Roasted Astragalus membranaceus Inhibits Aβ25–35-Induced Oxidative Stress in Neuronal Cells by Activating the Nrf2/HO-1 and AKT/CREB/BDNF Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Extraction of Roasting Samples
2.2. Analysis of Roasted AM Water Extracts by HPLC-UVD
2.3. Cell Culture
2.4. Cell Viability Assay
2.5. Intracellular ROS Generation
2.6. Protein Extraction
2.7. Western Blotting
2.8. Experimental Data Analysis
3. Results
3.1. HPLC Analysis of RAMs
3.2. Effect of Roasting on the Isoflavone Composition of AM
3.3. Viability of Aβ-Treated HT22 Cells
3.4. Effect of RAM on ROS Generation in Aβ-Treated HT22 Cells
3.5. Activation of the Nrf2 Pathway and Antioxidant Defenses
3.6. Regulation of Apoptosis
3.7. Neuroprotective Activity
3.8. Regulation of MAPK Signaling
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Aβ | amyloid-beta |
AD | Alzheimer’s disease |
BBB | blood-brain barrier |
BDNF | brain-derived neurotrophic factor |
CNS | central nervous system |
CREB | cAMP-responsive element binding protein |
CAT | catalase |
GPx | glutathione peroxidase |
HO-1 | heme oxygenase-1 |
HT22 | hippocampal neuronal cells |
MAPK | mitogen-activated protein kinase |
Nrf2 | nuclear factor erythroid 2 related factor 2 |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
References
- Durairajan, S.S.; Selvarasu, K.; Bera, M.R.; Rajaram, K.; Iyaswamy, A.; Li, M. Alzheimer’s disease and other tauopathies: Exploring efficacy of medicinal plant-derived compounds in alleviating tau-mediated neurodegeneration. Curr. Mol. Pharmacol. 2022, 15, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Penke, B.; Bogár, F.; Fülöp, L. β-Amyloid and the pathomechanisms of Alzheimer’s disease: A comprehensive view. Molecules 2017, 22, 1692. [Google Scholar] [CrossRef] [PubMed]
- Youdim, M.B.; Buccafusco, J.J. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci. 2005, 26, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Prieto, G.A.; Kramár, E.A.; Smith, E.D.; Cribbs, D.H.; Lynch, G.; Cotman, C.W. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J. Neurosci. 2012, 32, 17714–17724. [Google Scholar] [CrossRef] [PubMed]
- Kupershmidt, L.; Youdim, M.B. The neuroprotective activities of the novel multi-target iron-chelators in models of Alzheimer’s disease, amyotrophic lateral sclerosis and aging. Cells 2023, 12, 763. [Google Scholar] [CrossRef]
- Zhao, H.; Alam, A.; San, C.-Y.; Eguchi, S.; Chen, Q.; Lian, Q.; Ma, D. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res. 2017, 1665, 1–21. [Google Scholar] [CrossRef]
- Obata, K.; Yamanaka, H.; Dai, Y.; Tachibana, T.; Fukuoka, T.; Tokunaga, A.; Yoshikawa, H.; Noguchi, K. Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophic factor expression after peripheral inflammation and nerve injury. J. Neurosci. 2003, 23, 4117–4126. [Google Scholar] [CrossRef]
- Daulatzai, M.A. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer’s disease in focal cerebral ischemic rats. Am. J. Neurodegener. Dis. 2016, 5, 102–130. [Google Scholar]
- Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep. 2016, 68, 127–138. [Google Scholar] [CrossRef]
- Chu, C.T.; Levinthal, D.J.; Kulich, S.M.; Chalovich, E.M.; DeFranco, D.B. Oxidative neuronal injury: The dark side of ERK1/2. Eur. J. Biochem. 2004, 271, 2060–2066. [Google Scholar] [CrossRef]
- Puri, V.; Kanojia, N.; Sharma, A.; Huanbutta, K.; Dheer, D.; Sangnim, T. Natural product-based pharmacological studies for neurological disorders. Front. Pharmacol. 2022, 13, 1011740. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. Natural products in Alzheimer’s disease therapy: Would old therapeutic approaches fix the broken promise of modern medicines? Molecules 2019, 24, 1519. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Jiang, N.; Zheng, J.; Hu, H.; Yang, H.; Lin, A.; Hu, B.; Liu, H. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus. Int. J. Biol. Macromol. 2023, 241, 124386. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Heo, S.-I.; Jung, M.-J.; Wang, M.-H. Antioxidant and antidiabetic effects of various sections of Astragalus membranaceus. Korean J. Pharmacogn. 2009, 40, 1–5. [Google Scholar]
- Berezutsky, M.A.; Matvienko, U.A.; Karetnikova, A.Y.; Durnova, N.A. Anti-Cancer Activity Of Astragalus Membranaceus—A Review. J. Pharm. Res. 2021, 13, 206–215. [Google Scholar] [CrossRef]
- Li, C.-x.; Liu, Y.; Zhang, Y.-z.; Li, J.-c.; Lai, J. Astragalus polysaccharide: A review of its immunomodulatory effect. Arch. Pharmacal. Res. 2022, 45, 367–389. [Google Scholar] [CrossRef]
- Berezutsky, M.; Durnova, N.; Vlasova, I. Experimental and clinical studies of mechanisms of the antiaging effects of chemical compounds in Astragalus membranaceus. Adv. Gerontol. 2020, 10, 142–149. [Google Scholar] [CrossRef]
- Bae, H.-K.; You, S.-H.; Bae, H.-K.; You, S.-H. Biological activity study on anti-oxidant, whitening, and anti-inflammatory effects of Astragalus membranaceus ethanol extracts and bioconversion extracts. Asian J. Beauty Cosmetol. 2017, 15, 489–499. [Google Scholar] [CrossRef]
- Dong, Q.; Li, Z.; Zhang, Q.; Hu, Y.; Liang, H.; Xiong, L. Astragalus mongholicus Bunge (Fabaceae): Bioactive compounds and potential therapeutic mechanisms against Alzheimer’s disease. Front. Pharmacol. 2022, 13, 924429. [Google Scholar] [CrossRef]
- Tian, J.; Wang, X.-Q.; Tian, Z. Focusing on formononetin: Recent perspectives for its neuroprotective potentials. Front. Pharmacol. 2022, 13, 905898. [Google Scholar] [CrossRef]
- Na, E.J.; Jang, H.H.; Kim, G.R.; Na, E.J.; Jang, H.H.; Kim, G.R. Review of recent studies and research analysis for anti-oxidant and anti-aging materials. Asian J. Beauty Cosmetol. 2016, 14, 481–491. [Google Scholar] [CrossRef]
- Sruthi, N.; Premjit, Y.; Pandiselvam, R.; Kothakota, A.; Ramesh, S. An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures. Food Chem. 2021, 348, 129088. [Google Scholar] [CrossRef] [PubMed]
- Ciou, J.-Y.; Chen, H.-C.; Chen, C.-W.; Yang, K.-M. Relationship between antioxidant components and oxidative stability of peanut oils as affected by roasting temperatures. Agriculture 2021, 11, 300. [Google Scholar] [CrossRef]
- Li, Y.; Hong, Y.; Han, Y.; Wang, Y.; Xia, L. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. J. Chromatogr. B 2016, 1011, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A.M. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 2015, 117, 554–568. [Google Scholar] [CrossRef]
- Ji, Y.-J.; Kim, H.D.; Lee, E.S.; Jang, G.Y.; Seong, H.-A. Heat treatment enhances the neuroprotective effects of crude ginseng saponin by increasing minor ginsenosides. Int. J. Mol. Sci. 2023, 24, 7223. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, L.; Wang, L. Astragaloside IV: A promising natural neuroprotective agent for neurological disorders. Biomed. Pharmacother. 2023, 159, 114229. [Google Scholar] [CrossRef]
- Begni, V.; Riva, M.A.; Cattaneo, A. Cellular and molecular mechanisms of the brain-derived neurotrophic factor in physiological and pathological conditions. Clin. Sci. 2017, 131, 123–138. [Google Scholar] [CrossRef]
- Thangaraju, S.; Shankar, M.; Buvaneshwaran, M.; Natarajan, V. Effect of processing on the functional potential of bioactive components. In Bioactive Components: A Sustainable System for Good Health and Well-Being; Springer: Berlin/Heidelberg, Germany, 2022; pp. 183–207. [Google Scholar]
- Kong, F.; Singh, R. Chemical deterioration and physical instability of foods and beverages. In The Stability and Shelf Life of Food; Elsevier: Amsterdam, The Netherlands, 2016; pp. 43–76. [Google Scholar]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Pant, G.; Malla, S.; Chauhan, U.K. Comparative analysis of heat treatments on morphology of selected Cassia species. Asian J. Pharm. Clin. Res. 2014, 7, 62–67. [Google Scholar]
- Sridhar, A.; Vaishampayan, V.; Kumar, P.S.; Ponnuchamy, M.; Kapoor, A. Extraction techniques in food industry: Insights into process parameters and their optimization. Food Chem. Toxicol. 2022, 166, 113207. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y. Divergent Roles for the ERK1/2 Signaling Pathway in Neuronal Oxidative Stress. Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 2006. [Google Scholar]
- Abdelrahman, K.S.; Hassan, H.A.; Abdel-Aziz, S.A.; Marzouk, A.A.; Narumi, A.; Konno, H.; Abdel-Aziz, M. JNK signaling as a target for anticancer therapy. Pharmacol. Rep. 2021, 73, 405–434. [Google Scholar] [CrossRef] [PubMed]
- Leal, G.; Bramham, C.; Duarte, C. BDNF and hippocampal synaptic plasticity. Vitam. Horm. 2017, 104, 153–195. [Google Scholar] [PubMed]
- Nam, Y.; Ji, Y.-J.; Shin, S.J.; Park, H.H.; Yeon, S.-H.; Kim, S.-Y.; Son, R.H.; Jang, G.Y.; Kim, H.D.; Moon, M. Platycodon grandiflorum root extract inhibits Aβ deposition by breaking the vicious circle linking oxidative stress and neuroinflammation in Alzheimer’s disease. Biomed. Pharmacother. 2024, 177, 117090. [Google Scholar] [CrossRef]
Samples | Calycosin 7-Glucoside | Ononin | Calycosin | Formononetin |
---|---|---|---|---|
NR-AM (Con) | 708.04 ± 23.47 | 320.97 ± 13.04 | 229.51 ± 7.77 | 94.00 ± 11.99 |
1R-AM (20 min) | 709.88 ± 11.85 | 497.55 ± 10.07 | 247.95 ± 4.81 | 104.18 ± 2.74 |
2R-AM (30 min) | 570.43 ± 5.46 | 828.87 ± 12.61 | 307.69 ± 11.09 | 123.56 ± 8.75 |
3R-AM (40 min) | 539.19 ± 27.01 | 716.30 ± 24.47 | 308.70 ± 2.09 | 113.86 ± 4.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.-J.; Kang, M.H.; Han, S.H.; Kim, G.-S.; Kim, H.D.; Jang, G.Y. Roasted Astragalus membranaceus Inhibits Aβ25–35-Induced Oxidative Stress in Neuronal Cells by Activating the Nrf2/HO-1 and AKT/CREB/BDNF Pathways. Antioxidants 2024, 13, 1311. https://doi.org/10.3390/antiox13111311
Ji Y-J, Kang MH, Han SH, Kim G-S, Kim HD, Jang GY. Roasted Astragalus membranaceus Inhibits Aβ25–35-Induced Oxidative Stress in Neuronal Cells by Activating the Nrf2/HO-1 and AKT/CREB/BDNF Pathways. Antioxidants. 2024; 13(11):1311. https://doi.org/10.3390/antiox13111311
Chicago/Turabian StyleJi, Yun-Jeong, Min Hye Kang, Sin Hee Han, Geum-Soog Kim, Hyung Don Kim, and Gwi Yeong Jang. 2024. "Roasted Astragalus membranaceus Inhibits Aβ25–35-Induced Oxidative Stress in Neuronal Cells by Activating the Nrf2/HO-1 and AKT/CREB/BDNF Pathways" Antioxidants 13, no. 11: 1311. https://doi.org/10.3390/antiox13111311
APA StyleJi, Y. -J., Kang, M. H., Han, S. H., Kim, G. -S., Kim, H. D., & Jang, G. Y. (2024). Roasted Astragalus membranaceus Inhibits Aβ25–35-Induced Oxidative Stress in Neuronal Cells by Activating the Nrf2/HO-1 and AKT/CREB/BDNF Pathways. Antioxidants, 13(11), 1311. https://doi.org/10.3390/antiox13111311