112–123. [Google Scholar] [CrossRef]
- Raja, B.; Balachandran, V.; Revathi, B. Structural study, NCA, FT-IR, FT-Raman spectral investigations, NBO analysis, thermodynamic functions of N-acetyl-l-phenylalanine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 138, 283–295. [Google Scholar] [CrossRef]
- Zhou, N.; Long, H.R.; Wang, C.H.; Yu, L.; Zhao, M.M.; Liu, X.L. Research progress on the biological activities of selenium polysaccharides. Food Funct. 2020, 11, 4834–4852. [Google Scholar] [CrossRef]
- Kaleta, B.; Gorski, A.; Zagozdzon, R.; Cieslak, M.; Kazmierczak-Baranska, J.; Nawrot, B.; Klimaszewska, M.; Malinowska, E.; Gorska, S.; Turlo, J. Selenium-containing polysaccharides from Lentinula edodes-Biological activity. Carbohydr. Polym. 2019, 223, 115078. [Google Scholar] [CrossRef]
Extraction Methods | Hot Water Extraction | Ultrasonic-Assisted Extraction | |
---|---|---|---|
Temperature (°C) | 30 | 50 | 30 |
Power (W) | / | / | 250 |
Time (min) | 60 | 60 | 60 |
Solid–liquid ratio (g/mL) | 30:1 | 30:1 | 30:1 |
Yield (%) | 0.04 a | 0.04 b | 0.04 c |
Extraction rate (%) | 0.25 a | 0.20 b | 0.22 c |
Purity (%) | 0.16 a | 0.12 b | 0.50 c |
Specific energy consumption (KJ/mg) | 0.55 a | 2.23 b | 1.51 c |
Organic selenium (mg/Kg) | 13.12 a | 2.59 b | 5.83 c |
Total selenium (mg/Kg) | 11.75 a | 1.56 b | 6.91 c |
Sample | Neutral Sugar (%) | Neutral Sugar (%) | Reducing Sugar (%) | Protein Duo (%) | Polyphenol (%) | Organic Selenium (mg/Kg) | Total Selenium (mg/kg) |
---|---|---|---|---|---|---|---|
30 °C | 0.12 a | 0.78 a | 0.02 a | 0.01 a | 0.21 a | 13.12 a | 11.75 a |
50 °C | 0.12 b | 0.43 b | 0.02 a | 0.02 b | 0.16 b | 2.59 b | 1.56 b |
30 °C + 250 W | 0.35 c | 0.66 a | 0.03 a | 0.02 c | 0.14 a | 5.83 c | 6.91 c |
Sample | D[4,3] (μm) | D[3,2] (μm) | D × 10 (μm) | D × 50 (μm) | D × 90 (μm) |
---|---|---|---|---|---|
30 °C | 63.10 + 0.29 a | 34.83 + 0.12 a | 13.73 + 0.12 a | 53.73 + 0.09 a | 126.67 + 0.94 a |
50 °C | 60.93 + 0.09 b | 31.53 + 0.31 b | 12.20 + 1.38 ab | 51.67 + 0.25 b | 125.33 + 0.47 a |
30 °C + 250 W | 49.10 + 1.30 c | 26.00 + 0.43 c | 11.03 + 0.17 b | 39.43 + 0.74 c | 103.00 + 1.24 b |
Sample | Retention Time (min) | Mn (Da) | Mw (Da) | Mp (Da) | Mw/Mn | Area | Area (%) |
---|---|---|---|---|---|---|---|
30 °C | 19.195 | 2.910 × 103 | 7.291 × 104 | 2.095 × 103 | 25.055 | 1.300 × 106 | 100.00 |
50 °C | 19.867 | 1.825 × 103 | 2.572 × 104 | 1.647 × 103 | 14.093 | 1.067 × 106 | 100.00 |
30 °C + 250 W | 19.842 | 2.039 × 103 | 2.397 × 104 | 1.697 × 103 | 11.747 | 1.347 × 106 | 100.00 |
Sample | Mannose (%) | Rhamnose (%) | Glucose (%) | Xylose (%) | Arabinose (%) | Fucose (%) | Galactose (%) |
---|---|---|---|---|---|---|---|
30 °C | 1.94 | 3.27 | 22.39 | 3.40 | 0.21 | 1.03 | 4.99 |
50 °C | 1.92 | 3.46 | 22.28 | 3.33 | 0.22 | 1.03 | 5.02 |
30 °C + 250 W | 1.98 | 3.55 | 23.87 | 3.38 | 0.21 | 1.07 | 5.07 |
Radicals | IC50 | ||
---|---|---|---|
30 °C (mg/mL) | 50 °C (mg/mL) | 30 °C + 250 W (mg/mL) | |
•OH | 0.004 | 0.001 | 0.008 |
DPPH | 0.006 | 0.008 | 0.002 |
ABTS | 0.002 | 0.003 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Yu, J.; Wu, L.; Cong, X.; Liu, H.; Chen, X.; Li, S.; Zhu, Z. Recovery of Selenium-Enriched Polysaccharides from Cardamine violifolia Residues: Comparison on Structure and Antioxidant Activity by Different Extraction Methods. Antioxidants 2024, 13, 1251. https://doi.org/10.3390/antiox13101251
Liang Y, Yu J, Wu L, Cong X, Liu H, Chen X, Li S, Zhu Z. Recovery of Selenium-Enriched Polysaccharides from Cardamine violifolia Residues: Comparison on Structure and Antioxidant Activity by Different Extraction Methods. Antioxidants. 2024; 13(10):1251. https://doi.org/10.3390/antiox13101251
Chicago/Turabian StyleLiang, Yong, Jiali Yu, Lulu Wu, Xin Cong, Haiyuan Liu, Xu Chen, Shuyi Li, and Zhenzhou Zhu. 2024. "Recovery of Selenium-Enriched Polysaccharides from Cardamine violifolia Residues: Comparison on Structure and Antioxidant Activity by Different Extraction Methods" Antioxidants 13, no. 10: 1251. https://doi.org/10.3390/antiox13101251
APA StyleLiang, Y., Yu, J., Wu, L., Cong, X., Liu, H., Chen, X., Li, S., & Zhu, Z. (2024). Recovery of Selenium-Enriched Polysaccharides from Cardamine violifolia Residues: Comparison on Structure and Antioxidant Activity by Different Extraction Methods. Antioxidants, 13(10), 1251. https://doi.org/10.3390/antiox13101251