Antioxidant Valorization of PLE Extracts from Macroalgae (Cladophora glomerata): In Vitro Assessment of Nanoemulsions Against Oxidative Stress
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Heat Treatment: Oven-Drying and Freeze-Drying of Cladophora glomerata
2.3. Cladophora glomerata PLE Extraction
2.4. Determination of Total Phenolic Content
2.5. Determination of Total Flavonoids Content
2.6. Carotenoids and Chlorophyll a and b Determination
2.7. Tocopherol and Tocotrienol Determination
2.8. Antioxidant Activity of Algae Extracts
2.8.1. DPPH Radical Scavenging Assay
2.8.2. ABTS•+ Radical Scavenging Assay
2.8.3. FRAP Assay
2.9. Formulation of Nanoemulsion Systems from Macroalgae Extracts
2.10. In Vitro Studies in Macrophage Cells: Intracellular ROS Levels Measurements
2.11. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenol Content
3.2. Total Flavonoid Content
3.3. Carotenoids and Chlorophyll a and b Content
3.4. Tocochromanols Determination
3.5. Antioxidant Activity of Cladophora Glomerata Extracts. Effects of Dried Treatments and PLE Conditions
3.6. Formulation of Nanoemulsion Systems from Cladophora glomerata
3.7. In Vitro Studies in Macrophage Cell Line J774. Intracellular ROS Levels Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pradhan, B.; Nayak, R.; Patra, S.; Jit, B.P.; Ragusa, A.; Jena, M. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2020, 26, 37. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.; Qureshi, R.; Bibi, M.; Khan, A.M. Pharmaceutical aptitude of Cladophora: A comprehensive review. Algal Res. 2019, 39, 101476. [Google Scholar] [CrossRef]
- Safafar, H.; van Wagenen, J.; Moller, P.; Jacobsen, C. Carotenoids, Phenolic Compounds and Tocopherols Contribute to the Antioxidative Properties of Some Microalgae Species Grown on Industrial Wastewater. Mar. Drugs 2015, 13, 7339–7356. [Google Scholar] [CrossRef] [PubMed]
- Michalak, I.; Messyasz, B. Concise review of Cladophora spp.: Macroalgae of commercial interest. J. Appl. Phycol. 2021, 33, 133–166. [Google Scholar] [CrossRef]
- Chakraborty, K.; Paulraj, R. Sesquiterpenoids with free-radical-scavenging properties from marine macroalga Ulva fasciata Delile. Food Chem. 2010, 122, 31–41. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Bocanegra, A.; Bastida, S.; Benedí, J.; Ródenas, S.; Sánchez-Muniz, F.J. Characteristics and nutritional and cardiovascular-health properties of seaweeds. J. Med. Food 2009, 12, 236–258. [Google Scholar] [CrossRef]
- Ku, C.S.; Pham, T.X.; Park, Y.; Kim, B.; Shin, M.S.; Kang, I.; Lee, J. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes. Biochim. Et Biophys. Acta 2013, 1830, 2981–2988. [Google Scholar] [CrossRef]
- Nachammai, K.T.; Amaradeepa, S.; Raageshwari, S.; Swathilakshmi, A.V.; Poonkothai, M.; Langeswaran, K. Unraveling the Interaction Mechanism of the Compounds from Cladophora sp. to Recognize Prospective Larvicidal and Bactericidal Activities: In vitro and In Silico Approaches. Mol. Biotechnol. 2023, 1–21. [Google Scholar] [CrossRef]
- Bourebaba, L.; Michalak, I.; Röcken, M.; Marycz, K. Cladophora glomerata methanolic extract decreases oxidative stress and improves viability and mitochondrial potential in equine adipose derived mesenchymal stem cells (ASCs). Biomed. Pharmacother. Biomed. Pharmacother. 2019, 111, 6–18. [Google Scholar] [CrossRef]
- Lezcano, V.; Fernandez, C.; Parodi, E.R.; Morelli, S. Antitumor and antioxidant activity of the freshwater macroalga Cladophora surera. J. Appl. Phycol. 2018, 30, 2913–2921. [Google Scholar] [CrossRef]
- Al-Saif, S.; Abdel-Raouf, N.; El-Wazanani, H.A.; Aref, I.A. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi J. Biol. Sci. 2014, 21, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Srimaroeng, C.; Ontawong, A.; Saowakon, N.; Vivithanaporn, P.; Pongchaidecha, A.; Amornlerdpison, D.; Soodvilai, S.; Chatsudthipong, V. Antidiabetic and Renoprotective Effects of Cladophora glomerata Kutzing Extract in Experimental Type 2 Diabetic Rats: A Potential Nutraceutical Product for Diabetic Nephropathy. J. Diabetes Res. 2015, 2015, 320167. [Google Scholar] [CrossRef] [PubMed]
- Ling, A.L.M.; Yasir, S.; Matanjun, P.; Abu Bakar, M.F. Effect of different drying techniques on the phytochemical content and antioxidant activity of Kappaphycus alvarezii. J. Appl. Phycol. 2015, 27, 1717–1723. [Google Scholar] [CrossRef]
- Cruces, E.; Rojas-Lillo, Y.; Ramirez-Kushel, E.; Atala, E.; López-Alarcón, C.; Lissi, E.; Gómez, I. Comparison of different techniques for the preservation and extraction of phlorotannins in the kelp Lessonia spicata (Phaeophyceae): Assays of DPPH, ORAC-PGR, and ORAC-FL as testing methods. J. Appl. Phycol. 2016, 28, 573–580. [Google Scholar] [CrossRef]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef]
- Fabrowska, J.; Ibañez, E.; Leska, B.; Herrero, M. Supercritical fluid extraction as a tool to valorize underexploited freshwater green algae. Algal Res.-Biomass Biofuels Bioprod. 2016, 19, 237–245. [Google Scholar] [CrossRef]
- Cikos, A.M.; Jokic, S.; Subaric, D.; Jerkovic, I. Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae. Mar. Drugs 2018, 16, 348. [Google Scholar] [CrossRef]
- Mittal, R.; Tavanandi, H.A.; Mantri, V.A.; Raghavarao, K. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrason. Sonochemistry 2017, 38, 92–103. [Google Scholar] [CrossRef]
- Wang, L.J.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Keramane, B.; Sánchez-Camargo, A.D.; Montero, L.; Laincer, F.; Bedjou, F.; Ibañez, E. Pressurized liquid extraction of bioactive extracts with antioxidant and antibacterial activity from green, red and brown Algerian algae. Algal Res.-Biomass Biofuels Bioprod. 2023, 76, 103293. [Google Scholar] [CrossRef]
- Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- AlNadhari, S.; Al-Enazi, N.M.; Alshehrei, F.; Ameen, F. A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environ. Res. 2021, 194, 110672. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Nawaz, K.; Khan, A.K.; Hano, C.; Abbasi, B.H.; Anjum, S. An Overview of the Algae-Mediated Biosynthesis of Nanoparticles and Their Biomedical Applications. Biomolecules 2020, 10, 1498. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Lozano, M.V.; Rodríguez-Robledo, V.; González-Fuentes, J.; Marcos, P.; Villaseca, N.; Arroyo-Jiménez, M.M.; Santander-Ortega, M.J. Pressurized Extraction as an Opportunity to Recover Antioxidants from Orange Peels: Heat treatment and Nanoemulsion Design for Modulating Oxidative Stress. Molecules 2021, 26, 5928. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Oikeh, E.I.; Ayevbuomwan, M.; Irabor, F.; Oikeh, A.O.; Oviasogie, F.E.; Omoregie, E.S. Evaluation of the Phenolic Content, Antioxidant and Antimicrobial Activities of Oil and Non-Oil Extracts of Citrus sinensis (L.) Osbeck Seeds. Prev. Nutr. Food Sci. 2020, 25, 280–285. [Google Scholar] [CrossRef]
- Castro-Vazquez, L.; Alañón, M.E.; Rodríguez-Robledo, V.; Pérez-Coello, M.S.; Hermosín-Gutierrez, I.; Díaz-Maroto, M.C.; Jordán, J.; Galindo, M.F.; Arroyo-Jiménez Mdel, M. Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (Citrus paradisi Macf.). Oxid. Med. Cell. Longev. 2016, 2016, 8915729. [Google Scholar] [CrossRef]
- Dere, Ş.; Gúnes, T.; Sivaci, R. Spectrophotometric determination of chlorophyll-A, B and totalcarotenoid contents of some algae species using different solvents. Turk. J. Bot. 1998, 22, 13–18. [Google Scholar]
- Petchsomrit, A.; Chanthathamrongsiri, N.; Jiangseubchatveera, N.; Manmuan, S.; Leelakanok, N.; Plianwong, S.; Siranonthana, N.; Sirirak, T.J.A.R. Extraction, antioxidant activity, and hydrogel formulation of marine Cladophora glomerata. Algal Res. 2023, 71, 103011. [Google Scholar] [CrossRef]
- Haoujar, I.; Cacciola, F.; Abrini, J.; Mangraviti, D.; Giuffrida, D.; Oulad El Majdoub, Y.; Kounnoun, A.; Miceli, N.; Fernanda Taviano, M.; Mondello, L. The contribution of carotenoids, phenolic compounds, and flavonoids to the antioxidative properties of marine microalgae isolated from Mediterranean Morocco. Molecules 2019, 24, 4037. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vázquez, L.; Rodríguez-Robledo, V.; Plaza-Oliver, M.; Santander-Ortega, M.J.; Victoria Lozano, M.; González, J.; Villaseca, N.; Marcos, P.; Mar Arroyo-Jiménez, M. Pressurized liquid extraction to obtain chia seeds oils extracts enriched in tocochromanols. Nanoemulsions approaches to preserve the antioxidant potential. J. Food Sci. Technol. 2021, 58, 4034–4044. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Oliver, M.; Baranda, J.F.; Rodríguez Robledo, V.; Castro-Vázquez, L.; Gonzalez-Fuentes, J.; Marcos, P.; Lozano, M.V.; Santander-Ortega, M.J.; Arroyo-Jimenez, M.M. Design of the interface of edible nanoemulsions to modulate the bioaccessibility of neuroprotective antioxidants. Int. J. Pharm. 2015, 490, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Oliver, M.; Beloqui, A.; Santander-Ortega, M.J.; Castro-Vázquez, L.; Rodríguez-Robledo, V.; Arroyo-Jiménez, M.M.; Préat, V.; Lozano, M.V. Ascorbyl-dipalmitate-stabilised nanoemulsions as a potential localised treatment of inflammatory bowel diseases. Int. J. Pharm. 2020, 586, 119533. [Google Scholar] [CrossRef]
- Sánchez-Rubio, F.; Soria-Meneses, P.J.; Jurado-Campos, A.; Bartolomé-García, J.; Gómez-Rubio, V.; Soler, A.J.; Arroyo-Jimenez, M.M.; Santander-Ortega, M.J.; Plaza-Oliver, M.; Lozano, M.V.; et al. Nanotechnology in reproduction: Vitamin E nanoemulsions for reducing oxidative stress in sperm cells. Free Radic. Biol. Med. 2020, 160, 47–56. [Google Scholar] [CrossRef]
- Prazukin, A.V.; Firsov, Y.K.; Gureeva, E.V.; Kapranov, S.V.; Zheleznova, S.N.; Maoka, T.; Nekhoroshev, M.V.J.A.R. Biomass of green filamentous alga Cladophora (Chlorophyta) from a hypersaline lake in Crimea as a prospective source of lutein and other pigments. Algal Res. 2021, 54, 102195. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of temperatures on polyphenols during extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Palma, M.; Piñeiro, Z.; Barroso, C.G. Stability of phenolic compounds during extraction with superheated solvents. J. Chromatogr. A 2001, 921, 169–174. [Google Scholar] [CrossRef]
- Zubia, M.; Robledo, D.; Freile-Pelegrin, Y. Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J. Appl. Phycol. 2007, 19, 449–458. [Google Scholar] [CrossRef]
- Tolpeznikaite, E.; Bartkevics, V.; Ruzauskas, M.; Pilkaityte, R.; Viskelis, P.; Urbonaviciene, D.; Zavistanaviciute, P.; Zokaityte, E.; Ruibys, R.; Bartkiene, E. Characterization of Macro- and Microalgae Extracts Bioactive Compounds and Micro- and Macroelements Transition from Algae to Extract. Foods 2021, 10, 2226. [Google Scholar] [CrossRef]
- Pikosz, M.; Czerwik-Marcinkowska, J.; Messyasz, B. The effect of Cladophora glomerata exudates on the amino acid composition of Cladophora fracta and Rhizoclonium sp. Open Chem. 2019, 17, 313–324. [Google Scholar] [CrossRef]
- Nutautaite, M.; Raceviciute-Stupeliene, A.; Bliznikas, S.; Jonuskiene, I.; Karosiene, J.; Koreiviene, J.; Viliene, V. Evaluation of Phenolic Compounds and Pigments in Freshwater Cladophora glomerata Biomass from Various Lithuanian Rivers as a Potential Future Raw Material for Biotechnology. Water 2022, 14, 1138. [Google Scholar] [CrossRef]
- Korzeniowska, K.; Łęska, B.; Wieczorek, P.P. Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Res. 2020, 48, 101912. [Google Scholar] [CrossRef]
- Messyasz, B.; Michalak, I.; Leska, B.; Schroeder, G.; Gorka, B.; Korzeniowska, K.; Lipok, J.; Wieczorek, P.; Roj, E.; Wilk, R.; et al. Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts. J. Appl. Phycol. 2018, 30, 591–603. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Liu, H.; Gu, L.; Kristinsson, H.G.; Raghavan, S.; Olafsdóttir, G. Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. J. Agric. Food Chem. 2012, 60, 5874–5883. [Google Scholar] [CrossRef]
- Mendiola, J.A.; Herrero, M.; Cifuentes, A.; Ibañez, E. Use of compressed fluids for sample preparation: Food applications. J. Chromatogr. A 2007, 1152, 234–246. [Google Scholar] [CrossRef]
- Amornlerdpison, D.; Mengumphan, K.; Thumvijit, S.; Peerapornpisal, Y. Antioxidant and anti-inflammatory activities of freshwater macroalga, Cladophora glomerata Kützing. Thai J. Agric. Sci. 2011, 44, 283–291. [Google Scholar]
- Laungsuwon, R.; Chulalaksananukul, W. Antioxidant and anticancer activities of freshwater green algae, Cladophora glomerata and Microspora floccosa, from Nan River in northern Thailand. Maejo Int. J. Sci. 2013, 7, 181. [Google Scholar] [CrossRef]
- Yarnpakdee, S.; Benjakul, S.; Senphan, T. Antioxidant activity of the extracts from freshwater macroalgae Cladophora glomerata grown in Northern Thailand and its preventive effect against lipid oxidation of refrigerated eastern little tuna slice. Turk. J. Fish. Aquat. Sci. 2018, 19, 209–219. [Google Scholar]
- Uribe, E.; Vega-Galvez, A.; Garcia, V.; Pasten, A.; Lopez, J.; Goni, G. Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp. J. Appl. Phycol. 2019, 31, 1967–1979. [Google Scholar] [CrossRef]
- Piotrowicz, Z.; Tabisz, L.; Leska, B.; Messyasz, B.; Pankiewicz, R. Comparison of the Antioxidant Properties of Green Macroalgae from Diverse European Water Habitats by Use of Several Semi-Quantitative Assays. Molecules 2022, 27, 3812. [Google Scholar] [CrossRef] [PubMed]
- Gunathilaka, T.L.; Samarakoon, K.W.; Ranasinghe, P.; Peiris, L.D.C. In-Vitro Antioxidant, Hypoglycemic Activity, and Identification of Bioactive Compounds in Phenol-Rich Extract from the Marine Red Algae Gracilaria edulis (Gmelin) Silva. Molecules 2019, 24, 3708. [Google Scholar] [CrossRef] [PubMed]
- Cha, K.H.; Lee, H.J.; Koo, S.Y.; Song, D.-G.; Lee, D.-U.; Pan, C.-H. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Khuantrairong, T.; Traichaiyaporn, S. The nutritional value of edible freshwater alga Cladophora sp. (Chlorophyta) grown under different phosphorus concentrations. Int. J. Agric. Biol. 2011, 13, 297–300. [Google Scholar]
- Kim, S.M.; Jung, Y.J.; Kwon, O.N.; Cha, K.H.; Um, B.H.; Chung, D.; Pan, C.H. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl. Biochem. Biotechnol. 2012, 166, 1843–1855. [Google Scholar] [CrossRef]
- Cha, K.H.; Kang, S.W.; Kim, C.Y.; Um, B.H.; Na, Y.R.; Pan, C.H. Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J. Agric. Food Chem. 2010, 58, 4756–4761. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Evaluation of the extraction and stability of chlorophyll-rich extracts by supercritical fluid chromatography. Anal. Bioanal. Chem. 2020, 412, 7263–7273. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Kautsky, L.; Argyrou, M. Dominant chlorophylls and carotenoids in macroalgae of the Baltic Sea (Baltic proper): Their use as potential biomarkers. Sarsia 1997, 82, 55–62. [Google Scholar] [CrossRef]
- EFSA, A.J.E.J. Panel (EFSA Panel on Food Additives and Nutrients Sources Added to Food) Scientific Opinion on the re-evaluation of chlorophylls (E 140 (i)) as food additives. EFSA 2015, 13, 1–51. [Google Scholar]
- Marycz, K.; Michalak, I.; Kocherova, I.; Marędziak, M.; Weiss, C. The Cladophora glomerata Enriched by Biosorption Process in Cr(III) Improves Viability, and Reduces Oxidative Stress and Apoptosis in Equine Metabolic Syndrome Derived Adipose Mesenchymal Stromal Stem Cells (ASCs) and Their Extracellular Vesicles (MV’s). Mar. Drugs 2017, 15, 385. [Google Scholar] [CrossRef]
- Panayotova, V.; Stancheva, M.; Dobreva, D. Alpha-tocopherol and ergocalciferol contents of some macroalgae from Bulgarian Black Sea coast. Ovidius Univ. Ann. Chem. 2013, 24, 13–16. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibañez, E. Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef]
- Rossi, M.; Alamprese, C.; Ratti, S.J.F.C. Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem. 2007, 102, 812–817. [Google Scholar] [CrossRef]
- Mba, O.I.; Dumont, M.-J.; Ngadi, M. Thermostability and degradation kinetics of tocochromanols and carotenoids in palm oil, canola oil and their blends during deep-fat frying. LWT-Food Sci. 2017, 82, 131–138. [Google Scholar] [CrossRef]
- Goswami, R.K.; Mehariya, S.; Verma, P.J. Microalgae-derived tocopherols: Biotechnological advances in production and its therapeutic potentials. Sustain. Chem. Pharm. 2024, 42, 101791. [Google Scholar]
- Chen, M.-H.; Bergman, C. A rapid procedure for analysing rice bran tocopherol, tocotrienol and γ-oryzanol contents. J. Food Compos. Anal. 2005, 18, 139–151. [Google Scholar] [CrossRef]
- Wang, Y.; Park, N.Y.; Jang, Y.; Ma, A.; Jiang, Q. Vitamin E γ-Tocotrienol Inhibits Cytokine-Stimulated NF-κB Activation by Induction of Anti-Inflammatory A20 via Stress Adaptive Response Due to Modulation of Sphingolipids. J. Immunol. 2015, 195, 126–133. [Google Scholar] [CrossRef]
- Kuda, T.; Tsunekawa, M.; Hishi, T.; Araki, Y. Antioxidant properties of dried kayamo-nori, a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chem. 2005, 89, 617–622. [Google Scholar] [CrossRef]
- Rastian, Z.; Mehranian, M.; Vahabzadeh, F.; Sartavi, K. Antioxidant activity of brown algae Sargassum vulgar and Sargassum angustrifolum. J. Aquat. Food Prod. Technol. 2007, 16, 17–26. [Google Scholar] [CrossRef]
- Jeong, S.M.; Kim, S.Y.; Kim, D.R.; Jo, S.C.; Nam, K.C.; Ahn, D.U.; Lee, S.C. Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J. Agric. Food Chem. 2004, 52, 3389–3393. [Google Scholar] [CrossRef]
- Wianowska, D.; Gil, M. Critical approach to PLE technique application in the analysis of secondary metabolites in plants. Trac-Trends Anal. Chem. 2019, 114, 314–325. [Google Scholar] [CrossRef]
- Wianowska, D.; Dawidowicz, A.L.; Bernacik, K.; Typek, R. Determining the true content of quercetin and its derivatives in plants employing SSDM and LC-MS analysis. Eur. Food Res. Technol. 2017, 243, 27–40. [Google Scholar] [CrossRef]
- Wianowska, D.; Dawidowicz, A.L. Effect of Water Content in Extraction Mixture on the Pressurized Liquid Extraction Efficiency-Stability of Quercetin 4′-Glucoside During Extraction from Onions. J. AOAC Int. 2016, 99, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Halliwell, B. The antioxidant paradox. Lancet 2000, 355, 1179–1180. [Google Scholar] [CrossRef]
- Poljsak, B.; Suput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef]
- Plaza-Oliver, M.; Santander-Ortega, M.J.; Castro-Vázquez, L.; Rodríguez-Robledo, V.; González-Fuentes, J.; Marcos, P.; Lozano, M.V.; Arroyo-Jiménez, M.M. The role of the intestinal-protein corona on the mucodiffusion behaviour of new nanoemulsions stabilised by ascorbyl derivatives. Colloids Surf. B Biointerfaces 2020, 186, 110740. [Google Scholar] [CrossRef]
Cladophora glomerata (Freeze-Dried) | Cladophora glomerata (Oven-Dried 60 °C) | Cladophora glomerata (Oven-Dried 80 °C) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
chlp a µg·g−1 | RSD | chl b µg·g−1 | RSD | TCC mg·g−1 | SD | chlp a µg·g−1 | RSD | chl b µg·g−1 | RSD | TCC mg·g−1 | RSD | chlp a µg·g−1 | RSD | chl b µg·g−1 | RSD | TCC mg·g−1 | RSD | |
Acetone 50 °C | 48.18 | (3.63) | 37.07 | (7.29) | 0.09 | (0.02) | 53.49 | (6.74) | 43.74 | (5.52) | 0.11 | (0.02) | 89.40 | (8.70) | 72.33 | (6.54) | 0.10 | (0.01) |
Acetone 100 °C | 68.72 | (2.90) | 52.86 | (6.43) | 0.66 | (0.22) | 76.28 | (2.73) | 62.38 | (2.23) | 0.85 | (0.08) | 156.75 | (7.67) | 131.92 | (7.61) | 0.42 | (0.12) |
Acetone 150 °C | 73.62 | (3.80) | 56.63 | (7.50) | 0.71 | (0.13) | 81.72 | (6.76) | 66.82 | (5.54) | 1.10 | (0.15) | 167.93 | (8.95) | 141.33 | (8.88) | 0.60 | (0.14) |
Acetone 200 °C | 55.57 | (3.25) | 42.75 | (6.84) | 0.33 | (0.12) | 61.69 | (6.59) | 50.44 | (5.41) | 0.40 | (0.12) | 126.76 | (8.17) | 106.69 | (5.14) | 0.40 | (0.13) |
Ethanol 50 °C | 110.83 a | (3.90) | 85.25 b | (7.62) | 0.13 a | (0.01) | 252.80 a | (7.25) | 212.76 a | (5.94) | 0.14 a | (0.02) | 305.27 a | (9.09) | 245.87 a | (9.02) | 0.16 a | (0.02) |
Ethanol 100 °C | 158.05 b | (4.13) | 121.58 b | (7.89) | 0.73 b | (0.33) | 360.53 b | (2.73) | 303.43 b | (2.23) | 0.80 b | (0.13) | 576.85 b | (9.41) | 485.48 b | (8.11) | 1.32 b | (0.15) |
Ethanol 150 °C | 169.33 b | (4.77) | 130.25 b | (4.76) | 0.80 b | (0.21) | 386.24 c | (6.38) | 325.06 c | (5.23) | 1.25 c | (0.14) | 617.98 c | (5.68) | 520.10 c | (6.57) | 1.45 b | (0.24) |
Ethanol 200 °C | 127.82 c | (3.68) | 98.32 b | (7.35) | 0.61 c | (0.22) | 291.55 d | (6.92) | 245.38 d | (5.68) | 0.76 b | (0.08) | 466.49d | (8.78) | 392.60 d | (5.64) | 1.05 c | (0.23) |
E:W (1:1) 50 °C | 97.92 a | (3.70) | 75.32 a | (7.38) | 0.06 a | (0.01) | 211.11 a | (3.27) | 185.66 a | (2.68) | 0.07 a | (0.01) | 234.38 a | (8.80) | 198.21 a | (8.74) | 0.15 a | (0.06) |
E:W (1:1) 100 °C | 148.66 b | (3.55) | 114.35 b | (7.20) | 0.25 b | (0.14) | 339.09 b | (6.68) | 285.38 b | (6.48) | 0.30 b | (0.17) | 542.54 b | (8.59) | 456.61 b | (8.53) | 1.17 b | (0.11) |
E:W (1:1) 150 °C | 159.89 b | (3.76) | 122.99 b | (7.45) | 0.36 c | (0.23) | 364.71 c | (5.89) | 306.95 b | (4.83) | 0.44 c | (0.13) | 583.54 b | (8.89) | 491.11 c | (8.83) | 1.34 b | (0.14) |
E:W (1:1) 200 °C | 113.95 c | (4.15) | 87.65 c | (7.91) | 0.24 b | (0.15) | 259.91 d | (6.87) | 218.75 c | (5.63) | 0.29 b | (0.12) | 315.17 c | (9.44) | 249.25 d | (9.25) | 0.55 c | (0.08) |
Water 50 °C | 22.17 | (3.35) | 17.05 | (6.96) | tr | 24.60 | (5.45) | 20.12 | (3.24) | tr | 67.41 | (8.31) | 56.74 | (4.25) | tr | |||
Water 100 °C | 31.61 | (3.85) | 24.32 | (7.56) | tr | 35.09 | (6.98) | 28.69 | (2.98) | tr | 94.14 | (9.02) | 80.91 | (8.95) | tr | |||
Water 150 °C | 33.87 | (3.63) | 26.05 | (4.76) | tr | 37.59 | (7.23) | 30.74 | (2.65) | tr | 105.00 | (5.68) | 86.68 | (5.64) | tr | |||
Water 200 °C | 31.56 | (3.90) | 23.66 | (3.57) | tr | 35.38 | (4.36) | 28.20 | (3.58) | tr | 98.75 | (4.26) | 84.43 | (4.23) | tr |
µg·g−1 D.W. | Cladophora glomerata (Freeze-Dried) | Cladophora glomerata (Oven-Dried 60 °C) | Cladophora glomerata (Oven-Dried 80 °C) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
αT | αT3 | γT | δT | αT | αT3 | γT | δT | αT | αT3 | γT | δT | |||||||||||||
Acetone 50 °C | 212.65 a * | (6.05) | 67.01 | (3.05) | 16.73 | (0.15) | 18.44 | (1.04) | 218.04 a * | (7.56) | 68.78 | (3.06) | 17.19 | (0.25) | 19.26 | (1.03) | 150.75 b * | (11.14) | 45.59 | (2.05) | 9.70 | (1.62) | 10.13 | (0.07) |
Acetone 100 °C | 337.65 a * Ϯ | (8.69) | 88.94 | (1.58) | 22.24 | (0.52) | 22.56 | (1.42) | 342.35 a * Ϯ | (6.28) | 90.24 | (2.96) | 22.49 | (0.63) | 23.91 | (0.63) | 253.60 b * | (8.59) | 61.29 | (2.36) | 11.68 | (2.08) | 12.29 | (0.11) |
Acetone 150 °C | 358.05 a * Ϯ Ϯ | (11.97) | 96.99 | (2.51) | 23.73 | (0.14) | 26.50 | (0.69) | 361.41 a * Ϯ Ϯ | (16.54) | 98.90 | (0.78) | 28.14 | (1.98) | 29.58 | (1.98) | 284.00 b * | (13.67) | 69.82 | (1.36) | 16.85 | (0.05) | 18.52 | (0.85) |
Acetone 200 °C | 203.54 a * | (5.44) | 65.87 | (1.74) | 16.81 | (0.41) | 18.84 | (0.99) | 207.93 a * | (5.20) | 67.26 | (1.65) | 17.05 | (1.01) | 19.02 | (0.08) | 143.01 b * | (9.61) | 44.18 | (1.09) | 9.40 | (0.17) | 9.82 | (0.04) |
Ethanol 50 °C | 147.24 a ** | (8.85) | 56.39 | (2.22) | 12.05 | (0.04) | 15.21 | (0.08) | 152.47 a ** | (9.80) | 57.31 | (1.60) | 12.11 | (1.19) | 15.77 | (1.12) | 99.60 b ** | (9.36) | 20.79 | (0.35) | 8.39 | (0.32) | 12.35 | (0.21) |
Ethanol 100 °C | 252.12 a ** Ϯ | (3.23) | 71.04 | (1.54) | 15.82 | (0.16) | 20.04 | (1.01) | 252.36 a ** Ϯ Ϯ | (11.90) | 73.55 | (2.16) | 14.11 | (1.26) | 20.92 | (0.71) | 184.51 b ** | (8.36) | 27.64 | (0.27) | 10.69 | (0.08) | 15.11 | (0.32) |
Ethanol 150 °C | 295.22 a ** Ϯ Ϯ | (9.13) | 80.20 | (1.11) | 19.09 | (0.23) | 26.32 | (0.99) | 301.47 a ** Ϯ Ϯ | (8.87) | 83.14 | (2.27) | 19.31 | (0.07) | 25.69 | 0.58) | 219.24 b ** | (7.05) | 34.25 | (0.20) | 14.62 | (0.17) | 13.74 | (0.29) |
Ethanol 200 °C | 112.65 a ** | (9.92) | 50.67 | (2.87) | 11.71 | (0.18) | 16.21 | (0.07) | 115.93 a ** | (4.26) | 53.07 | (1.36) | 12.07 | (1.07) | 17.77 | (0.18) | 74.90 b ** | (10.54) | 15.09 | (0.16) | 9.91 | (0.05) | 10.49 | (0.09) |
E:W (1:1) 50 °C | 60.21 a | (8.82) | 9.25 | (0.13) | tr | tr | 63.25 a | (5.13) | 10.54 | (0.07) | tr | tr | 33.76 b | (6.54) | tr | tr | tr | |||||||
E:W (1:1) 100 °C | 84.58 a | (3.33) | 14.20 | (0.21) | tr | tr | 85.21 a | (2.92) | 14.99 | (0.11) | tr | tr | 52.43 b | (8.82) | tr | tr | tr | |||||||
E:W (1:1) 150 °C | 89.36 a | (4.05) | 14.89 | (0.07) | tr | tr | 92.19 a | (2.11) | 15.36 | (0.29) | tr | tr | 55.96 b | (6.54) | tr | tr | tr | |||||||
E:W (1:1) 200 °C | 53.71 a | (2.13) | 8.19 | (0.12) | tr | tr | 55.63 a | (3.03) | 8.95 | (0.31) | tr | tr | 55.65 b | (7.72) | tr | tr | tr | |||||||
Water 50 °C | 6.00 a | (0.95) | n.d. | n.d. | n.d. | 6.36 a | (0.03) | n.d. | n.d. | n.d. | 4.10 b | (0.33) | n.d. | n.d. | n.d. | |||||||||
Water 100 °C | 12.52 a | (1.02) | n.d. | n.d. | n.d. | 13.10 a | (0.51) | n.d. | n.d. | n.d. | 9.64 b | (0.41) | n.d. | n.d. | n.d. | |||||||||
Water 150 °C | 16.87 a | (1.32) | n.d. | n.d. | n.d. | 17.28 a | (0.97) | n.d. | n.d. | n.d. | 12.36 b | (0.87) | n.d. | n.d. | n.d. | |||||||||
Water 200 °C | 8.01 a | (0.25) | n.d. | n.d. | n.d. | 8.89 a | (2.21) | n.d. | n.d. | n.d. | 6.81 b | (1.25) | n.d. | n.d. | n.d. |
mg Trolox·g−1 | Cladophora glomerata (Freeze-Dried) | Cladophora glomerata (Oven-Dried 60 °C) | Cladophora glomerata (Oven-Dried 80 °C) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ABTS | DPPH | FRAP | ABTS | DPPH | FRAP | ABTS | DPPH | FRAP | ||||||||||
Acetone 50 °C | 7.34 a | (3.63) | 5.12 a | (2.54) | 0.05 a | (0.01) | 8.47 a | (6.74) | 6.09 a | (5.52) | 0.05 a | (0.02) | 9.96 a | (8.70) | 8.78 a | (6.54) | 0.07 a | (0.01) |
Acetone 100 °C | 11.29 b | (2.90) | 8.28 b | (2.54) | 0.17 b | (0.02) | 13.69 b | (2.73) | 8.01 ab | (2.23) | 0.21 b | (0.02) | 15.85 b | (7.67) | 14.36 b | (7.61) | 0.29 b | (0.02) |
Acetone 150 °C | 12.32 b | (3.80) | 9.14 b | (2.65) | 0.21 b | (0.03) | 17.06 c | (6.76) | 9.02 b | (5.54) | 0.30 c | (0.06) | 18.57 b | (8.95) | 19.36 c | (8.88) | 0.41 c | (0.04) |
Acetone 200 °C | 9.09 | (3.25) | 6.34 ab | (4.94) | 0.11 c | (0.02) | 11.41 b | (6.59) | 7.17 ab | (5.41) | 0.18 b | (0.02) | 13.66 a | (8.17) | 13.02 b | (5.14) | 0.21 b | (0.03) |
Ethanol 50 °C | 12.35 a | (3.90) | 8.27 a | (2.44) | 0.09 a | (0.01) | 13.86 a | (7.25) | 11.36 a | (5.94) | 0.11 a | (0.02) | 25.56 a | (9.09) | 14.22 a | (9.02) | 0.18 a | (0.02) |
Ethanol 100 °C | 17.45 b | (4.13) | 12.57 b | (0.84) | 0.24 b | (0.09) | 22.24 b | (2.73) | 13.69 b | (2.23) | 0.31 b | (0.03) | 35.93 b | (9.41) | 28.95 b | (8.11) | 0.74 b | (0.11) |
Ethanol 150 °C | 22.33 c | (4.77) | 16.35 c | (2.16) | 0.35 c | (0.07) | 33.38 c | (6.38) | 17.23 c | (5.23) | 0.57 b | (0.03) | 45.56 c | (5.68) | 32.16 b | (6.57) | 0.85 b | (0.04) |
Ethanol 200 °C | 15.68 b | (3.68) | 11.03 b | (3.23) | 0.19 d | (0.02) | 17.13 a | (6.92) | 12.01 ab | (5.68) | 0.22 ab | (0.02) | 33.41 b | (8.78) | 22.14 c | (5.64) | 0.52 c | (0.05) |
E:W (1:1) 50 °C | 37.20 a | (3.70) | 17.11 a | (6.16) | 0.8 a | (0.02) | 41.32 a | (3.27) | 23.17 a | (2.68) | 1.02 a | (0.08) | 46.21 a | (8.80) | 29.08 b | (8.74) | 1.44 a | (0.14) |
E:W (1:1) 100 °C | 50.86 b | (3.55) | 25.00 b | (0.43) | 1.85 b | (0.13) | 55.67 b | (6.68) | 34.00 b | (5.48) | 2.36 b | (0.13) | 71.33 b | (8.59) | 42.10 b | (8.53) | 3.90 b | (0.15) |
E:W (1:1) 150 °C | 59.15 c | (3.76) | 30.04 c | (1.53) | 2.65 c | (0.25) | 67.18 v | (5.89) | 42.06 c | (4.83) | 3.58 c | (0.19) | 81.96 c | (8.89) | 49.17 b | (8.83) | 5.00 b | (0.21) |
E:W (1:1) 200 °C | 48.10 b | (4.15) | 22.50 b | (1.65) | 1.55 b | (0.20) | 52.82 b | (6.87) | 30.60 b | (5.63) | 2.02 b | (0.11) | 62.50 d | (9.44) | 32.02 a | (6.25) | 1.70 a | (0.16) |
Water 50 °C | 22.92 a | (3.35) | 14.12 a | (4.43) | 0.5 a | (0.01) | 20.89 a | (5.45) | 13.5 a | (3.24) | 0.58 a | (0.12) | 25.89 a | (8.31) | 17.06 a | (4.25) | 0.87 a | (0.01) |
Water 100 °C | 29.82 b | (3.85) | 17.35 b | (3.58) | 0.8 b | (0.03) | 31.70 b | (6.98) | 18.02 b | (2.98) | 0.95 b | (0.22) | 41.28 b | (3.02) | 27.65 b | (8.95) | 1.87 b | (0.27) |
Water 150 °C | 36.54 c | (3.63) | 20.67 c | (3.95) | 1.15 c | (0.13) | 39.89 c | (7.23) | 24.51 c | (2.65) | 1.38 c | (0.03) | 52.19 c | (5.68) | 35.29 c | (5.64) | 2.64 c | (0.13) |
Water 200 °C | 45.33 d | (3.90) | 22.54 c | (3.57) | 1.65 d | (0.08) | 50.60 d | (4.36) | 31.33 d | (3.58) | 1.51 c | (0.30) | 61.34 d | (4.26) | 44.54 d | (4.23) | 3.21 d | (0.53) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sáez-González, L.; Carreño-Díaz, M.; Blázquez-Abellán, G.; Santander-Ortega, M.J.; Martínez-García, R.M.; Martínez, L.A.; Carbajal, J.A.; Castro-Vázquez, L. Antioxidant Valorization of PLE Extracts from Macroalgae (Cladophora glomerata): In Vitro Assessment of Nanoemulsions Against Oxidative Stress. Antioxidants 2024, 13, 1370. https://doi.org/10.3390/antiox13111370
Sáez-González L, Carreño-Díaz M, Blázquez-Abellán G, Santander-Ortega MJ, Martínez-García RM, Martínez LA, Carbajal JA, Castro-Vázquez L. Antioxidant Valorization of PLE Extracts from Macroalgae (Cladophora glomerata): In Vitro Assessment of Nanoemulsions Against Oxidative Stress. Antioxidants. 2024; 13(11):1370. https://doi.org/10.3390/antiox13111370
Chicago/Turabian StyleSáez-González, Lucía, Marcos Carreño-Díaz, Gema Blázquez-Abellán, Manuel J. Santander-Ortega, Rosa M. Martínez-García, Luis A. Martínez, Jose A. Carbajal, and Lucía Castro-Vázquez. 2024. "Antioxidant Valorization of PLE Extracts from Macroalgae (Cladophora glomerata): In Vitro Assessment of Nanoemulsions Against Oxidative Stress" Antioxidants 13, no. 11: 1370. https://doi.org/10.3390/antiox13111370
APA StyleSáez-González, L., Carreño-Díaz, M., Blázquez-Abellán, G., Santander-Ortega, M. J., Martínez-García, R. M., Martínez, L. A., Carbajal, J. A., & Castro-Vázquez, L. (2024). Antioxidant Valorization of PLE Extracts from Macroalgae (Cladophora glomerata): In Vitro Assessment of Nanoemulsions Against Oxidative Stress. Antioxidants, 13(11), 1370. https://doi.org/10.3390/antiox13111370