Indigenous Lactic Acid Bacteria as Antioxidant Agents in the Production of Organic Raw Fermented Sausages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Lactic Acid Bacteria Strains
2.1.2. Raw Fermented Sausages
2.2. Methodology
2.2.1. Total Antioxidant Capacity (TAC)
Extraction of the Hydrophilic Fraction
Preparation of the Antioxidant Standard
DPPH Assay
ABTS Assay
2.2.2. Composition of Fatty Acids
2.2.3. Cholesterol
2.2.4. pH Value
2.2.5. Water Activity
2.2.6. Oxidation-Reduction Potential (ORP)
2.2.7. TBARS (Thiobarbituric Acid Reactive Substances) Index
2.2.8. Color Measurement
2.2.9. Microbial Evaluation
2.2.10. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed]
- Parlasca, M.C.; Qaim, M. Meat consumption and sustainability. Annu. Rev. Resour. Econ. 2022, 14, 17–41. [Google Scholar] [CrossRef]
- Font-i-Furnols, M. Meat consumption, sustainability and alternatives: An overview of motives and barriers. Foods 2023, 12, 2144. [Google Scholar] [CrossRef]
- Bodie, A.R.; Wythe, L.A.; Dittoe, D.K.; Rothrock, M.J., Jr.; O’Bryan, C.A.; Ricke, S.C. Alternative additives for organic and natural ready-to-eat meats to control spoilage and maintain shelf life: Current perspectives in the United States. Foods 2024, 13, 464. [Google Scholar] [CrossRef]
- Karre, L.; Lopez, K.; Getty, K.J. Natural antioxidants in meat and poultry products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef]
- Mao, J.; Wang, X.; Chen, H.; Zhao, Z.; Liu, D.; Zhang, Y.; Nie, X. The Contribution of Microorganisms to the Quality and Flavor Formation of Chinese Traditional Fermented Meat and Fish Products. Foods 2024, 13, 608. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Khalifa, I.; Mesak, M.A.; Lorenzo, J.M.; Farag, M.A. A comprehensive review of the role of microorganisms on texture change, flavor and biogenic amines formation in fermented meat with their action mechanisms and safety. Crit. Rev. Food Sci. Nutr. 2021, 63, 3538–3555. [Google Scholar] [CrossRef]
- Laranjo, M.; Potes, M.E.; Elias, M. Role of starter cultures on the safety of fermented meat products. Front. Microbiol. 2019, 10, 853. [Google Scholar] [CrossRef] [PubMed]
- Sidari, R.; Tofalo, R. Dual Role of Yeasts and Filamentous Fungi in Fermented Sausages. Foods 2024, 13, 2547. [Google Scholar] [CrossRef]
- Kaveh, S.; Hashemi, S.M.B.; Abedi, E.; Amiri, M.J.; Conte, F.L. Bio-preservation of meat and fermented meat products by lactic acid bacteria strains and their antibacterial metabolites. Sustainability 2023, 15, 10154. [Google Scholar] [CrossRef]
- Amaral, A.B.; Silva, M.V.D.; Lannes, S.C.D.S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Pateiro, M.; Gómez-Salazar, J.A.; Jaime-Patlán, M.; Sosa-Morales, M.E.; Lorenzo, J.M. Plant extracts obtained with green solvents as natural antioxidants in fresh meat products. Antioxidants 2021, 10, 181. [Google Scholar] [CrossRef] [PubMed]
- Fadda, S.; López, C.; Vignolo, G. Role of lactic acid bacteria during meat conditioning and fermentation: Peptides generated as sensorial and hygienic biomarkers. Meat Sci. 2010, 86, 66–79. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.; Li, X.A.; Zhang, H.; Chen, Q.; Kong, B. Application of lactic acid bacteria for improving the quality of reduced-salt dry fermented sausage: Texture, color, and flavor profiles. LWT 2022, 154, 112723. [Google Scholar] [CrossRef]
- Trabelsi, I.; Slima, S.B.; Ktari, N.; Triki, M.; Abdehedi, R.; Abaza, W.; Moussa, H.; Abdeslam, A.; Salah, R.B. Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Sci. 2019, 154, 29–36. [Google Scholar] [CrossRef]
- Luan, X.; Feng, M.; Sun, J. Effect of Lactobacillus plantarum on antioxidant activity in fermented sausage. Food Res. Int. 2021, 144, 110351. [Google Scholar] [CrossRef]
- Feng, T.; Wang, J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes 2020, 12, 1801944. [Google Scholar] [CrossRef] [PubMed]
- Łepecka, A.; Szymański, P.; Okoń, A.; Zielińska, D. Antioxidant activity of environmental lactic acid bacteria strains isolated from organic raw fermented meat products. LWT 2023, 174, 114440. [Google Scholar] [CrossRef]
- Rzepkowska, A.; Zielińska, D.; Ołdak, A.; Kołożyn-Krajewska, D. Safety assessment and antimicrobial properties of the lactic acid bacteria strains isolated from Polish raw fermented meat products. Int. J. Food Prop. 2017, 20, 2736–2747. [Google Scholar] [CrossRef]
- ISO 15214:1998. Microbiology of Food Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees, C. Available online: https://www.iso.org/standard/26853.html (accessed on 23 August 2024).
- ISO 1442:2023. Meat and Meat Products—Determination of Moisture Content—Reference Method. Available online: https://www.iso.org/standard/82664.html (accessed on 23 August 2024).
- ISO 937:2023. Meat and Meat Products—Determination of Nitrogen Content—Reference Method. Available online: https://www.iso.org/standard/82663.html (accessed on 23 August 2024).
- ISO 1444:1996. Meat and Meat Products—Determination of Free Fat Content. Available online: https://www.iso.org/standard/6041.html (accessed on 23 August 2024).
- ISO 1841-2:1996. Meat and Meat Products—Determination of Chloride Content—Part 2: Potentiometric Method. Available online: https://www.iso.org/standard/23756.html (accessed on 23 August 2024).
- Sacchetti, G.; Di Mattia, C.; Pittia, P.; Martino, G. Application of a radical scavenging activity test to measure the total antioxidant activity of poultry meat. Meat Sci. 2008, 80, 1081–1085. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Jang, A.; Liu, X.D.; Shin, M.H.; Lee, B.D.; Lee, S.K.; Lee, J.H.; Jo, C. Antioxidative potential of raw breast meat from broiler chicks fed a dietary medicinal herb extract mix. Poultry Sci. 2008, 87, 2382–2389. [Google Scholar] [CrossRef]
- Korzeniowska, M.; Króliczewska, B.; Kopeć, W. Carbonyl and sulfhydryl groups of chicken meat proteins after dietary modulation with selenium. Open Chem. 2015, 13, 1293–1302. [Google Scholar] [CrossRef]
- ISO 12966-1:2014. Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. Available online: https://www.iso.org/standard/52294.html (accessed on 23 August 2024).
- Okoń, A.; Szymański, P.; Zielińska, D.; Szydłowska, A.; Siekierko, U.; Kołożyn-Krajewska, D.; Dolatowski, Z.J. The Influence of Acid Whey on the Lipid Composition and Oxidative Stability of Organic Uncured Fermented Bacon after Production and during Chilling Storage. Antioxidants 2021, 10, 1711. [Google Scholar] [CrossRef]
- ISO 2917:1999. Meat and Meat Products—Measurement of pH—Reference Method. Available online: https://www.iso.org/standard/24785.html (accessed on 23 August 2024).
- ISO 18787:2017. Foodstuffs—Determination of Water Activity. Available online: https://www.iso.org/standard/63379.html (accessed on 23 August 2024).
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agricult Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- Tomasevic, I.; Djekic, I.; Font-i-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent advances in meat color research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- ISO 4833-1:2013. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. Available online: https://www.iso.org/standard/53728.html (accessed on 23 August 2024).
- ISO 21528-2:2017. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. Available online: https://www.iso.org/standard/63504.html (accessed on 23 August 2024).
- ISO 16649-1:2018. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 1: Colony-Count Technique at 44 Degrees C Using Membranes and 5-Bromo-4-Chloro-3-Indolyl Beta-D-Glucuronide. Available online: https://www.iso.org/standard/64951.html (accessed on 23 August 2024).
- ISO 6888-1:2021. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species)—Part 1: Method Using Baird-Parker Agar Medium. Available online: https://www.iso.org/standard/76672.html (accessed on 23 August 2024).
- ISO 21527-2:2008. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds. Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. Available online: https://www.iso.org/standard/38276.html (accessed on 23 August 2024).
- ISO 6579-1:2017. Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. Available online: https://www.iso.org/standard/56712.html (accessed on 23 August 2024).
- ISO 10272-1:2017. Microbiology of the Food Chain—Horizontal Method for Detection and Enumeration of Campylobacter spp.—Part 1: Detection Method. Available online: https://www.iso.org/standard/63225.html (accessed on 23 August 2024).
- Obiedziński, M.W.; Pisula, A.; Płonka, S.; Różycki, M.; Węglarzy, K.; Czubała, A.; Florowski, T.; Obiedziński, M.M. Wymagania dla Systemu QAFP. Część Ogólna. 2020. 1–68. Available online: https://qafp.pl/wp-content/uploads/2023/06/Wymagania-dla-Systemu-QAFP-czesc-ogolna-wyd.-6-z-dnia-12.03.2021.pdf (accessed on 23 August 2024).
- Karwowska, M.; Kononiuk, A.; Wójciak, K.M. Impact of sodium nitrite reduction on lipid oxidation and antioxidant properties of cooked meat products. Antioxidants 2019, 9, 9. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Stasiak, D.M.; Kęska, P. The influence of different levels of sodium nitrite on the safety, oxidative stability, and color of minced roasted beef. Sustainability 2019, 11, 3795. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Gomez, B.; Barba, F.J.; Mora, L.; Perez-Santaescolastica, C.; Toldra, F. Bioactive peptides as natural antioxidants in food products–A review. Trends Food Sci. Technol. 2018, 79, 136–147. [Google Scholar] [CrossRef]
- Kononiuk, A.D.; Karwowska, M. Bioactive compounds in fermented sausages prepared from beef and fallow deer meat with acid whey addition. Molecules 2020, 25, 2429. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.; Singh, J.; Gani, A. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem. 2022, 373, 131395. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Comp. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Kim, D.O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Koss-Mikołajczyk, I.; Baranowska, M.; Namieśnik, J.; Bartoszek-Pączkowska, A. Metody oznaczania właściwości przeciwutleniających fitozwiązków w systemach komórkowych z wykorzystaniem zjawiska fluorescencji/luminescencji. Post. Hig. Med. Dośw. 2017, 71, 602–616. [Google Scholar] [CrossRef]
- Wang, J.; Jin, G.; Zhang, W.; Ahn, D.U.; Zhang, J. Effect of curing salt content on lipid oxidation and volatile flavour compounds of dry-cured turkey ham. LWT-Food Sci. Technol. 2012, 48, 102–106. [Google Scholar] [CrossRef]
- Marco, A.; Navarro, J.L.; Flores, M. The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dry fermented sausage. Meat Sci. 2006, 73, 660–673. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, Y.; Seo, Y.; Sung, M.; Oh, J.; Yoon, Y. Effect of starter cultures on quality of fermented sausages. Food Sci. Anim. Resour. 2023, 43, 1–9. [Google Scholar] [CrossRef]
- Xia, L.; Qian, M.; Cheng, F.; Wang, Y.; Han, J.; Xu, Y.; Zhang, K.; Tian, J.; Jin, Y. The effect of lactic acid bacteria on lipid metabolism and flavor of fermented sausages. Food Biosci. 2023, 56, 103172. [Google Scholar] [CrossRef]
- Sohaib, M.; Anjum, F.M.; Sahar, A.; Arshad, M.S.; Rahman, U.U.; Imran, A.; Hussain, S. Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: A comprehensive review. Int. J. Food Prop. 2017, 20, 2581–2593. [Google Scholar] [CrossRef]
- Cobos, A.; Díaz, O. Chemical composition of meat and meat products. In Handbook of Food Chemistry; Cheung, P.C.K., Mehta, B.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 471–510. [Google Scholar] [CrossRef]
- Singhal, N.; Maurya, A.K.; Mohanty, S.; Kumar, M.; Virdi, J.S. Evaluation of bile salt hydrolases, cholesterol-lowering capabilities, and probiotic potential of Enterococcus faecium isolated from rhizosphere. Front. Microbiol. 2019, 10, 460235. [Google Scholar] [CrossRef] [PubMed]
- Walhe, R.A.; Diwanay, S.S.; Patole, M.S.; Sayyed, R.Z.; Al-Shwaiman, H.A.; Alkhulaifi, M.M.; Elgorban, A.M.; Danish, S.; Datta, R. Cholesterol reduction and vitamin B12 production study on Enterococcus faecium and Lactobacillus pentosus isolated from yoghurt. Sustainability 2021, 13, 5853. [Google Scholar] [CrossRef]
- Wang, J.; Hou, J.; Zhang, X.; Hu, J.; Yu, Z.; Zhu, Y. Improving the flavor of fermented sausage by increasing its bacterial quality via inoculation with Lactobacillus plantarum MSZ2 and Staphylococcus xylosus YCC3. Foods 2022, 11, 736. [Google Scholar] [CrossRef]
- Song, Z.; Cao, Y.; Zhang, Y.; Zhang, Z.; Shi, X.; Zhang, W.; Wen, P. Effects of storage methods on the microbial community and quality of Sichuan smoked bacon. LWT 2022, 158, 113115. [Google Scholar] [CrossRef]
- Chen, Q.; Kong, B.; Han, Q.; Xia, X.; Xu, L. The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavour development. LWT 2017, 77, 389–396. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, M.; Roszko, M.; Adamczak, L.; Florowski, T.; Pietrzak, D. Influence of storage and packaging method on chicken breast meat chemical composition and fat oxidation. Poultry Sci. 2019, 98, 2679–2690. [Google Scholar] [CrossRef]
- Min, B.; Ahn, D.U. Mechanism of Lipid Peroxidation in Meat and Meat Products—A Review. Food Sci. Biotechnol. 2005, 14, 152–163. Available online: https://koreascience.kr/article/JAKO200509905823893.page (accessed on 23 August 2024).
- Safa, H.; Gatellier, P.; Lebert, A.; Picgirard, L.; Mirade, P.S. Effect of combined salt and animal fat reductions on physicochemical and biochemical changes during the manufacture of dry-fermented sausages. Food Bioprocess. Technol. 2015, 8, 2109–2122. [Google Scholar] [CrossRef]
- Purnomo, H. Physico-chemical and microbial quality of indigenous Indonesian spicy dried meat. Int. J. Food Sci. Nutr. 2011, 62, 133–138. [Google Scholar] [CrossRef]
- Sallan, S.; Kaban, G.; Kaya, M. The effects of nitrite, sodium ascorbate and starter culture on volatile compounds of a semi-dry fermented sausage. LWT 2022, 153, 112540. [Google Scholar] [CrossRef]
- Han, J.; Wang, Y.; Wang, Y.; Hao, S.; Zhang, K.; Tian, J.; Jin, Y. Effect of changes in the structure of myoglobin on the color of meat products. Food Mat. Res. 2024, 4, e011. [Google Scholar] [CrossRef]
- Gøtterup, J.; Olsen, K.; Knøchel, S.; Tjener, K.; Stahnke, L.H.; Møller, J.K. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite-and nitrate-reductase activities. Meat Sci. 2008, 78, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Stadnik, J.; Kęska, P.; Gazda, P.; Siłka, Ł.; Kołożyn-Krajewska, D. Influence of LAB fermentation on the color stability and oxidative changes in dry-cured meat. Appl. Sci. 2022, 12, 11736. [Google Scholar] [CrossRef]
- Belleggia, L.; Ferrocino, I.; Reale, A.; Corvaglia, M.R.; Milanović, V.; Cesaro, C.; Boscaino, F.; Di Renzo, T.; Garofalo, C.; Cardinali, F.; et al. Unfolding microbiota and volatile organic compounds of Portuguese Painho de Porco Preto fermented sausages. Food Res. Int. 2022, 155, 111063. [Google Scholar] [CrossRef]
- Nikodinoska, I.; Tabanelli, G.; Baffoni, L.; Gardini, F.; Gaggìa, F.; Barbieri, F.; Di Gioia, D. Characterization of Lactic Acid Bacteria Isolated from Spontaneously Fermented Sausages: Bioprotective, Technological and Functional Properties. Foods 2023, 12, 727. [Google Scholar] [CrossRef]
- Van Reckem, E.; De Vuyst, L.; Weckx, S.; Leroy, F. Next-generation sequencing to enhance the taxonomic resolution of the microbiological analysis of meat and meat-derived products. Curr. Opin. Food Sci. 2021, 37, 58–65. [Google Scholar] [CrossRef]
Parameter | Time (Month) | Treatment | ||||
---|---|---|---|---|---|---|
C | P | SCH1 | BAL6 | KL14 | ||
SFA (%) | 0 | 40.85 ± 0.35 bB | 36.90 ± 0.28 bA | 40.40 ± 0.00 bB | 40.45 ± 0.07 bB | 39.10 ± 0.57 aB |
2 | 40.45 ± 0.21 aC | 36.40 ± 0.14 aA | 40.25 ± 0.07 aC | 40.30 ± 0.00 aC | 39.05 ± 0.07 aB | |
MUFA (%) | 0 | 48.60 ± 0.42 aB | 45.50 ± 0.00 aA | 48.45 ± 0.07 aB | 49.15 ± 0.21 aB | 48.55 ± 0.07 aB |
2 | 48.65 ± 0.14 aA | 45.60 ± 0.14 aA | 48.95 ± 0.21 bA | 49.20 ± 0.00 aB | 49.20 ± 0.14 bB | |
PUFA (%) | 0 | 10.40 ± 0.14 aA | 17.10 ± 0.14 aD | 10.85 ± 0.07 aB | 10.15 ± 0.21 aA | 12.05 ± 0.64 aC |
2 | 10.80 ± 0.14 bB | 17.60 ± 0.14 bD | 10.90 ± 0.14 aB | 10.40 ± 0.00 bA | 12.50 ± 0.00 bC | |
Trans (%) | 0 | 0.20 ± 0.00 aA | 0.10 ± 0.00 aA | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA |
2 | 0.20 ± 0.00 aA | 0.10 ± 0.00 aA | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA | 0.20 ± 0.00 aA | |
n-3 (%) | 0 | 0.60 ± 0.00 aA | 0.90 ± 0.00 aA | 0.60 ± 0.00 aA | 0.60 ± 0.00 aA | 0.70 ± 0.00 aA |
2 | 0.70 ± 0.00 aA | 0.90 ± 0.00 aA | 0.60 ± 0.00 aA | 0.60 ± 0.00 aA | 0.70 ± 0.00 aA | |
n-6 (%) | 0 | 9.40 ± 0.14 aA | 15.50 ± 0.14 aC | 9.85 ± 0.07 aA | 9.15 ± 0.21 aA | 10.80 ± 0.57 bB |
2 | 9.70 ± 0.14 bA | 15.90 ± 0.14 bC | 9.80 ± 0.14 aA | 9.30 ± 0.00 bA | 10.30 ± 0.00 aB | |
Cholesterol (mg/100 g of product) | 0 | 101.80 ± 1.84 aB | 117.90 ± 5.23 aC | 100.90 ± 2.26 aA | 98.60 ± 1.41 aA | 99.40 ± 0.99 bA |
2 | 99.70 ± 3.39 aB | 119.15 ± 9.40 aC | 96.85 ± 3.75 aB | 98.45 ± 6.15 aB | 87.00 ± 2.69 aA |
Parameter | Time (Month) | Treatment | ||||
---|---|---|---|---|---|---|
C | P | SCH1 | BAL6 | KL14 | ||
pH | 0 | 5.41 ± 0.07 aA | 5.65 ± 0.02 aC | 5.50 ± 0.01 aB | 5.56 ± 0.01 aB | 5.51 ± 0.01 aB |
1 | 5.72 ± 0.03 bB | 5.88 ± 0.02 bC | 5.62 ± 0.02 bA | 5.77 ± 0.03 bB | 5.80 ± 0.02 bB | |
2 | 5.67 ± 0.06 bB | 5.85 ± 0.00 bB | 5.50 ± 0.02 aA | 5.50 ± 0.02 aA | 5.58 ± 0.01 aA | |
aw | 0 | 0.86 ± 0.01 aA | 0.83 ± 0.01 cA | 0.87 ± 0.01 cA | 0.87 ± 0.01 bA | 0.89 ± 0.01 cA |
1 | 0.87 ± 0.01 aB | 0.71 ± 0.01 bA | 0.79 ± 0.02 bA | 0.82 ± 0.00 bA | 0.80 ± 0.01 bA | |
2 | 0.87 ± 0.03 aB | 0.65 ± 0.04 aA | 0.68 ± 0.04 aA | 0.69 ± 0.01 aA | 0.73 ± 0.04 aA | |
ORP (mV) | 0 | 334.93 ± 2.91 aA | 320.37 ± 1.45 aA | 366.13 ± 11.78 bB | 354.43 ± 3.86 bB | 332.10 ± 5.57 aA |
1 | 328.73 ± 1.14 aA | 312.40 ± 2.31 aA | 335.80 ± 4.65 aB | 336.23 ± 8.52 aB | 321.33 ± 2.44 aA | |
2 | 392.30 ± 5.27 bB | 386.40 ± 2.72 bB | 386.30 ± 2.21 cB | 367.80 ± 2.43 bA | 377.87 ± 3.60 bA | |
TBARS (mg MDA/kg of product) | 0 | 0.45 ± 0.06 aA | 0.48 ± 0.03 aA | 1.53 ± 0.06 aB | 0.45 ± 0.07 aA | 0.41 ± 0.01 aA |
1 | 0.35 ± 0.04 aA | 0.45 ± 0.06 aA | 1.26 ± 0.18 aB | 0.58 ± 0.04 aA | 0.39 ± 0.03 aA | |
2 | 0.49 ± 0.01 aA | 0.55 ± 0.06 aA | 2.46 ± 0.21 bB | 0.39 ± 0.01 aA | 0.36 ± 0.04 aA |
Parameter | Time (Month) | Treatment | ||||
---|---|---|---|---|---|---|
C | P | SCH1 | BAL6 | KL14 | ||
L* | 0 | 49.15 ± 2.86 bB | 45.70 ± 2.87 bA | 52.33 ± 4.62 aB | 49.95 ± 5.69 aB | 52.20 ± 4.19 aB |
1 | 49.08 ± 2.66 bB | 42.82 ± 2.47 aA | 52.19 ± 3.39 aB | 51.34 ± 2.85 aB | 50.18 ± 4.13 aB | |
2 | 46.08 ± 2.68 aA | 46.64 ± 2.34 bA | 54.92 ± 3.71 aB | 55.59 ± 2.91 bB | 53.87 ± 3.75 bB | |
a* | 0 | 7.16 ± 2.38 aB | 9.37 ± 0.78 cC | 5.25 ± 2.14 bB | 4.98 ± 2.72 aA | 9.10 ± 2.63 aB |
1 | 8.69 ± 1.19 bD | 5.80 ± 2.23 aC | 3.43 ± 2.67 aA | 6.85 ± 1.14 bB | 8.74 ± 1.90 aD | |
2 | 9.29 ± 1.52 bC | 7.23 ± 1.99 bB | 3.58 ± 2.28 aA | 6.80 ± 1.74 bB | 8.31 ± 1.52 aB | |
b* | 0 | 6.88 ± 2.65 aA | 7.24 ± 0.86 bA | 6.95 ± 1.45 aA | 6.76 ± 1.64 aA | 5.84 ± 1.37 aA |
1 | 5.81 ± 1.19 aA | 5.79 ± 0.84 aA | 8.03 ± 2.44 bB | 6.55 ± 1.06 aA | 5.53 ± 1.00 aA | |
2 | 7.27 ± 1.12 bA | 8.02 ± 0.97 cB | 9.18 ± 1.53 bB | 6.93 ± 0.90 aA | 6.80 ± 0.84 bA |
Parameter | Time (Month) | Treatment | ||||
---|---|---|---|---|---|---|
C | P | SCH1 | BAL6 | KL14 | ||
TVC (log CFU/g) | 0 | 9.55 ± 0.26 aB | 9.36 ± 0.33 aB | 9.13 ± 0.08 aA | 9.86 ± 0.38 aB | 9.79 ± 0.06 aB |
1 | 10.48 ± 0.04 bA | 10.56 ± 0.08 bA | 10.47 ± 0.49 bA | 10.29 ± 0.30 bA | 10.27 ± 0.51 bA | |
2 | 10.65 ± 0.22 bA | 10.73 ± 0.02 bA | 10.63 ± 0.28 bA | 10.63 ± 0.02 cA | 10.78 ± 0.01 cA | |
LAB (log CFU/g) | 0 | 6.52 ± 0.25 bA | 7.74 ± 0.37 cC | 7.09 ± 0.12 cB | 8.50 ± 0.71 bD | 7.92 ± 0.11 bC |
1 | 6.15 ± 0.21 aA | 6.22 ± 0.25 aA | 6.21 ± 0.13 aA | 9.29 ± 0.01 cB | 8.26 ± 0.06 cB | |
2 | 6.22 ± 0.11 aA | 6.71 ± 0.35 bA | 6.42 ± 0.11 bA | 7.31 ± 0.01 aB | 7.70 ± 0.01 aB | |
ENT (log CFU/g) | 0 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
1 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | |
2 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | |
EC (log CFU/g) | 0 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
1 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | |
2 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | |
ST (log CFU/g) | 0 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 |
1 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | |
2 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | |
YM (log CFU/g) | 0 | 5.19 ± 0.04 aB | 3.10 ± 0.12 aA | 4.15 ± 0.15 aB | 2.38 ± 0.04 aA | 4.60 ± 0.20 aB |
1 | 5.23 ± 0.06 aB | 3.45 ± 0.08 aA | 4.38 ± 0.04 aB | 2.78 ± 0.10 aA | 4.64 ± 0.06 aB | |
2 | 5.66 ± 0.14 aB | 3.00 ± 0.00 aA | 4.38 ± 0.18 aB | 2.80 ± 0.02 aA | 4.80 ± 0.10 aB | |
SAL | 0 | nd | nd | nd | nd | nd |
1 | nd | nd | nd | nd | nd | |
2 | nd | nd | nd | nd | nd | |
CAMP | 0 | nd | nd | nd | nd | nd |
1 | nd | nd | nd | nd | nd | |
2 | nd | nd | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łepecka, A.; Szymański, P.; Okoń, A. Indigenous Lactic Acid Bacteria as Antioxidant Agents in the Production of Organic Raw Fermented Sausages. Antioxidants 2024, 13, 1305. https://doi.org/10.3390/antiox13111305
Łepecka A, Szymański P, Okoń A. Indigenous Lactic Acid Bacteria as Antioxidant Agents in the Production of Organic Raw Fermented Sausages. Antioxidants. 2024; 13(11):1305. https://doi.org/10.3390/antiox13111305
Chicago/Turabian StyleŁepecka, Anna, Piotr Szymański, and Anna Okoń. 2024. "Indigenous Lactic Acid Bacteria as Antioxidant Agents in the Production of Organic Raw Fermented Sausages" Antioxidants 13, no. 11: 1305. https://doi.org/10.3390/antiox13111305
APA StyleŁepecka, A., Szymański, P., & Okoń, A. (2024). Indigenous Lactic Acid Bacteria as Antioxidant Agents in the Production of Organic Raw Fermented Sausages. Antioxidants, 13(11), 1305. https://doi.org/10.3390/antiox13111305