Effects of Edible Grass (Rumex patientia L. × Rumex tianschanicus A. LOS) Leaf Powder on Growth Performance, Antioxidant Properties, Cecal Short-Chain Fatty Acids, and Microbial Community Levels in Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Animals and Treatment
2.3. Growth Performance
2.4. Sample Collection
2.5. Measurement of Antioxidants and Volatile Short-Chain Fatty Acids
2.6. DNA Extraction and PCR Amplification
2.7. Sequencing Analysis and Bacterial Data Processing
2.8. Statistical Analysis
3. Results
3.1. Growth Performance of Chickens Fed Different Diets
3.2. Antioxidant Properties of Chickens Fed Different Diets
3.3. Short-Chain Fatty Acids (SCFAs) of Chickens Fed Different Diets
3.4. Effect of EGLP on the Intestinal Microbiota of Broilers
3.4.1. Species Annotation and Assessment in Cecal Microbiota
3.4.2. Effects of EGLP on the Cecal Microbiota at the Phylum Level
3.4.3. Effects of EGLP on the Cecal Microbiota at the Genus Level
3.4.4. Effects of EGLP on Pathogenic Microorganisms and Butyrate-Producing Bacteria in Cecum of Broiler Chickens
3.4.5. LEfSe Analysis of Chickens Fed Different Diets
3.4.6. Correlations between SCFAs, Antioxidant Properties, and Cecal Microbiota
4. Discussion
4.1. Impact of Leaf Meal on the Growth Performance of Broilers
4.2. Leaf Meal Improves Antioxidant Properties in Broilers
4.3. Impact of Leaf Meal on Intestinal Metabolites of Broilers
4.4. Impact of Leaf Meal on the Intestinal Microbiota of Broilers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.W.; Less, J.F.; Li, W.; Yan, T.H.; Viswanath, K.; Sadasivam, S.K.; Lei, X.G. Meeting global feed protein demand: Challenge, opportunity, and strategy. Ann. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirement of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Ali, T.; Zhou, B.; Cleary, D.; Xie, W. The Impact of Climate Change on China and Brazil’s Soybean Trade. Land 2022, 11, 2286. [Google Scholar] [CrossRef]
- Mottet, A.; De, H.C.; Falcucci, A.; Giuseppe, T.; Carolyn, O.; Pierre, G. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food. Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Padsakorn, P.; Warin, P.; Pasakorn, B.; Pensri, P.; Alissara, R.; Bundit, Y.; Anusorn, C.; Bundit, T.; Sawitree, W. Investigation of nutritional profile, protein solubility and in vitro digestibility of various algae species as an alternative protein source for poultry feed. Algal. Res. 2023, 72, 103147. [Google Scholar] [CrossRef]
- Bondar, A.; Horodincu, L.; Solcan, G.; Solcan, C. Use of Spirulina platensis and Curcuma longa as Nutraceuticals in Poultry. Agriculture 2023, 13, 1553. [Google Scholar] [CrossRef]
- Helen, O.; Christian, K.A.; Calistus, O.; Arthur, O.; Francis, I.; Taghi, M.; Olumide, A.O.; Amarachukwu, A. Single cell protein for foods and feeds: A review of trends. Open Micro. J. 2022, 16, 1874–2858. [Google Scholar] [CrossRef]
- Altmann, B.A.; Ruth, W.; Marco, C.; Daniel, M. The effect of insect or microalga alternative protein feeds on broiler meat quality. J. Sci. Food Agric. 2020, 100, 4292–4302. [Google Scholar] [CrossRef]
- Sakkas, H.; Papadopoulou, C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 2017, 27, 429–438. [Google Scholar] [CrossRef]
- Ginindza, M.M. Lucerne meal in the diet of indigenous chickens: A review. Front. Anim. Sci. 2023, 4, 1274473. [Google Scholar] [CrossRef]
- Gong, J.P.; Long, W.; Lue, Y.N.; Wu, D.; Huang, Y.L.; Chen, X.L. Effects of kudzu leaf meal on growth performance and the biochemical, antioxidant, and immune indexes for serum from broilers. Pratacul Sci. 2021, 38, 590–597. [Google Scholar] [CrossRef]
- Ma, J.Y.; Wang, J.; Jin, X.Y.; Liu, S.J.; Tang, S.F.; Zhang, Z.H.; Long, S.F.; Piao, X.S. Effect of Dietary Supplemented with Mulberry Leaf Powder on Growth Performance, Serum Metabolites, Antioxidant Property and Intestinal Health of Weaned Piglets. Antioxidants 2023, 12, 307. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, K.; Xu, M.S.; Jiang, Y.; Wang, W.J. Effects of alfalfa flavonoids on broiler performance, meat quality, and gene expression. Can. J. Anim. Sci. 2016, 96, 332–341. [Google Scholar] [CrossRef]
- Wu, J.M.; Ma, N.; Johnston, L.J.; Ma, X. Dietary nutrients mediate intestinal host defense peptide expression. Adv. Nutr. 2020, 11, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Tejeda, O.J.; Kim, W.K. Role of Dietary Fiber in Poultry Nutrition. Animals 2021, 11, 461. [Google Scholar] [CrossRef]
- Haenen, D.; Zhang, J.; Da Silva, C.S.; Bosch, G.; van der Meer, I.M.; van Arkel, J.; van den Borne, J.J.; Gutiérrez, O.P.; Smidt, H.; Kemp, B.; et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J. Nutr. 2013, 143, 274–283. [Google Scholar] [CrossRef]
- Xiao, X.J.; Hu, X.S.; Yao, J.P.; Cao, W.; Zou, Z.H.; Wang, L.; Qin, H.Y.; Zhong, D.L.; Li, Y.X.; Xue, P.W.; et al. The role of short-chain fatty acids in inflammatory skin diseases. Front. Microbiol. 2023, 13, 1083432. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International; Off. Methods Anal. AOAC Int.; Association of Ocial Analytical Chemists: Wanshington, DC, USA, 1995. [Google Scholar]
- Banday, M.T.; Wani, M.A.; Othman, S.I.; Rudayni, H.A.; Allam, A.A.; Alshahrani, M.Y.; Ibrahim, E.H.; Nabi, S.; Adil, S. Impact of Rumex nepalensis on Performance, Blood Markers, Immunity, Intestinal Microbiology and Histomorphology in Broiler Chicken. Vet. Sci. 2024, 11, 463. [Google Scholar] [CrossRef]
- Qaid, M.M.; Al-Mufarrej, S.I.; Al-Garadi, M.A.; Al-Haidary, A.A. Effects of Rumex nervosus leaf powder supplementation on carcasses compositions, small intestine dimensions, breasts color quality, economic feasibility in broiler chickens. Poult. Sci. 2023, 102, 102943. [Google Scholar] [CrossRef]
- Zhang, S.; Song, J.; Deng, Z.; Cheng, L.; Tian, M.; Guan, M. Effects of Combined α-galactosidase and Xylanase Supplementation on Nutrient Digestibility and Growth Performance in Growing Pigs. Arch. Anim. Nutr. 2017, 71, 441–454. [Google Scholar] [CrossRef]
- NY-T33-2004; Feeding Standard of Chicken. Industry Standards–Agriculture: Beijing, China, 2004.
- Franklin, M.A.; Mathew, A.G.; Vickers, J.R.; Clift, R.A. Characterization of microbial populations and volatile fatty acid concentrations in the jejunum, ileum, and cecum of pigs weaned at 17 vs. 24 days of age. J. Anim. Sci. 2002, 80, 2904–2910. [Google Scholar] [CrossRef]
- Luo, Y.H.; Yang CWright, A.G.; He, J.; Chen, D.W. Responses in ileal and cecal bacteria to low and high amylose/amylopectin ratio diets in growing pigs. Appl. Microbiol. Biotechnol. 2015, 99, 10627–10638. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i990. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, L.S. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, J.C.; Paul, J.M.; Michael, J.R.; Andrew, W.H.; Amy, J.A.J.; Susan, P.H. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Patrick, D.S.; Sarah, L.S.; Thomas, R.; Justine, R.H.; Martin, H.; Emily, B.H.; Ryan, A.L.; Brian, B.O.; Donovan, H.P.; Courtney, J.P.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Nicola, S.; Jacques, I.; Levi, W.; Dirk, G.; Larisa, M.; Wendy, S.G.; Curtis, H. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Bakare, A.G.; Zindove, T.J.; Iji, P.A. Meta-analysis of the inclusion of leaf meals in diets of broiler chickens. Trop. Anim. Health Prod. 2022, 54, 290. [Google Scholar] [CrossRef]
- So-In, C.; Sunthamala, N. The effects of mulberry (Morus alba Linn.) leaf supplementation on growth performance, blood parameter, and antioxidant status of broiler chickens under high stocking density. Vet. World 2022, 15, 2715. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Ye, F.C.; Xiong, Y.P.; Wu, Y.F.; Wang, L.P.; Feng, X.B.; Zhang, S.Y.; Wan, Y.M.; Huang, J.H. Dietary purslane (Portulaca oleracea L.) promotes the growth performance of broilers by modulation of gut microbiota. AMB Express 2021, 11, 31. [Google Scholar] [CrossRef]
- Nkukwana, T.T.; Muchenje, V.; Pieterse, E.; Masika, P.J.; Mabusela, T.P.; Hoffman, L.C.; Dzama, K. Effect of Moringa oleifera leaf meal on growth performance, apparent digestibility, digestive organ size and carcass yield in broiler chickens. Livest. Sci. 2014, 161, 39–46. [Google Scholar] [CrossRef]
- Olugbenga, O.D.; Agbede, J.O.; Ayodele, S.O.; Oloruntola, D.A. Neem, pawpaw and bamboo leaf meal dietary supplementation in broiler chickens: Effect on performance and health status. J. Food Biochem. 2019, 43, e12723. [Google Scholar] [CrossRef]
- Shen, M.M.; Li, T.; Qu, L.; Wang, K.H.; Hou, Q.R.; Zhao, W.G.; Wu, P. Effect of dietary inclusion of Moringa oleifera leaf on productive performance, egg quality, antioxidant capacity and lipid levels in laying chickens. Ital. J. Anim. Sci. 2021, 20, 2012–2021. [Google Scholar] [CrossRef]
- Olugbenga, D.O.; Simeon, O.A.; Deborah, A.O.; Olumuyiwa, J.O.; Andrew, B.F.; Victor, O.A.; Olufemi, E.A.; Olufemi, A.A.; Francis, A.G. Performance, HSP70 expression, antioxidant enzymes, oxidative DNA damage biomarkers, metabolic hormones, and intestinal microbiota of broiler chickens fed mistletoe leaf powder supplemented diets under tropical high ambient temperatures. J. Therm. Biol. 2024, 121, 103861. [Google Scholar] [CrossRef]
- Tamir, B.; Tsega, W. Effects of different levels of dried sweet potato (Ipomoea batatas) leaves inclusion in finisher ration on feed intake, growth, and carcass yield performance of Ross broiler chicks. Trop. Anim. Health Prod. 2010, 42, 687–695. [Google Scholar] [CrossRef]
- Gakuya, D.W.; Mbugua, P.N.; Mwaniki, S.M.; Kiama, S.G.; Muchemi, G.M.; Njuguna, A. Effect of Supplementation of Moringa oleifera (LAM) Leaf Meal in Layer Chicken Feed. Int. J. Poult. Sci. 2014, 13, 208–213. [Google Scholar] [CrossRef]
- Tesfaye, E.; Animut, G.; Urge, M.; Dessie, T. Moringa olifera leaf meal as an alternative protein feed ingredient in broiler ration. Int. J. Poult. Sci. 2013, 12, 289–297. [Google Scholar] [CrossRef]
- Pleger, L.; Weindl, P.N.; Weindl, P.A.; Carrasco, L.S.; Leitao, C.; Zhao, M.; Aulrich, K.; Bellof, G. Precaecal digestibility of crude protein and amino acids from alfalfa (Medicago sativa) and red clover (Trifolium pratense) leaves and silages in broilers. Anim. Feed Sci. Technol. 2021, 275, 114856. [Google Scholar] [CrossRef]
- Ravindran, V.; Hood, R.; Gill, R.; Kneale, C.R.; Bryden, W.L. Nutritional evaluation of grain amaranth (Amaranthus hypochondriacus) in broiler diets. Anim. Feed. Sci. Technol. 1996, 63, 323–331. [Google Scholar] [CrossRef]
- Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R.P. Nutritional quality of leaves of some genotypes of mulberry (Morus alba). Int. J. Food Sci. Nutr. 2006, 57, 305–313. [Google Scholar] [CrossRef]
- Ding, Y.; Jiang, X.; Yao, X.; Zhang, H.; Song, Z.; He, X.; Cao, R. Effects of Feeding Fermented Mulberry Leaf Powder on Growth Performance, Slaughter Performance, and Meat Quality in Chicken Broilers. Animals 2021, 11, 3294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Zhang, S.; Wu, S.; Mariaanne, H.M.; Shi, S. Supplementing the early diet of broilers with soy protein concentrate can improve intestinal development and enhance short-chain fatty acid-producing microbes and short-chain fatty acids, especially butyric acid. J. Anim. Sci. Biotechnol. 2022, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.B.; Kim, D.H.; Jeong, S.B.; Lee, J.W.; Kim, T.H.; Lee, H.G.; Lee, K.W. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult. Sci 2020, 99, 3133–3143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.M.; Liu, X.Y.; Gu, W.; Jiao, H.C.; Wang, X.J.; Li, H.F.; Lin, H. Different effects of probiotics and antibiotics on the composition of microbiota, SCFAs concentrations and FFAR2/3 mRNA expression in broiler chickens. J. Appl. Microbiol. 2021, 131, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; He, Y.K.; Fan, S.Q.; Gong, X.Y.; Zhou, Y.Q.; Jian, Y.W.; Ouyang, J.Y.; Zhang, P.H. Effects of LED light colors on the growth performance, intestinal morphology, Cecal short-chain fatty acid concentrations and microbiota in broilers. Animals 2023, 13, 3731. [Google Scholar] [CrossRef]
- Tejeda, O.; Kim, W.K. The effects of cellulose and soybean hulls as sources of dietary fiber on the growth performance, organ growth, gut histomorphology, and nutrient digestibility of broiler chickens. Poult. Sci. 2020, 99, 6828–6836. [Google Scholar] [CrossRef]
- Walugembe, M.; Hsieh, J.C.; Koszewski, J.; Lamont, S.J.; Persia, M.E.; Rothschild, M.F. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult. Sci 2015, 94, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.R.; Gratz, S.W.; Duncan, S.H.; Holtrop, G.; Ince, J.; Scobbie, L.; Duncan GJohnstone, A.M.; Lobley, G.E.; Wallace, R.J.; Duthie, G.G.; et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 2011, 93, 1062–1072. [Google Scholar] [CrossRef]
- Chen, Y.R.; Jing, Q.L.; Chen, F.L.; Chen, L.D.; Yang, Z.C. Desulfovibrio is not always associated with adverse health effects in the Guangdong Gut Microbiome Project. PeerJ 2021, 9, e12033. [Google Scholar] [CrossRef]
- Guarner, F. Decade in review-gut microbiota: The gut microbiota era marches on. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 647–649. [Google Scholar] [CrossRef]
- Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci. 2013, 92, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, T.M.; Sun, W.; Bumbie, G.Z.; Elokil, A.A.; Mohammed, K.A.F.; Zebin, R.; Hu, P.; Tang, Z.R. Feeding Bacillus subtilis ATCC19659 to broiler chickens enhances growth performance and immune function by modulating intestinal morphology and cecum microbiota. Front. Microbiol. 2022, 12, 798350. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.L.; Mao, P.H.; Tian, X.X.; Guo, Q.; Meng, L. Effects of dietary supplementation of alfalfa meal on growth performance, carcass characteristics, meat and egg quality, and intestinal microbiota in Beijing-you chicken. Poult. Sci. 2019, 98, 2250–2259. [Google Scholar] [CrossRef] [PubMed]
- Rau, M.; Rehman, A.; Dittrich, M.; Groen, A.K.; Hermanns, H.M.; Seyfried, F.; Beyersdorf, N.; Dandekar, T.; Rosenstiel, P.; Geier, A. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United Eur. Gastroenterol. J. 2018, 6, 1496–1507. [Google Scholar] [CrossRef]
Items | Edible Grass | Soybean Meal | Corn |
---|---|---|---|
DM, % | 89.50 | 89.00 | 86.00 |
AME, MJ/kg | 4.53 | 9.83 | 13.56 |
CP, % | 29.97 | 44.00 | 8.70 |
CF, % | 18.00 | 5.20 | 1.60 |
EE, % | 3.00 | 1.90 | 3.60 |
Ash, % | 11.62 | 6.10 | 1.40 |
Ca, % | 0.70 | 0.33 | 0.02 |
P, % | 0.39 | 0.62 | 0.27 |
Total flavonoids, mg/g | 19.8 | / | / |
Total phenolic acid, mg/g | 1.30 | / | / |
Item | CS 1 | EG3 2 | EG6 3 | EG9 4 | EG12 5 |
---|---|---|---|---|---|
Ingredients composition (%) | |||||
Corn | 54.96 | 53.06 | 50.96 | 48.86 | 46.76 |
Soybean meal | 36.00 | 34.50 | 33.00 | 31.50 | 30.00 |
Soybean oil | 4.60 | 5.00 | 5.60 | 6.20 | 6.80 |
Eidble grass | 0.00 | 3.00 | 6.00 | 9.00 | 12.00 |
55% L-Lysine | 0.56 | 0.56 | 0.56 | 0.56 | 0.56 |
98.5% DL-Methionine | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 |
CaHPO4 | 1.56 | 1.56 | 1.56 | 1.56 | 1.56 |
Limestone | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 |
60% Choline chloride | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Sodium chloride | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Premix 6 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient levels 7, % of DM | |||||
ME,MJ/kg | 12.55 | 12.55 | 12.55 | 12.55 | 12.50 |
Crude protein | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Lysine | 1.46 | 1.44 | 1.43 | 1.42 | 1.41 |
Methionine | 0.55 | 0.53 | 0.52 | 0.52 | 0.52 |
Calcium | 0.88 | 0.89 | 0.91 | 0.92 | 0.92 |
Available phosphorus | 0.43 | 0.43 | 0.42 | 0.42 | 0.42 |
Crude fiber | 2.70 | 3.40 | 3.80 | 4.20 | 4.60 |
Item | CS 1 | EG3 2 | EG6 3 | EG9 4 | EG12 5 |
---|---|---|---|---|---|
Ingredients composition (%) | |||||
Corn | 60.78 | 59.61 | 57.78 | 55.88 | 53.78 |
Soybean meal | 30.00 | 28.50 | 27.00 | 25.50 | 24.00 |
Soybean oil | 5.20 | 5.20 | 5.20 | 5.60 | 6.20 |
Eidble grass | 0.00 | 3.00 | 6.00 | 9.00 | 12.00 |
55% L-Lysine | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
98.5% DL-Methionine | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
CaHPO4 | 1.67 | 1.67 | 1.67 | 1.67 | 1.67 |
Limestone | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
60% Choline chloride | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Sodium chloride | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Premix 6 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient levels 7, % of DM | |||||
ME,MJ/kg | 13.00 | 13.00 | 13.00 | 13.00 | 13.00 |
Crude protein | 18.00 | 18.00 | 18.00 | 18.10 | 18.20 |
Lysine | 1.12 | 1.09 | 1.09 | 1.07 | 1.06 |
Methionine | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 |
Calcium | 0.81 | 0.84 | 0.84 | 0.86 | 0.87 |
Available phosphorus | 0.42 | 0.43 | 0.43 | 0.43 | 0.43 |
Crude fiber | 2.80 | 3.20 | 3.60 | 4.10 | 4.50 |
Item | T-AOC, mmol/L | SOD, U/mL | GSH-Px, U/mL |
---|---|---|---|
CS 1 | 0.74 c | 23.79 ab | 844.27 |
EG3 2 | 0.98 ab | 33.59 a | 838.58 |
EG6 3 | 1.17 a | 33.50 a | 973.28 |
EG9 4 | 0.77 c | 29.06 a | 831.94 |
EG12 5 | 0.83 bc | 15.10 b | 833.83 |
SEM | 0.15 | 11.52 | 223.35 |
p-Value | 0.006 | 0.034 | 0.807 |
Linear | 0.926 | 0.122 | 0.934 |
Quadratic | 0.005 | 0.004 | 0.665 |
Item | T-AOC, mmol/L | SOD, U/mL | GSH-Px, U/mL |
---|---|---|---|
CS 1 | 0.74 c | 31.24 a | 956.92 b |
EG3 2 | 1.02 ab | 31.56 a | 1126.96 ab |
EG6 3 | 0.89 bc | 31.86 a | 1016.37 ab |
EG9 4 | 1.11 a | 23.68 b | 1201.66 a |
EG12 5 | 0.90 bc | 32.67 a | 1158.97 a |
SEM | 0.03 | 11.52 | 30.42 |
p-Value | <0.001 | 0.004 | 0.049 |
Linear | 0.016 | 0.111 | 0.020 |
Quadratic | 0.005 | 0.056 | 0.215 |
Item | Acetate ug/g | Propionate ug/g | Isobutyrate ug/g | Butyrate ug/g | Isovalerate ug/g | Valerate ug/g | Total SCFAs ug/g |
---|---|---|---|---|---|---|---|
CS 1 | 5156.35 | 801.71 b | 116.23 b | 1491.60 a | 104.60 b | 121.73 b | 7792.31 b |
EG3 2 | 5937.51 | 836.97 b | 129.51 b | 1182.03 b | 116.02 b | 120.96 b | 8323.0 b |
EG6 3 | 5841.06 | 883.42 b | 157.17 ab | 1712.61 a | 137.43 b | 147.25 b | 8878.93 b |
EG9 4 | 7026.81 | 892.60 b | 136.84 b | 1542.31 a | 120.92 b | 150.37 b | 9868.86 ab |
EG12 5 | 7513.49 | 1565.40 a | 215.40 a | 2105.40 a | 234.55 a | 223.97 a | 11,858.21 a |
SEM | 327.60 | 69.53 | 10.41 | 116.76 | 13.29 | 9.02 | 454.12 |
p-Value | 0.156 | <0.001 | 0.023 | 0.089 | 0.012 | <0.001 | 0.041 |
Linear | 0.016 | <0.001 | 0.04 | 0.032 | 0.003 | <0.001 | 0.003 |
quadratic | 0.794 | 0.008 | 0.287 | 0.214 | 0.089 | 0.030 | 0.334 |
Item | Acetate ug/g | Propionate ug/g | Isobutyrate ug/g | Butyrate ug/g | Isovalerate ug/g | Valerate ug/g | Total SCFAs ug/g |
---|---|---|---|---|---|---|---|
CS 1 | 4581.33 | 1257.09 | 170.13 | 1174.64 ab | 231.01 | 140.93 b | 7555.15 |
EG3 2 | 4626.31 | 1137.17 | 174.64 | 1020.04 c | 173.00 | 171.99 ab | 7303.15 |
EG6 3 | 4415.21 | 1026.37 | 184.19 | 788.57 c | 172.06 | 157.55 b | 6743.95 |
EG9 4 | 4913.53 | 1149.89 | 182.04 | 1113.10 ab | 177.74 | 192.58 ab | 7728.90 |
EG12 5 | 6116.82 | 1305.28 | 213.28 | 1473.76 a | 209.52 | 226.85 a | 9545.52 |
SEM | 275.72 | 53.80 | 7.61 | 71.23 | 8.76 | 177.98 | 405.11 |
p-Value | 0.298 | 0.527 | 0.431 | 0.035 | 0.116 | 0.032 | 0.247 |
Linear | 0.089 | 0.778 | 0.091 | 0.142 | 0.521 | 0.003 | 0.125 |
quadratic | 0.567 | 0.093 | 0.516 | 0.006 | 0.012 | 0.247 | 0.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ling, H.; He, Z.; Yang, Z.; Jiang, T.; Huang, P.; Zeng, J. Effects of Edible Grass (Rumex patientia L. × Rumex tianschanicus A. LOS) Leaf Powder on Growth Performance, Antioxidant Properties, Cecal Short-Chain Fatty Acids, and Microbial Community Levels in Broilers. Antioxidants 2024, 13, 1291. https://doi.org/10.3390/antiox13111291
Li X, Ling H, He Z, Yang Z, Jiang T, Huang P, Zeng J. Effects of Edible Grass (Rumex patientia L. × Rumex tianschanicus A. LOS) Leaf Powder on Growth Performance, Antioxidant Properties, Cecal Short-Chain Fatty Acids, and Microbial Community Levels in Broilers. Antioxidants. 2024; 13(11):1291. https://doi.org/10.3390/antiox13111291
Chicago/Turabian StyleLi, Xinyao, Hao Ling, Zengyang He, Zihui Yang, Tao Jiang, Peng Huang, and Jianguo Zeng. 2024. "Effects of Edible Grass (Rumex patientia L. × Rumex tianschanicus A. LOS) Leaf Powder on Growth Performance, Antioxidant Properties, Cecal Short-Chain Fatty Acids, and Microbial Community Levels in Broilers" Antioxidants 13, no. 11: 1291. https://doi.org/10.3390/antiox13111291
APA StyleLi, X., Ling, H., He, Z., Yang, Z., Jiang, T., Huang, P., & Zeng, J. (2024). Effects of Edible Grass (Rumex patientia L. × Rumex tianschanicus A. LOS) Leaf Powder on Growth Performance, Antioxidant Properties, Cecal Short-Chain Fatty Acids, and Microbial Community Levels in Broilers. Antioxidants, 13(11), 1291. https://doi.org/10.3390/antiox13111291