Role of Callistemon citrinus Leaf Phytosomes Against Oxidative Stress and Inflammation in Rats Fed with a High-Fat-Fructose Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Preparation of Ethanolic Extract
2.3. Animals
2.4. Induction of Obesity by Feeding High-Fat-Fructose Diet
2.5. Tissue Preparations
2.6. Total Oxidative Status (TOS) Assay
2.7. Estimation of Malondialdehyde (MDA) and Hydroxyalkenals (HNE)
2.8. Advanced Oxidation Protein Products Level (AOPP)
2.9. Reduced Glutathione (GSH) Levels
2.10. SOD Activity
2.11. CAT Activity
2.12. GPx Activity
2.13. GST Activity
2.14. PON1 Activity
2.15. MPO Activity
2.16. COX-1 and COX-2 Activity
2.17. 5-LOX Activity
2.18. XO Activity
2.19. Statistical Analysis
3. Results
3.1. Effect of Phytosomes of C. citrinus on Morphometric Parameters and Serum Total Oxidative Status (TOS) of High-Fat-Fructose-Fed Rats
3.2. Antioxidant Enzyme Activities
3.3. Biomarkers of Oxidative Stress
3.4. Pro-Inflammatory Enzymes Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A chronic low-grade inflammation and its markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Wollam, J.; Olefsky, J.M. An integrated view of immunometabolism. Cell 2017, 172, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, H.; Xia, N. The interplay between adipose tissue and vasculature: Role of oxidative stress in obesity. Front. Cardiovasc. Med. 2021, 8, 650214. [Google Scholar] [CrossRef]
- Nam, T.G. Lipid peroxidation and its toxicological implications. Toxicol. Res. 2011, 27, 1–6. [Google Scholar] [CrossRef]
- Krzystek-Korpacka, M.; Patryn, E.; Boehm, D.; Berdowska, I.; Zielinski, B.; Noczynska, A. Advanced oxidation protein products (AOPPs) in juvenile overweight and obesity prior to and following weight reduction. Clin. Biochem. 2008, 41, 943–949. [Google Scholar] [CrossRef]
- Nawaz, T.; Nawaz, S.; Khalid, W.; Mohamedahmed, K.A. Dietary phytochemicals beneficial to obesity and cancer management: A review. Int. J. Food Prop. 2013, 26, 2006–2024. [Google Scholar] [CrossRef]
- Kim, E.; Jeon, S. The impact of phytochemicals in obesity-related metabolic diseases: Focus on ceramide metabolism. Nutrients 2023, 15, 703. [Google Scholar] [CrossRef]
- López-Mejía, A.; Ortega-Pérez, L.G.; Godinez-Hernández, D.; Nateras-Marin, B.; Meléndez-Herrera, E.; Rios-Chavez, P. Chemopreventive effect of Callistemon citrinus (Curtis) Skeels against colon cancer induced by 1, 2-dimethylhydrazine in rats. J. Cancer Res. Clin. Oncol. 2019, 145, 1417–1426. [Google Scholar] [CrossRef]
- Ortega-Pérez, L.G.; Piñón-Simental, J.S.; Magaña-Rodríguez, O.R.; Lopéz-Mejía, A.; Ayala-Ruiz, L.A.; García-Calderón, A.J.; Rios-Chavez, P. Evaluation of the toxicology, anti-lipase, and antioxidant effects of Callistemon citrinus in rats fed with a high fat-fructose diet. Pharm. Biol. 2022, 60, 1384–1393. [Google Scholar] [CrossRef]
- Singh, R. A Review, Outlook, and Insight, of the Properties and Characteristics of Callistemon citrinus. Bull. Pure Appl. Sci. Bot. 2017, 36, 22–27. [Google Scholar] [CrossRef]
- Petronilho, S.; Rocha, S.; Ramírez-Chávez, E.; Molina-Torres, J.; Rios-Chavez, P. Assessment of the terpenic profile of Callistemon citrinus (Curtis) Skeels from Mexico. Ind. Crops Prod. 2013, 46, 369–379. [Google Scholar] [CrossRef]
- Ortega-Pérez, L.G.; Ayala-Ruiz, L.A.; Magaña-Rodríguez, O.R.; Piñón-Simental, J.S.; Aguilera-Méndez, A.; Godínez-Hernández, D.; Rios-Chavez, P. Development and Evaluation of Phytosomes Containing Callistemon citrinus Leaf Extract: A Preclinical Approach for the Treatment of Obesity in a Rodent Model. Pharmaceutics 2023, 15, 2178. [Google Scholar] [CrossRef] [PubMed]
- Piñón-Simental, J.S.; Ayala-Ruiz, L.A.; Ortega-Pérez, L.G.; Magaña-Rodríguez, O.R.; Meléndez-Herrera, E.; Aguilera-Méndez, A.; Rios-Chavez, P. Use of Callistemon citrinus as a gastroprotective and anti-inflammatory agent on indomethacin-induced gastric ulcers in obese rats. PeerJ 2024, 12, e17062. [Google Scholar] [CrossRef] [PubMed]
- López-Mejía, A.; Ortega-Pérez, L.G.; Magaña-Rodríguez, O.R.; Ayala-Ruiz, L.A.; Piñón-Simental, J.S.; Hernández, D.G.; Rios-Chavez, P. Protective effect of Callistemon citrinus on oxidative stress in rats with 1, 2-dimethylhydrazine-induced colon cancer. Biomed. Pharmacother. 2021, 142, 112070. [Google Scholar] [CrossRef] [PubMed]
- Sandhiya, V.; Ubaidulla, U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Future J. Pharm. Sci. 2020, 6, 51. [Google Scholar] [CrossRef]
- Permana, A.D.; Utami, R.N.; Courtenay, A.J.; Manggau, M.A.; Donnelly, R.F.; Rahman, L. Phytosomal nanocarriers as platforms for improved delivery of natural antioxidant and photoprotective compounds in propolis: An approach for enhanced both dissolution behaviour in biorelevant media and skin retention profiles. J. Photochem. Photobiol. B Biol. 2020, 205, 111846. [Google Scholar] [CrossRef]
- Adiki, S.K.; Sangeetha, S.; Kamireddy, S.; Katakam, P.; Obilineni, I. Phytosomes: A novel phytoconstituent delivery approach to improve the efficacy of obesity treatment. Curr. Nutr. Food Sci. 2023, 19, 229–237. [Google Scholar] [CrossRef]
- Palma-Jacinto, J.A.; Santiago-Roque, I.; Arroyo-Helguera, O.E. Hypercaloric cafeteria diet-induces obesity, dyslipidemia, insulin resistance, inflammation and oxidative stress in Wistar rats. J. Exp. Life Sci. 2023, 13, 17–23. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Johnston, J.W.; Horne, S.; Harding, K.; Benson, E.E. Evaluation of the 1-methyl-2-phenylindole colorimetric assay for aldehydic lipid peroxidation products in plants: Malodialdehyde and 4-hydroxynonenal. Plant Physiol. Biochem. 2007, 45, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Bouhalit, S.; Kechrid, Z. Assessment of the potential role of l-methionine on nickel sulfate induced renal injury and oxidative stress in rat. Asian J. Pharm. Clin. Res. 2018, 11, 1–5. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Prabhu, K.S.; Reddy, P.V.; Gumpricht, E.; Hildenbrandt, G.R.; Scholz, R.W.; Sordillo, L.M.; Reddy, C.C. Microsomal glutathione S-transferase A1-1 with glutathione peroxidase activity from sheep liver: Molecular cloning, expression and characterization. Biochem. J. 2001, 360, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Dantoine, T.F.; Debord, J.; Charmes, J.P.; Merle, L.; Marquet, P.; Lachatre, G.; Leroux-Robert, C. Decrease of serum paraoxonase activity in chronic renal failure. J. Am. Soc. Nephrol. 1998, 9, 2082–2088. [Google Scholar] [CrossRef]
- Marquez, L.A.; Dunford, H.B. Mechanism of the oxidation of 3,3’,5,5’- tetramethylbenzidine by myeloperoxidase determined by transient- and steady-state kinetics. Biochemistry 1997, 36, 9349–9355. [Google Scholar] [CrossRef]
- Kumar, K.A.; Reddy, T.C.; Reddy, G.V.; Reddy, D.B.; Mahipal, S.V.; Sinha, S.; Gaikwad, A.N.; Reddanna, P. High-throughput screening assays for cyclooxygenase-2 and 5-lipoxygenase, the targets for inflammatory disorders. Indian J. Biochem. Biophys. 2011, 48, 256–261. [Google Scholar]
- Blair, D.G.; McLennan, B.D. Intensification of the xanthine oxidase activity of rat liver homogenates on storage. Can. J. Biochem. 1968, 46, 1047–1056. [Google Scholar] [CrossRef]
- Ayala-Ruiz, L.A.; Ortega-Pérez, L.G.; Piñón-Simental, J.S.; Magaña-Rodríguez, O.R.; Meléndez-Herrera, E.; Rios-Chavez, P. Role of the major terpenes of Callistemon citrinus against the oxidative stress during a hypercaloric diet in rats. Biomed. Pharmacother. 2022, 153, 113505. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; Subramonian, A.M.; O´Keefe, J.H. Added fructose as a principal driver of non-alcoholic fatty liver disease: A public health crisis. Open Heart 2017, 4, e000631. [Google Scholar] [CrossRef] [PubMed]
- Grujić-Milanovićet, J.D.; Miloradović, Z.Z.; Mihailović-Stanojević, N.D.; Banjac, V.V.; Vidosavljević, S.; Ivanov, M.S.; Karanović, D.J.; Vajić, U.J.V.; Jovović, D.M. Excessive consumption of unsaturated fatty acids leads to oxidative and inflammatory instability in Wistar rats. Biomed. Pharmacother. 2021, 139, 111691. [Google Scholar]
- Das, S.; Choudhuri, D. Calcium supplementation shows a hepatoprotective effect against high-fat diet by regulating oxidative-induced inflammatory response and lipogenesis activity in male rats. J. Tradit. Complement. Med. 2019, 10, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Emami, S.R.; Jafari, M.; Haghshebas, R.; Ravasi, A. Impact of eight weeks endurance training on biochemical parameters and obesity-induced oxidative stress in high fat diet-fed rats. JENB J. Exerc. Nutr. Biochem. 2016, 20, 029–035. [Google Scholar] [CrossRef]
- Masi, L.N.; Martins, A.R.; Crisma, A.R.; do Amaral, C.L.; Davanso, M.R.; Serdan, T.D.A.; de Sá, R.D.C.; Cruz, M.; Alonso-Vale, M.I.C.; Torres, R.P.; et al. Combination of a high-fat diet with sweetened condensed milk exacerbates inflammation and insulin resistance induced by each separately in mice. Sci. Rep. 2017, 7, 3937. [Google Scholar] [CrossRef]
- Ackerman, Z.; Oron-Herman, M.; Grozovski, M.; Rosenthal, T.; Pappo, O.; Link, G.; Sela, B.A. Fructose-induced fatty liver disease: Hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 2005, 45, 1012–1018. [Google Scholar] [CrossRef]
- Toop, C.R.; Gentili, S. Fructose beverage consumption induces a metabolic syndrome phenotype in the rat: A systematic review and meta-analysis. Nutrients 2016, 8, 577. [Google Scholar] [CrossRef]
- Mastrocola, R.; Ferrocino, I.; Liberto, E.; Ciazza, F.; Cento, A.S.; Collotta, D.; Querio, G.; Nigro, D.; Bitonto, V.; Cutrin, J.C.; et al. Fructose liquid and solid formulations differently affect gut integrity, microbiota composition and related liver toxicity: A comparative in vivo study. J. Nutr. Biochem. 2018, 55, 185–199. [Google Scholar] [CrossRef]
- Collotta, D.; Lucarini, L.; Chiazza, F.; Cento, A.S.; Durante, M.; Sgambellone, S.; Chini, J.; Baratta, F.; Aragno, M.; Mastrocola, R.; et al. Reduced susceptibility to sugar-induced metabolic derangements and impairments of myocardial redox signaling in mice chronically fed with D-tagatose when compared to fructose. Oxid. Med. Cell Longev. 2018, 2018, 5042428. [Google Scholar] [CrossRef]
- García-Beltrán, A.; Martínez, R.; Porres, J.M.; Arrebola, F.; Ruiz Artero, I.; Galisteo, M.; Aranda, P.; Kapravelou, G.; López-Jurado, M. Novel insights and mechanisms of diet-induced obesity: Mid-term versus long-term effects on hepatic transcriptome and antioxidant capacity in Sprague-Dawley rats. Life Sci. 2023, 324, 121746. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef] [PubMed]
- Mazari, A.M.A.; Zhang, L.; Ye, Z.W.; Zhang, J.; Tew, K.D.; Townsend, D.M. The multifaceted role of glutathione S-transferase in health and disease. Biomolecules 2023, 13, 688. [Google Scholar] [CrossRef] [PubMed]
- Noeman, S.A.; Hamooda, H.E.; Baalash, A.A. Biochemical study of oxidative stress markers in the liver, kidney, heart of high fat diet induced obesity in rats. Diabetol. Metab. Syndr. 2011, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Marsillach, J.; Camps, J.; Ferré, N.; Beltran, R.; Rull, A.; Mackness, B.; Mackness, M.; Jove, J. Paraoxonase-1 is related to inflammation, fibrosis and PPAR delta in experimental liver disease. BMC Gastroenterol. 2008, 9, 3. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Yu, J.; Ip, E.; de la Peña, A.; Hou, J.; Sesha, J.; Pera, N.; Farrell, G.C. COX-2 induction in mice with experimental nutritional steatohepatitis: Role as pro-inflammatory mediator. Hepatology 2006, 43, 826–836. [Google Scholar] [CrossRef]
- Da Silva-Santi, L.G.; Antunes, M.M.; Caparroz-Assef, S.M.; Carbonera, F.; Masi, L.N.; Curi, R.; Visentainer, J.V.; Bazotte, R.B. Liver fatty acid composition and inflammation in mice fed with high-carbohydrate diet or high-fat diet. Nutrients 2016, 8, 682. [Google Scholar] [CrossRef]
- Zaki, S.M.; Fattah, S.A.; Hassan, D.S. The differential effects of high-fat and high-fructose diets on the liver of male albino rat and the proposed underlying mechanisms. Folia Morphol. 2019, 78, 124–136. [Google Scholar] [CrossRef]
- Almasri, F.; Collotta, D.; Aimaretti, E.; Sus, N.; Aragno, M.; Dal Bello, F.; Eva, C.; Mastrocola, R.; Landberg, R.; Frank, J.; et al. Dietary intake of fructooligosaccharides protects against metabolic derangements evoked by chronic expose to fructose or galactose in rats. Mol. Nutr. Food Res. 2024, 68, 2300476. [Google Scholar] [CrossRef]
- Tsujimoto, S.; Kishina, M.; Koda, M.; Yamamoto, Y.; Tanaka, K.; Harada, Y.; Yoshida AHisatome, I. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ. Int. J. Mol. Med. 2016, 38, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Burnett, B.P.; Levy, R.M. 5-Lipoxygenase metabolic contributions to NSAID-induced organ toxicity. Adv. Ther. 2012, 29, 79–98. [Google Scholar] [CrossRef]
- Czapski, G.A.; Czubowicz, K.; Strosznajder, J.B.; Strosznakder, R.P. The lipoxygenases: Their regulation and implication in Alzheimer´s disease. Neurochem. Res. 2016, 41, 243–257. [Google Scholar] [CrossRef]
- Rudrapal, M.; Eltayeb, W.A.; Rakshit, G.; ElArabey, A.A.; Khan, J.; Aldosari, S.M.; Alshehri, B.; Abdalla, M. Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies. Sci. Rep. 2023, 13, 8656. [Google Scholar] [CrossRef]
- Lin, W.; Chen, H.; Chen, X.; Guo, C. The roles of neutrophil-derived myeloperoxidase (MPO) in diseases: The new progress. Antioxidant 2024, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Mazzoli, A.; Crescenzo, R.; Cigliano, L.; Spagnuolo, M.S.; Cancelliere, R.; Gatto, C.; Iossa, S. Early hepatic oxidative stress and mitochondrial changes following western diet in middle aged rats. Nutrients 2019, 11, 2670. [Google Scholar] [CrossRef] [PubMed]
- Lasker, S.; Rahman, M.M.; Parvez, F.; Zamila, M.; Miah, P.; Nahar, K.; Kabir, F.; Sharmin, S.B.; Subhan, N.; Ahsan, G.U.; et al. High-fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Sci. Rep. 2019, 9, 20026. [Google Scholar] [CrossRef]
- van Leeuwen, M.; Gijbels, M.J.; Duijvestijn, A.; Smook, M.; van de Gaar, M.J.; Heeringa, P.; de Winther, M.P.; Tervaert, J.W. Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR−/− mice. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.L.; Anderson, M.M.; Shih, D.M.; Qu, X.D.; Wang, X.; Mehta, A.C.; Lim, L.L.; Shi, W.; Hazen, S.L.; Jacob, J.S.; et al. Increased atherosclerosis in myeloperoxidase-deficient mice. J. Clin. Investig. 2001, 107, 419–430. [Google Scholar] [CrossRef]
- Kawachi, Y.; Fujishima, Y.; Nishizawa, H.; Nakamura, T.; Akari, S.; Murase, T.; Saito, T.; Miyazaki, Y.; Nagao, H.; Fukuda, S.; et al. Increased plasma XOR activity induced by NAFLD/NASH and its possible involvement in vascular neointimal proliferation. JCL Insight 2021, 6, e144762. [Google Scholar] [CrossRef]
- Wang, B.; Yang, R.N.; Zhu, Y.R.; Xing, J.C.; Lou, X.W.; He, Y.J.; Ding, Q.L.; Zhang, M.Y.; Qiu, H. Involvement of xanthine oxidase and paraoxonase 1 in the process of oxidative stress in nonalcoholic fatty liver disease. Mol. Med. Rep. 2017, 15, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Hamza, R.Z.; Alsolami, K. Ameliorative effects of orlistat and metformin either alone or in combination on liver functions, structure, immunoreactivity and antioxidant enzymes in experimental induced obesity in male rats. Heliyon 2023, 9, e18724. [Google Scholar] [CrossRef] [PubMed]
- Othman, Z.A.; Zakaria, Z.; Suleiman, J.B.; Ghazali, W.S.W.; Mohamed, M. Anti-atherogenic effects of orlistart on obesity-induced vascular oxidative stress rat model. Antioxidant 2021, 10, 251. [Google Scholar] [CrossRef]
- Othman, Z.A.; Zakaria, Z.; Suleiman, J.B.; Mustaffa, K.M.F.; Jalil, N.A.C.; Wan Ghazali, W.S.; Zulkipli, N.N.; Mohamed, M. Orlistat mitigates oxidative stress-linked myocardial damage via NF-κβ and caspase-dependent activities in obese rats. Int. J. Mol. Sci. 2022, 23, 10266. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, B.; Almarzooqi, S.; Raj, V.; Bhongade, B.A.; Patil, R.B.; Subramanian, V.S.; Attoub, S.; Rizvi, T.A.; Adrian, T.E.; Subramanya, S.B. Molecular docking identifies 1,8-cineole (eucalyptol) as a novel PPARγagonist that alleviates colon inflammation. Int. J. Mol. Sci. 2023, 24, 6160. [Google Scholar] [CrossRef]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem. Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef]
- Alexandrino, T.D.; Moya, A.M.T.M.; de Medeiros, T.D.M.; Morari, J.; Velloso, L.A.; Leal, R.F.; Bicas, J.L. Anti-inflammatory effects of monoterpenoids in rats with TNBS- induced colitis. PharmaNutrition 2020, 14, 100240. [Google Scholar] [CrossRef]
- Pop, R.M.; Sabin, O.; Suciu, Ș.; Vesa, S.C.; Socaci, S.A.; Chedea, V.S.; Bocsan, I.C.; Buzoianu, A.D. Nigella Sativa’s Anti-Inflammatory and Antioxidative Effects in Experimental Inflammation. Antioxidants 2020, 9, 921. [Google Scholar] [CrossRef]
Group | Body Weight Gain (g) | Adipose tissue (g) | Liver (g) | Heart (g) | Kidney (g) | Stomach (g) |
---|---|---|---|---|---|---|
C | 178.80 ± 27.28 b | 12.01 ± 2.70 c | 12.77 ± 0.61 a | 1.07 ± 0.12 a | 3.00 ± 0.10 a | 1.85 ± 0.09 a |
C + V | 170.20 ± 13.19 b | 12.12 ± 2.72 c | 13.42 ± 0.79 a | 1.37 ± 0.12 a | 2.88 ± 0.10 a | 1.85 ± 0.12 a |
C + C. c (200 mg/kg) | 179.40 ± 20.42 b | 11.20 ± 2.70 c | 13.77 ± 0.61 a | 1.39 ± 0.14 a | 3.03 ± 0.11 a | 1.96 ± 0.10 a |
HFD | 220.50 ± 13.48 a | 49.21 ± 3.02 a | 13.30 ± 0.68 a | 1.26 ± 0.12 a | 2.84 ± 0.08 a | 1.88 ± 0.09 a |
HFD + Orl (5 mg/kg) | 180.75 ± 16.54 b | 27.12 ± 3.02 b | 14.65 ± 0.68 a | 1.27 ± 0.14 a | 2.81 ± 0.10 a | 1.86 ± 0.12 a |
HFD + C. c (250 mg/kg) | 168.83 ± 12.47 b | 14.80 ± 3.49 bc | 12.26 ± 0.79 a | 1.30 ± 0.12 a | 2.75 ± 0.10 a | 2.01 ± 0.12 a |
HFD + P (50 mg/kg) | 165.40 ± 29.97 b | 23.3 ± 3.49 bc | 12.00 ± 0.79 a | 1.30 ± 0.14 a | 2.72 ± 0.10 a | 1.90 ± 0.12 a |
HFD + P (100 mg/kg) | 169.60 ± 28.04 b | 20.30 ± 3.49 bc | 12.14 ± 0.68 a | 1.25 ± 0.14 a | 2.64 ± 0.11 a | 1.81 ± 0.10 a |
HFD + P (200 mg/kg) | 188.80 ± 16.91 b | 21.17 ± 3.49 bc | 12.97 ± 0.61 a | 1.26 ± 0.12 a | 2.69 ± 0.10 a | 1.99 ± 0.12 a |
Biomarkers Oxidative Stress in Treatments | |||||
---|---|---|---|---|---|
Group | Organ | GSH (mM GSH/g Tissue) | MDA (nmol/mg Protein) | HNE (nmol/mg Protein) | AOPP (nmol/mg Protein) |
C | Liver | 8.72 ± 1.92 a | 0.41 ± 0.09 b | 0.35 ± 0.16 b | 8.13 ± 0.95 ab |
Heart | 17.34 ± 2.10 a | 0.25 ± 0.025 b | 0.18 ± 0.015 b | 8.97 ± 2.09 b | |
C + V | Liver | 6. 23 ± 1.63 a | 0.55 ± 0.07 b | 0.73 ± 0.31 b | 9.91 ± 1.95 ab |
Heart | 18.28 ± 0.44 a | 0.25 ± 0.016 b | 0.26 ± 0.053 b | 8.55 ± 1.09 b | |
C + C. c (200 mg/kg) | Liver | 6.55 ± 1.63 a | 0.38 ± 0.07 b | 0.57 ± 0.31 b | 6.32 ± 2.95 b |
Heart | 16.23 ± 0.88 ab | 0.24 ± 0.012 b | 0.22 ± 0.043 b | 9.62 ± 0.85 b | |
HFD | Liver | 2.08 ± 0.92 b | 0.86 ± 0.09 a | 2.55 ± 0.31 a | 13.97 ± 2.95 a |
Heart | 13.67 ± 0.88 b | 0.41 ± 0.018 a | 0.60 ± 0.018 a | 17.18 ± 2.09 a | |
HFD + Orl (5 mg/kg) | Liver | 6.17 ± 0.92 a | 0.55 ± 0.07 b | 1.17 ± 0.03 ab | 10.70 ± 2.15 ab |
Heart | 16.86 ± 0.57 ab | 0.30 ± 0.016 b | 0.13 ± 0.044 b | 12.52 ± 0.95 ab | |
HFD + C. c (250 mg/kg) | Liver | 6.85 ± 2.63 a | 0.58 ± 0.09 b | 0.87 ± 0.21 ab | 7.55 ± 1.95 b |
Heart | 15.14 ± 0.88 ab | 0.23 ± 0.030 b | 0.24 ± 0.020 b | 10.10 ± 1.10 b | |
HFD + P (50 mg/kg) | Liver | 6.36 ± 1.63 a | 0.41 ± 0.08 b | 1.20 ± 0.26 ab | 8.89 ± 0.95 ab |
Heart | 14.91 ± 0.46 ab | 0.28 ± 0.016 b | 0.26 ± 0.051 b | 11.53 ± 1.09 b | |
HFD + P (100 mg/kg) | Liver | 6.23 ± 0.92 a | 0.43 ± 0.02 b | 1.02 ± 0.31 ab | 7.54 ± 1.95 ab |
Heart | 15.92 ± 0.88 ab | 0.27 ± 0.012 b | 0.18 ± 0.043 b | 9.63 ± 1.09 b | |
HFD + P (200 mg/kg) | Liver | 6.09 ± 1.63 a | 0.44 ± 0.07 b | 0.33 ± 0.14 b | 6.22 ± 0.47 b |
Heart | 14.53 ± 1.88 ab | 0.21 ± 0.016 b | 0.18 ± 0.056 b | 9.14 ± 0.95 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Pérez, L.G.; Hernández-Soto, J.A.; Padilla-Avalos, O.; Ayala-Ruiz, L.A.; Magaña-Rodríguez, O.R.; Piñón-Simental, J.S.; Aguilera-Méndez, A.; Godínez-Hernández, D.; Rios-Chavez, P. Role of Callistemon citrinus Leaf Phytosomes Against Oxidative Stress and Inflammation in Rats Fed with a High-Fat-Fructose Diet. Antioxidants 2024, 13, 1263. https://doi.org/10.3390/antiox13101263
Ortega-Pérez LG, Hernández-Soto JA, Padilla-Avalos O, Ayala-Ruiz LA, Magaña-Rodríguez OR, Piñón-Simental JS, Aguilera-Méndez A, Godínez-Hernández D, Rios-Chavez P. Role of Callistemon citrinus Leaf Phytosomes Against Oxidative Stress and Inflammation in Rats Fed with a High-Fat-Fructose Diet. Antioxidants. 2024; 13(10):1263. https://doi.org/10.3390/antiox13101263
Chicago/Turabian StyleOrtega-Pérez, Luis Gerardo, José Armando Hernández-Soto, Osvaldo Padilla-Avalos, Luis Alberto Ayala-Ruiz, Oliver Rafid Magaña-Rodríguez, Jonathan Saúl Piñón-Simental, Asdrúbal Aguilera-Méndez, Daniel Godínez-Hernández, and Patricia Rios-Chavez. 2024. "Role of Callistemon citrinus Leaf Phytosomes Against Oxidative Stress and Inflammation in Rats Fed with a High-Fat-Fructose Diet" Antioxidants 13, no. 10: 1263. https://doi.org/10.3390/antiox13101263
APA StyleOrtega-Pérez, L. G., Hernández-Soto, J. A., Padilla-Avalos, O., Ayala-Ruiz, L. A., Magaña-Rodríguez, O. R., Piñón-Simental, J. S., Aguilera-Méndez, A., Godínez-Hernández, D., & Rios-Chavez, P. (2024). Role of Callistemon citrinus Leaf Phytosomes Against Oxidative Stress and Inflammation in Rats Fed with a High-Fat-Fructose Diet. Antioxidants, 13(10), 1263. https://doi.org/10.3390/antiox13101263