Diversity and Chemical Characterization of Apple (Malus sp.) Pollen: High Antioxidant and Nutritional Values for Both Humans and Insects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Pollen Collection
2.2. Reagents and Standards and Determination of Sugars and Sugar Alcohols by IC
2.3. Total Phenolic Content Determination
2.4. Antioxidant Activity Determination
2.5. Preparation of Pollen Extracts for Determination of Total Phenolic Content, Antioxidative Activity and Chromatographic Analysis
2.6. UHPLC Q-ToF MS Analysis of Pollen
2.7. Preparation Extracts for Electrophoretic Analysis
Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.8. Raman Instrumentation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Sugars and Sugar Alcohols
3.2. Total Phenolic Content (TPC)
3.3. Antioxidant Assays
3.4. UHPLC Q-ToF MS Analysis of Apple Floral Pollen (AFP)
3.5. Floral Apple Pollen Protein Composition–Electrophoretic Analysis
3.6. Raman Spectral Fingerprinting of Apples Pollen Grains
Recorded Bands | Literature Data | Vibrational Mode | Chemical Moiety | Reference |
---|---|---|---|---|
1746 | 1750 | CH2, C=O | Lipids | [73,74] |
1661 | 1660, 1662, 1669 | C=O | Amide I | [73,75,78] |
1650 | 1650, 1655, 1660, 1640, 1630 | C=O | Amide I | [71,72,73,74,75,78,79] |
1604 | ~1600, ~1610 | Phenyl C=C ring vibrations | Sporopollenin (cinnamic and p-coumaric acid), Phe, Tyr | [72,73,74,75,78,79] |
1565 | ~1570 | Phenyl C=C ring vibrations | Sporopollenin | [71,72] |
1517 | 1519 | C=C | Carotenoid | [71,72,75] |
1440 | 1440 | CH2/CH3 def. of aliphatic carbon chains | Lipids | [71,73,74,75] |
1342 | / | Non-identifed | / | / |
1307 | 1304 | N–H, CH2 | Lipids amide III | [73,74,75,79] |
1225 | 1228 | Phosphate, C-O aryl vibration | [75,79] | |
1205 | 1209 | Arom ring str | Sporopollenin | [72,73,74] |
1151 | 1152 | C−C | Carotenoid | [71,72,76] |
1123, 1103 | 1123, 1097 | C–O–H | Amylose, cellulose | [79] |
1085 | 1085 | C–O–C, C–O–H | Amylose, starch | [73,79] |
999 | 1000 | C−CH3 in-plane group rocking vibrations | Carotenoid | [71,72,76] |
948 | 940, 949 | C–O–C, C–OH | Starch | [72,73,78,79] |
920 | 920 | C–O–C, C–OH | Starch | [72,73] |
830 | 820–860 833 | C–O–C, C–C | Sporopollenins Phenylpropanoid acids | [72,73,75] |
743 | / | Non-identified | / | / |
650 | / | Non-identified | / | / |
591 | 590 | Arom ring def | Sporopollenin, Phe | [75] |
549 | 549 | C=O | Amide II | [78,79,81] |
505, 493 | C-O-C, C-C-O, C-C-C | Starch, pectin | [75,81] | |
415 | C-O-C, C-C-O, C-C-C | Carbohydrate | [75] | |
361 | C-O-C, C-C-O, C-C-C | Carbohydrate | [75] | |
279 | C-O-C, C-C-O, C-C-C | Carbohydrate | [75] | |
244 | C-O-C, C-C-O, C-C-C | Carbohydrate | [75] | |
223 | C-O-C, C-C-O, C-C-C | Carbohydrate | [75] |
3.7. Multivariate Analysis
3.8. Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dar, S.A.; Hassan, G.I.; Padder, B.A.; Wani, A.R.; Parey, S.H. Pollination and evolution of plant and insect interaction. J. Pharmacogn. Phytochem. 2017, 6, 304–311. [Google Scholar]
- Cerović, R.; Fotirić Akšić, M.; Đorđević, M.; Meland, M. The effects of pollinizers on pollen tube growth and fruit set of European plum (Prunus domestica L.) in a Nordic climate. Sci. Hortic. 2021, 288, 110390. [Google Scholar] [CrossRef]
- Morgano, M.A.; Martins, M.C.; Rabonato, L.C.; Milani, R.F.; Yotsuyanagi, K.; Rodriguez-Amaya, D.B. A comprehensive investigation of the mineral composition of Brazilian bee pollen, geographic and seasonal variations and contribution to human diet. J. Braz. Chem. Soc. 2012, 23, 727–736. [Google Scholar] [CrossRef]
- Pascoal, A.; Rodrigues, S.; Teixeira, A.; Feas, X.; Estevinho, L. Biological activities of commercial bee pollens: Antimicrobial, antimutagenic, antioxidant and anti-inflammatory. Food Chem. Toxicol. 2014, 63, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Kostić, A.Ž.; Milinčić, D.D.; Gašić, U.M.; Nedić, N.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT 2019, 112, 108244. [Google Scholar] [CrossRef]
- Tabatabaei, P.; Nisbet, C. Investigation of Phenolic Compounds and Antioxidant Capacity of Bee Pollen Collected from Different Geographical Regions in Turkey. Kocatepe Vet. J. 2021, 14, 359–365. [Google Scholar] [CrossRef]
- Nepi, M.; Franchi, G.G.; Pacini, E. Pollen hydration status at dispersal: Cytophysiological features and strategies. Protoplasma 2001, 216, 171–180. [Google Scholar] [CrossRef]
- Manning, R. Fatty acids in pollen: A review of their importance for honeybees. Bee World 2001, 82, 60–75. [Google Scholar] [CrossRef]
- Firon, N.; Nepi, M.; Pacini, E. Water status and associated processes mark critical stages in pollen development and functioning. Ann. Bot. 2012, 109, 1201–1214. [Google Scholar] [CrossRef]
- Kieliszek, M.; Piwowarek, K.; Kot, A.; Blazejak, S.; Chlebowska-Smigiel, A.; Wolska, I. Pollen and bee bread as new healthoriented products: A review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Gašić, U.; Dabić Zagorac, D.; Sredojević, M.; Tosti, T.; Natić, M.; Meland, M. Chemical Fingerprint of ‘Oblačinska’ Sour Cherry (Prunus cerasus L.) Pollen. Biomolecules 2019, 9, 391. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR Pathway in B16 mouse melanoma cells. Front. Pharmacol. 2017, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Mărghitaş, L.A.; Stanciu, O.G.; Dezmirean, D.S.; Bobiş, O.; Popescu, O.; Bogdanov, S.; Campos, M.G. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania. Food Chem. 2009, 115, 878–883. [Google Scholar] [CrossRef]
- Denisowa, B.; Denisow-Pietrzyk, M. Biological and therapeutic properties of bee pollen: A review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef]
- Ilie, C.I.; Oprea, E.; Geana, E.I.; Spoiala, A.; Buleandra, M.; Gradisteanu Pircalabioru, G.; Badea, I.A.; Ficai, D.; Andronescu, E.; Ficai, A.; et al. Bee Pollen Extracts: Chemical Composition, Antioxidant Properties, and Effect on the Growth of Selected Probiotic and Pathogenic Bacteria. Antioxidants 2022, 11, 959. [Google Scholar] [CrossRef]
- Cecchi, L. Introduction. In Allergenic Pollen: A Review of the Production; Sofiev, M., Bergmann, K.-C., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany, 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Vanderplanck, M.; Vereecken, N.J.; Grumiau, L.; Esposito, F.; Lognay, G.; Wattiez, R.; Michez, D. The importance of pollen chemistry in evolutionary host shifts of bees. Sci. Rep. 2017, 7, 43058. [Google Scholar] [CrossRef]
- Richardson, L.L.; Adler, L.S.; Leonard, A.S.; Andicoechea, J.; Regan, K.H.; Anthony, W.E.; Manson, J.S.; Irwin, R.E. Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proc. R. Soc. Lond. B Biol. Sci. 2015, 282, 20142471. [Google Scholar] [CrossRef]
- Lecocq, A.; Green, A.A.; Pinheiro De Castro, É.C.; Olsen, C.E.; Jensen, A.B.; Zagrobelny, M. Honeybees Tolerate Cyanogenic Glucosides from Clover Nectar and Flowers. Insects 2018, 9, 31. [Google Scholar] [CrossRef]
- Bogdanov, S. Chapter 1, Pollen: Collection, harvest, composition, quality. In The Pollen Book; Bee-Hexagon: Muehlethurnen, Switzerland, 2012; Available online: http://www.bee-hexagon.net/ (accessed on 23 February 2024).
- Alaux, C.; Dantec, C.; Parrinello, H.; Le Conte, Y. Nutrigenomics in honey bees: Digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genom. 2011, 12, 496. [Google Scholar] [CrossRef]
- Degrandi-Hoffman, G.; Chen, Y.; Huang, E.; Huang, M.H. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 2010, 56, 1184–1191. [Google Scholar] [CrossRef]
- Ličina, V.; Krogstad, T.; Fotirić Akšić, M.; Meland, M. Apple Growing in Norway—Ecologic Factors, Current Fertilization Practices and Fruit Quality: A Case Study. Horticulturae 2024, 10, 233. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Lazarević, K.; Šegan, S.; Natić, M.; Tosti, T.; Ćirić, I.; Meland, M. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus domestica Borkh.) Grown in Norway. Foods 2021, 10, 1956. [Google Scholar] [CrossRef] [PubMed]
- Vujadinović Mandić, M.; Vuković Vimić, A.; Fotirić Akšić, M.; Meland, M. Climate Potential for Apple Growing in Norway—Part 2: Assessment of Suitability of Heat Conditions under Future Climate Change. Atmosphere 2023, 14, 937. [Google Scholar] [CrossRef]
- Pardo, A.; Borges, P.A.V. Worldwide importance of insect pollination in apple orchards: A review. Agric. Ecosyst. Environ. 2020, 293, 106839. [Google Scholar] [CrossRef]
- Martínez-Sastre, R.; Miñarro, M.; García, D. Animal biodiversity in cider apple orchards: Simultaneous environmental drivers and effects on insectivory and pollination. Agric. Ecosyst. Environ. 2020, 295, 106918. [Google Scholar] [CrossRef]
- Martins, K.T.; Gonzales, A.; Lechowicz, M.J. Pollination services are mediated by bee functional diversity and landscape context. Agric. Ecosyst. Environ. 2015, 200, 12–20. [Google Scholar] [CrossRef]
- Buccheri, M.; Di Vaio, C. Relationship among seed number, quality, and calcium content in apple fruits. J. Plant Nutr. 2005, 27, 1735–1746. [Google Scholar] [CrossRef]
- Webber, S.M.; Garratt, M.P.; Lukac, M.; Bailey, A.P.; Huxley, T.; Potts, S.G. Quantifying crop pollinator-dependence and pollination deficits: The effects of experimental scale on yield and quality assessments. Agric. Ecosyst. Environ. 2020, 304, 107106. [Google Scholar] [CrossRef]
- Samnegård, U.; Hambäck, P.A.; Smith, H.G. Pollination treatment affects fruit set and modifies marketable and storable fruit quality of commercial apples. R. Soc. Open Sci. 2019, 6, 190326. [Google Scholar] [CrossRef]
- Garratt MP, D.; Breeze, T.D.; Boreux, V.; Fountain, M.T.; McKerchar, M.; Webber, S.M.; Coston, D.J.; Jenner, N.; Dean, R.; Westbury, D.B.; et al. Apple pollination: Demand depends on variety and supply depends on pollinator identity. PLoS ONE 2016, 11, e0153889. [Google Scholar] [CrossRef]
- Sharma, H.K.; Devi, M.; Thakur, P.; Sharma, R.; Rana, K.; Thakur, M. Apis mellifera L. stock varied in apple pollen foraging preference. Indian J. Entomol. 2023, 85, 84–87. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Nešović, M.; Ćirić, I.; Tešić, Ž.; Pezo, L.; Tosti, T.; Gašić, U.; Dojčinović, B.; Lončar, B.; Meland, M. Polyphenolics and Chemical Profiles of Domestic Norwegian Apple (Malus × domestica Borkh.). Cultivars. Front. Nutr. 2022, 9, 941487. [Google Scholar] [CrossRef] [PubMed]
- Meier, U.; Graf, H.; Hack, H.; Hess, M.; Kennel, W.; Klose, R.; Mappes, D.; Seipp, D.; Stauß, R.; Streif, J.; et al. Phanologische Entwicklungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannisbeere (Ribes-Arten) und der Erdbeere (Fragaria × ananassa Duch.) Nachr. Des. Dtsch. Pflanzenschutzd. 1994, 46, 141–153. [Google Scholar]
- Kostić, A.Ž.; Milinčić, D.D.; Nedić, N.; Gašić, U.M.; Špirović Trifunović, B.; Vojt, D.; Tešić, Ž.L.; Pešić, M.B. Phytochemical Profile and Antioxidant Properties of Bee-Collected Artichoke (Cynara scolymus) Pollen. Antioxidants 2021, 10, 1091. [Google Scholar] [CrossRef] [PubMed]
- Kostić, A.Ž.; Milinčić, D.D.; Špirović Trifunović, B.; Nedić, N.; Gašić, U.M.; Tešić, Ž.L.; Stanojević, S.; Pešić, M.B. Monofloral corn poppy bee-collected pollen—A detailed insight into its phytochemical composition and antioxidant properties. Antioxidants 2023, 12, 1424. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Barać, M.B.; Stanojević, S.P.; Milojković-Opsenica, D.M.; Tešić, Ž.L.; Šikoparija, B.; Radišić, P.; Aleksić, M.; Pešić, M.B. Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT 2015, 62, 301–309. [Google Scholar] [CrossRef]
- Menges, F. Spectragryph Optical Spectroscopy Software; Version 1.2.14; SpectroscopyNinja: Oberstdorf, Germany, 2016; Available online: http://www.effemm2.de/spectragryph/ (accessed on 27 August 2024).
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- da Silva, G.R.; da Natividade, T.B.; Camara, C.A.; da Silva, E.M.S.; de Assis Ribeiro dos Santos, F.; Silva, T.M.S. Identification of Sugar, Amino Acids and Minerals from the Pollen of Jandaíra Stingless Bees (Melipona subnitida). Food Nutr. Sci. 2014, 5, 1015–1021. [Google Scholar] [CrossRef]
- Afik, O.; Dag, A.; Kerem, Z.; Shafir, S. Analyses of avocado (Persea americana) nectar properties and their perception by honey bees (Apis mellifera). J. Chem. Ecol. 2006, 32, 1949–1963. [Google Scholar] [CrossRef]
- Değirmenci, L.; Rogé Ferreira, F.L.; Vukosavljevic, A.; Heindl, C.; Keller, A.; Geiger, D.; Scheiner, R. Sugar perception in honeybees. Front. Physiol. 2023, 13, 1089669. [Google Scholar] [CrossRef]
- Emsen, B.; Dodologlu, A. Physiological characteristics of honeybee (Apis mellifera L.) colonies fed with commercial glucose. J. Anim. Vet. Adv. 2014, 13, 623–626. [Google Scholar]
- Hýbl, M.; Mráz, P.; Šipoš, J.; Hoštičková, I.; Bohatá, A.; Čurn, V.; Kopec, T. Polyphenols as Food Supplement Improved Food Consumption and Longevity of Honey Bees (Apis mellifera) Intoxicated by Pesticide Thiacloprid. Insects 2021, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Gu, G.; Wang, Y.; Dong, S.; Tan, K.; Nieh, J.C. Floral tea polyphenols can improve honey bee memory retention and olfactory sensitivity. J. Insect Physiol. 2021, 128, 104177. [Google Scholar] [CrossRef] [PubMed]
- Aylanc, V.; Larbi, S.; Calhelha, R.; Barros, L.; Rezouga, F.; Rodríguez-Flores, M.S.; Seijo, M.C.; El Ghouizi, A.; Lyoussi, B.; Falcão, S.I.; et al. Evaluation of Antioxidant and Anticancer Activity of Mono- and Polyfloral Moroccan Bee Pollen by Characterizing Phenolic and Volatile Compounds. Molecules 2023, 28, 835. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, E.; Tiwari, P.; Uniyal, P.L. Morphology and pollen chemistry of several bee forage taxa of family Rosaceae from Garhwal Himalaya, Uttarakhand, India. J. Apic. Sci. 2018, 62, 167–177. [Google Scholar] [CrossRef]
- Nozkova, J.; Fatrcová-Sramkova, K.; Mariassyova, M.; Kropkova, Z. Polyphenols and antioxidant activity of bee pollen. Potravinárstvo 2009, 3, 60–63. [Google Scholar]
- Mayda, N.; Özkök, A.; Ecem Bayram, N.; Gerçek, Y.C.; Sorkun, K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020, 14, 1795–1809. [Google Scholar] [CrossRef]
- Bayram, N.E.; Gercek, Y.C.; Çelik, S.; Mayda, N.; Kostić, A.Ž.; Dramićanin, A.M.; Özkök, A. Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin—similarities and differences. Arab. J. Chem. 2021, 14, 103004. [Google Scholar] [CrossRef]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Leja, M.; Mareczek, A.; Wyżgolik, G.; Klepacz-Baniak, J.; Czekońska, K. Antioxidative properties of bee pollen in selected plant species. Food Chem. 2007, 100, 237–240. [Google Scholar] [CrossRef]
- Mosić, M.; Trifković, J.; Vovk, I.; Gašić, U.; Tešić, Ž.; Šikoparija, B.; Milojković-Opsenica, D. Phenolic Composition Influences the Health-Promoting Potential of Bee-Pollen. Biomolecules 2019, 9, 783. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, P. Combination of HPLC-Q-TOF-MS/MS, Network Pharmacology, and Molecular Docking to Reveal the Mechanism of Apple Pollen in the Treatment of Type 2 Diabetes Mellitus. Evid. Based Complement Altern. Med. 2022, 2022, 3221196. [Google Scholar] [CrossRef] [PubMed]
- Serra Bonvehí, J.; Soliva Torrentó, M.; Centelles Lorente, E. Evaluation of polyphenolic and flavonoid compounds in honeybee-collected pollen produced in Spain. J. Agric. Food Chem. 2001, 49, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Almaraz-Abarca, N.; Campos, M.G.; Avila-Reyes, J.A. Variability of antioxidant activity among honeybee-collected pollen of di_erent botanical origin. J. Sci. Technol. Am. 2004, 29, 574–578. [Google Scholar]
- Horvacki, N.; Andrić, F.; Gašić, U.; Đurović, D.; Tešić, Ž.; Fotirić Akšić, M.; Milojković-Opsenica, D. Phenolic Compounds as Phytochemical Tracers of Varietal Origin of Some Autochthonous Apple Cultivars Grown in Serbia. Molecules 2022, 27, 7651. [Google Scholar] [CrossRef]
- Li, H.; Subbiah, V.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Profiling of Five Different Australian Grown Apples. Appl. Sci. 2021, 11, 2421. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Q.; Liu, R. Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen. Food Chem. 2022, 375, 131908. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Xu, Z.; Sun, X.; Zhu, J.; Zhang, Y. Analysis of Antioxidant Activity and Flavonoids Metabolites in Peel and Flesh of Red-Fleshed Apple Varieties. Molecules 2020, 25, 1968. [Google Scholar] [CrossRef]
- Qin, X.; Xing, Y.F.; Zhou, Z.; Yao, Y. Dihydrochalcone Compounds Isolated from Crabapple Leaves Showed Anticancer Effects on Human Cancer Cell Lines. Molecules 2015, 20, 21193–21203. [Google Scholar] [CrossRef]
- Pietrocola, F.; Castoldi, F.; Kepp, O.; Carmona-Gutierrez, D.; Madeo, F.; Kroemer, G. Spermidine reduces cancer-related mortality in humans. Autophagy 2019, 15, 362–365. [Google Scholar] [CrossRef]
- Ghosh, S.; Jeon, H.; Jung, C. Foraging behaviour and preference of pollen sources by honey bee (Apis mellifera) relative to protein contents. J. Ecol. Environ. 2020, 44, 4. [Google Scholar] [CrossRef]
- Pernal, S.; Currie, R. The influence of pollen quality on foraging behavior in honeybees (Apis mellifera L.). Behav. Ecol. Sociobiol. 2001, 51, 53–68. [Google Scholar] [CrossRef]
- Hanley, M.E.; Franco, M.; Pichon, S.; Darvill, B.; Goulson, D. Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct. Ecol. 2008, 22, 592–598. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Blüthgen, N. The same, but different: Pollen foraging in honeybee and bumblebee colonies. Apidologie 2011, 43, 449–464. [Google Scholar] [CrossRef]
- Hate, K.M.; Castor, M.A.R.; Cruz, M.K.D.M.; Balanag, G.A.M.; Salvador, K.I.; Sanchez, N.A.L.; Reyes, R.D.C.; Agcaoili–de Jesus, M.S.; Ocampo-Cervantes, C.C.; Dalmacio, L.M.M. Characterization of pollen grain and pollen extract from common allergenic plants in the Philippines. Philipp. J. Sci. 2023, 152, 445–2453. [Google Scholar] [CrossRef]
- Gupta, A.K. Quantitative evaluation of pollen protein from Helianthus annuus for honey bee nutrition. J. Life Sci. 2017, 5, 4–6. [Google Scholar]
- Borutinskaite, V.; Treigyte, G.; Matuzevičius, D.; Zaikova, I.; Čeksteryte, V.; Navakauskas, D.; Kurtinaitienė, B.; Navakauskiene, R. Proteomic Analysis of Pollen and Blossom Honey from Rape Seed Brassica napus L. J. Apic. Sci. 2017, 61, 73–92. [Google Scholar] [CrossRef]
- Schulte, F.; Panne, U.; Kneipp, J. Molecular changes during pollen germination can be monitored by Raman microspectroscopy. J. Biophotonics 2010, 3, 542–547. [Google Scholar] [CrossRef]
- Kenđel, A.; Zimmermann, B. Chemical analysis of pollen by FT-Raman and FTIR spectroscopies. Front. Plant. Sci. 2020, 11, 352. [Google Scholar] [CrossRef]
- Bağcıoğlu, M.; Zimmermann, B.; Kohler, A. A multiscale vibrational spectroscopic approach for identification and biochemical characterization of pollen. PLoS ONE 2015, 10, e0137899. [Google Scholar] [CrossRef]
- Mondol, A.S.; Patel, M.D.; Rüger, J.; Stiebing, C.; Kleiber, A.; Henkel, T.; Popp, J.; Schie, I.W. Application of high-throughput screening Raman spectroscopy (HTS-RS) for label-free identification and molecular characterization of Pollen. Sensors 2019, 19, 4428. [Google Scholar] [CrossRef] [PubMed]
- Ivleva, N.P.; Niessner, R.; Panne, U. Characterization and discrimination of pollen by Raman microscopy. Anal. Bioanal. Chem. 2005, 381, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Schulte, F.; Mader, J.; Kroh, L.W.; Panne, U.; Kneipp, J. Characterization of pollen carotenoids with in situ and high-performance thin-layer chromatography supported resonant Raman spectroscopy. Anal. Chem. 2009, 81, 8426–8433. [Google Scholar] [CrossRef] [PubMed]
- Stiebing, C.; Post, N.; Schindler, C.; Göhrig, B.; Lux, H.; Popp, J.; Heutelbeck, A.; Schie, I.W. Revealing the chemical composition of birch pollen grains by Raman spectroscopic imaging. Int. J. Mol. Sci. 2022, 23, 5112. [Google Scholar] [CrossRef]
- Guedes, A.; Ribeiro, H.; Fernández-González, M.; Aira, M.J.; Abreu, I. Pollen Raman spectra database: Application to the identification of airborne pollen. Talanta 2014, 119, 473–478. [Google Scholar] [CrossRef]
- Joester, M.; Seifert, S.; Emmerling, F.; Kneipp, J. Physiological influence of silica on germinating pollen as shown by Raman spectroscopy. J. Biophotonics 2016, 10, 542–552. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, J.; Jo, M.; Jeon, J.S. Exploration of Sugar and Starch Metabolic Pathway Crucial for Pollen Fertility in Rice. Int. J. Mol. Sci. 2022, 23, 14091. [Google Scholar] [CrossRef]
- Schulte, F.; Lingott, J.; Panne, U.; Kneipp, J. Chemical characterization and classification of pollen. Anal. Chem. 2008, 80, 9551–9556. [Google Scholar] [CrossRef]
- Zitouni, H.; Hssaini, L.; Ouaabou, R.; Viuda-Martos, M.; Hernández, F.; Ercisli, S.; Ennahli, S.; Messaoudi, Z.; Hanine, H. Exploring Antioxidant Activity, Organic Acid, and Phenolic Composition in Strawberry Tree Fruits (Arbutus unedo L.) Growing in Morocco. Plant 2020, 9, 1677. [Google Scholar] [CrossRef]
- Rozema, J.; Broekman, R.A.; Blokker, P.; Meijkamp, B.B.; de Bakker, N.; van de Staaij, J.; van Beem, A.; Ariese, F.; Kars, S.M. UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: The perspective to track historic UV-B levels. J. Photochem. Photobiol. B 2001, 62, 108–117. [Google Scholar] [CrossRef]
- Li, X.; Chen, B.; Xie, H.; He, Y.; Zhong, D.; Chen, D. Antioxidant Structure–Activity Relationship Analysis of Five Dihydrochalcones. Molecules 2018, 23, 1162. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Species | Parents | Country of Origin |
---|---|---|---|
‘Red Aroma’ | Malus domestica | ‘Ingrid Marie’ × ‘Filippa’ | Denmark |
‘Discovery’ | Malus domestica | ‘Worcester Pearmain’ × ‘Beauty of Bath’ | England |
‘Summerred’ | Malus domestica | Open pollinated ‘Summerland’ (‘McIntosh’ × ‘Golden Delicious’) | Canada |
‘Rubinstep’ | Malus domestica | ‘Clivia’ × ‘Rubin’ | Czech Republic |
‘Elstar’ | Malus domestica | ‘Golden Delicious’ × ‘Ingrid Marie’ | The Netherlands |
‘Dolgo’ | Malus sylvestris | Russia | |
‘Professor Sprenger’ | Malus sylvestris | The Netherlands | |
‘Asfari’ | Malus domestica | ‘Elstar’ × ‘Delcorf Apache’ | Belgium |
‘Eden’ | Malus domestica | ‘Magic Star®’ × ‘Honeycrisp’ | Belgium |
‘Fryd’ | Malus domestica | ‘Magic Star®’ × ‘Honeycrisp’ | Belgium |
‘Katja’ | Malus domestica | ‘James Grieve’ × ‘Worcester Pearmain’ | Sweden |
Cultivar | Sorbitol | Mannitol | Trehalose | Glucose | Fructose | Sucrose | Isomaltose | Sum |
---|---|---|---|---|---|---|---|---|
Red Aroma | 0.130 ± 0.003 bc* | 1.73 ± 0.03 c | 1.42 ± 0.06 b | 0.99 ± 0.04 b | 1.93 ± 0.21 b | 0.66 ± 0.04 b | 0.35 ± 0.03 c | 7.21 c |
Discovery | 0.251 ± 0.005 d | 1.86 ± 0.03 c | 1.34 ± 0.06 b | 2.3 ± 0.1 c | 2.66 ± 0.29 c | 0.11 ± 0.01 a | 0.29 ± 0.02 bc | 8.81 c |
Summerred | 0.285 ± 0.006 d | 2.73 ± 0.04 d | 2.70 ± 0.12 c | 1.39 ± 0.06 b | 1.31 ± 0.14 b | 0.62 ± 0.04 b | 1.13 ± 0.09 d | 10.17 d |
Rubinstep | 0.096 ± 0.002 b | 1.09 ± 0.02 b | 1.21 ± 0.05 b | 0.109 ± 0.005 a | 0.36 ± 0.04 a | 0.25 ± 0.02 a | 0.37 ± 0.03 | 3.49 a |
Elstar | 0.146 ± 0.003 c | 0.32 ± 0.01 a | 1.38 ± 0.06 b | 0.20 ± 0.01 a | 0.07 ± 0.01 a | 0.24 ± 0.02 a | 0.17 ± 0.01 b | 2.52 a |
Dolgo | 0.59 ± 0.02 e | 3.18 ± 0.05 | 4.00 ± 0.18 d | 0.069 ± 0.003 a | 0.74 ± 0.08 a | 1.10 ± 0.07 c | 0.27 ± 0.02 b | 9.95 |
Professor Sprenger | 0.186 ± 0.004 c | 1.64 ± 0.03 c | 1.65 ± 0.07 | 0.21 ± 0.01 a | 0.34 ± 0.04 a | 1.20 ± 0.08 c | 0.01 ± 0.01 a | 5.23 b |
Asfari | 0.050 ± 0.001 a | 4.56 ± 0.07 e | 0.27 ± 0.01 a | 0.053 ± 0.002 a | 0.09 ± 0.01 a | 0.21 ± 0.01 a | - | 5.22 b |
Eden | 0.099 ± 0.002 b | 6.2 ± 0.1 f | 0.16 ± 0.01 a | 0.013 ± 0.001 a | 0.23 ± 0.03 a | 0.20 ± 0.01 a | - | 6.92 b |
Fryd | 0.052 ± 0.001 a | 4.45 ± 0.07 e | 0.048 ± 0.002 a | 0.019 ± 0.001 a | 0.23 ± 0.03 a | 0.16 ± 0.01 a | - | 4.95 b |
Katja | 0.059 ± 0.001 a | 5.04 ± 0.08 e | 0.070 ± 0.003 a | 0.011 ± 0.001 a | 0.30 ± 0.03 a | 0.16 ± 0.01 a | - | 5.65 b |
RT | Compound Name | Formula, [M − H]− or [M + H]+ | Calculated Mass, [M − H]− or [M + H]+ | m/z Exact Mass, [M − H]− or [M + H]+ | mDa | MS Fragments (%) | No |
---|---|---|---|---|---|---|---|
Phenolic acids and derivatives | |||||||
Hydroxybenzoic acid and derivatives | |||||||
5.66 | Hydroxybenzoic acid | C7H5O3− | 137.02390 | 137.02191 | 1.99 | / | 1 |
1.62 | Hydroxybenzoic acid hexoside isomer I | C13H15O8− | 299.07670 | 299.07628 | 0.42 | 137.02116(100), 138.0252(14) | 2 |
4.50 | Hydroxybenzoic acid hexoside isomer II | C13H15O8− | 299.07670 | 299.07405 | 2.65 | 136.0128(30), 137.02074(100), 138.02368(10) | 3 |
1.95 | Dihydroxybenzoic acid hexoside isomer I | C13H15O9− | 315.07160 | 315.07314 | −1.54 | 108.01851(100), 109.02572(41), 110.02841(3), 133.02813(1), 152.00799(60), 153.01395(15) | 4 |
3.23 | Dihydroxybenzoic acid hexoside isomer II | C13H15O9− | 315.07160 | 315.06941 | 2.19 | 108.01872(100), 109.02564(38), 110.02918(3), 152.00791(62), 153.01392(14), 154.01766(2) | 5 |
4.85 | Vanillin | C8H7O3− | 151.03950 | 151.03830 | 1.20 | 103.92313(13), 105.03101(75), 108.04371(10), 120.01837(28), 121.02538(100), 122.02788(15) | 6 |
5.32 | Vanilloside | C14H17O8− | 313.09230 | 313.08923 | 3.07 | 106.03891(4), 107.0459(20), 109.0255(4), 113.02149(2), 123.04161(100), 124.04358(5), 151.03722(5) | 7 |
5.12 | Vanilloloside | C14H19O8− | 315.10800 | 315.10207 | 5.93 | 109.02563(4), 123.04141(100), 124.04557(11), 128.03565(1), 153.05192(59), 154.0536(7) | 8 |
3.47 | Vanillic acid hexoside isomer I | C14H17O9− | 329.08730 | 329.08485 | 2.45 | 108.01847(100), 109.02204(8), 123.04155(36), 124.04527(4), 152.00786(67), 153.01165(8), 167.03119(33), | 9 |
4.45 | Vanillic acid hexoside isomer II | C14H17O9− | 329.08730 | 329.08498 | 2.32 | 108.01864(100), 109.02243(8), 123.04176(37), 124.04518(4), 152.0081(68), 153.0117(7), 167.03159(36) | 10 |
2.22 | Gallic acid hexoside | C13H15O10− | 331.06650 | 331.06554 | 0.96 | 107.0113(2), 123.00641(4), 124.01288(23), 125.02125(97), 126.02506(7), 168.0027(100), 169.00788(14) | 11 |
5.52 | Syringic acid hexoside | C15H19O10− | 359.09780 | 359.09490 | 2.90 | 123.00566(37), 138.02879(100), 139.03227(9), 153.05223(25), 154.05575(3), 166.99446(11), 182.01819(60), 183.02227(6), 197.04192(27), 198.04382(4) | 12 |
Hydroxycinnamic acid and derivatives | |||||||
8.76 | 3,4-Dimethoxycinnamic acid | C11H11O4− | 207.06570 | 207.06290 | 2.80 | 101.03693(6), 103.05236(100), 104.05574(10), 119.04685(56), 120.05079(6), 147.04141(31), 165.05222(3) | 13 |
6.68 | Coumaric acid hexoside | C15H17O8− | 325.09230 | 325.08949 | 2.81 | 117.03144(22), 118.03506(2), 119.04679(6), 145.02593(100), 146.02915(11), 163.03694(2) | 14 |
6.40 | Coumaroylquinic acid isomer I | C16H17O8− | 337.09230 | 337.08784 | 4.46 | 111.04205(4), 119.04701(100), 155.03198(3), 163.03639(51), 164.03972(6), 173.04267(2), 191.05224(7) | 15 |
7.21 | Coumaroylquinic acid isomer II | C16H17O8− | 337.09230 | 337.08986 | 2.44 | 111.04184(18), 119.04713(49), 137.02099(12), 155.03155(6), 163.03658(26), 173.04219(100), 174.0449(9), 175.04662(2), 191.05288(7) | 16 |
6.87 | Caffeic acid | C9H7O4− | 179.03440 | 179.03437 | 0.03 | 106.04154(6), 107.04559(6), 108.02205(5), 109.02439(4), 134.03373(75), 135.04108(100), 136.04699(6) | 17 |
7.68 | Caffeoyl deoxytetronic acid | C13H13O7− | 281.06610 | 281.06345 | 2.65 | 105.0161(12), 117.03216(8), 134.03342(100), 135.03681(12), 149.05736(4), 178.03037(4) | 18 |
6.00 | Caffeic acid hexoside | C15H17O9− | 341.08730 | 341.08551 | 1.79 | 133.02604(22), 134.03124(4), 135.04162(19), 161.02098(100), 162.02436(11), 179.03079(9) | 19 |
8.35 | Dicaffeoyl hexoside | C24H23O12− | 503.11900 | 503.12129 | −2.29 | 135.04202(25), 161.02077(30), 179.03107(100), 180.03425(11), 221.04139(3), 300.02205(5), 301.03057(2), 323.07278(15), 324.07569(3) | 20 |
5.73 | Caffeoylquinic acid isomer I | C16H17O9− | 353.08730 | 353.08445 | 2.85 | 134.03412(5), 135.04199(88), 136.04529(9), 155.03159(2), 161.02054(5), 173.04158(3), 179.03125(42), 191.05265(100), 192.05574(10) | 21 |
6.61 | Caffeoylquinic acid isomer II | C16H17O9− | 353.08730 | 353.08451 | 2.79 | 127.03663(2), 135.04119(1), 161.02043(2), 173.04193(2), 191.05223(100), 192.05582(9) | 22 |
8.56 | Dicaffeoylquinic acid | C25H23O12− | 515.11900 | 515.11622 | 2.78 | 135.04174(16), 161.02063(5), 173.0418(4), 179.03168(63), 191.05216(100), 192.05617(8), 353.08368(11) | 23 |
9.03 | Coumaroyl-caffeoylquinic acid | C25H23O11− | 499.12400 | 499.12251 | 1.49 | 119.04674(9), 135.04166(17), 145.02654(9), 161.02038(6), 163.03645(48), 173.04165(11), 175.03513(5), 179.03127(43), 191.05217(100), 337.08971(3), 353.08228(4) | 24 |
6.47 | Ferulic acid hexoside isomer I | C16H19O9− | 355.10290 | 355.09474 | 8.16 | 134.03356(100), 135.03813(12), 149.05719(24), 178.02328(15), 179.03053(2), 193.04861(13) | 25 |
7.41 | Ferulic acid hexoside isomer II | C16H19O9− | 355.10290 | 355.09961 | 3.29 | 134.03392(100), 135.03837(12), 149.05709(28), 160.01304(60), 161.0172(9), 175.03636(95), 176.04314(48), 177.03876(8), 178.02431(14), 191.06759(38), 193.04678(48) | 26 |
9.10 | Diferuloyl hexoside isomer I | C26H27O12− | 531.15030 | 531.14386 | 6.44 | 134.03391(14), 135.03868(2), 149.05752(12), 160.01295(5), 161.02253(2), 175.03658(31), 176.04043(4), 178.02341(18), 179.02894(3), 193.04684(100), 323.07166(2), 337.08948(9), 338.09245(2) | 27 |
9.90 | Diferuloyl hexoside isomer II | C26H27O12− | 531.15030 | 531.14808 | 2.22 | 134.03405(7), 149.05745(3), 160.01295(21), 161.01814(3), 175.0366(100), 176.04024(14), 191.06746(4), 193.04672(24), 217.04731(3), 235.0577(8), 265.06772(2), 295.07836(4), 337.0884(7) | 28 |
7.48 | Feruloylquinic acid | C17H19O9− | 367.10290 | 367.10101 | 1.89 | 111.0419(12), 127.03717(2), 129.0161(2), 134.03391(30), 135.0374(3), 149.05819(2), 155.03209(2), 173.04201(11), 175.03699(1), 191.05266(100), 192.0559(9), 193.04771(17) | 29 |
9.30 | Feruloylcaffeic acid hexoside | C25H25O12− | 517.13460 | 517.13113 | 3.47 | 133.02547(6), 135.0417(6), 161.02084(100), 162.02429(12), 175.03659(3), 179.03089(13), 193.04684(5), 235.0566(5), 295.07891(2) | 30 |
6.74 | Sinapic acid hexoside | C17H21O10− | 385.11350 | 385.11055 | 2.95 | 113.02213(7), 119.03317(4), 121.02567(3), 149.02057(42), 150.02304(7), 151.04031(3), 163.10578(3), 164.04393(100), 165.04518(8), 179.06841(22), 191.05192(6), 208.0342(22), 223.05432(10) | 31 |
Hydroxycinnamic acid amides | |||||||
Putrescin derivatives | |||||||
4.20 | Coumaroyl putrescine isomer I | C13H19N2O2+ | 235.14410 | 235.14503 | −0.92 | 119.05034(100), 120.05438(12), 147.04476(95) | 32 |
6.00 | Coumaroyl putrescine isomer II | C13H19N2O2+ | 235.14410 | 235.14532 | −1.21 | 119.04990(75), 120.05383(8), 147.04466(100) | 33 |
6.74 | Acetyl coumaroyl putrescine | C15H21N2O3+ | 277.15520 | 277.16500 | −9.80 | 114.10386(5), 119.05061(18), 120.0543(2), 147.04512(100), 148.04836(12) | 34 |
9.23 | Dicoumaroyl putrescine | C22H25N2O4+ | 381.18140 | 381.18389 | −2.49 | 119.04955(13), 147.0447(100), 148.04765(16), 218.11796(9), 219.12087(2), 235.14509(6) | 35 |
5.32 | Caffeoyl putrescine | C13H19N2O3+ | 251.13902 | 251.13988 | −0.86 | 107.05201(7), 117.03487(37), 135.04526(56), 145.02945(48), 162.07814(9), 163.03968(100) | 36 |
8.76 | Coumaroyl caffeoyl putrescine | C22H25N2O5+ | 397.17630 | 397.17849 | −2.19 | 119.05016(8), 135.04464(4), 145.0289(7), 147.04442(100), 148.04842(12), 163.03924(61), 164.04344(7), 218.11843(11), 219.12137(2), 234.11333(5), 235.14418(8), 251.13959(4) | 37 |
8.36 | Dicaffeoyl putrescine | C22H25N2O6+ | 413.17130 | 413.17670 | −5.40 | 135.04424(5), 145.02901(8), 163.03898(100), 234.11269(11), 235.11576(2), 251.13936(9) | 38 |
6.46 | Feruloyl putrescine | C14H21N2O3+ | 265.15520 | 265.15412 | 1.08 | 117.03507(39), 118.03845(5), 134.03801(3), 145.02995(100), 146.03301(13), 149.06094(18), 177.05582(45) | 39 |
9.36 | Coumaroyl feruloyl putrescine | C23H27N2O5+ | 411.19202 | 411.19859 | −6.57 | 117.03461(6), 119.05011(3), 145.02894(37), 147.04492(47), 177.05538(100), 235.14457(5) | 40 |
Spermidine derivatives | |||||||
3.44 | Coumaroyl spermidine | C16H26N3O2+ | 292.20250 | 292.20324 | −0.74 | 112.11279(8), 119.05003(16), 147.04462(100), 148.04781(14), 149.04978(1), 204.10353(2), 218.11811(3) | 41 |
9.97 | Dicoumaroyl spermidine isomer II | C25H32N3O4+ | 438.23930 | 438.24128 | −1.98 | 119.05011(6), 147.04523(100), 148.04879(11), 204.10333(74), 205.10621(12), 218.11903(12), 275.17792(15), 292.20385(39), 293.20666(9), 421.21704(5), 438.24302(5) | 42 |
7.95 | Dicoumaroyl spermidine isomer I | C25H32N3O4+ | 438.23930 | 438.24134 | −2.04 | 119.05028(6), 129.13953(3), 147.04475(97), 148.0479(14), 204.10266(100), 205.10542(22), 218.11761(14), 275.17648(14), 292.20248(36), 293.20543(10), 438.24036(8) | 43 |
10.11 | Tricoumaroyl spermidine | C34H38N3O6+ | 584.27611 | 584.27928 | −3.17 | 147.04502(46), 204.10302(53), 275.17729(18), 292.20361(27), 420.23035(30), 438.24163(100) | 44 |
7.61 | Coumaroyl caffeoyl spermidine | C25H32N3O5+ | 454.23420 | 454.23685 | −2.65 | 147.04493(63), 163.03962(50), 204.10246(100), 205.10556(16), 218.11826(7), 220.09769(54), 221.10796(10), 234.11315(9), 275.17611(11), 291.17134(8), 292.2018(29), 293.20503(7), 308.19744(24) | 45 |
9.76 | Dicoumaroyl caffeoyl spermidine | C34H38N3O7+ | 600.27100 | 600.27508 | −4.08 | 147.0447(37), 163.03957(5), 204.10243(46), 205.10623(7), 275.17727(15), 292.20325(18), 293.20571(5), 308.19857(10), 438.23795(13), 439.24249(4), 454.23543(100), 455.23842(40) | 46 |
8.15 | Diferuloyl spermidine | C27H36N3O6+ | 498.26040 | 498.26193 | −1.53 | 145.02967(16), 177.05612(100), 178.05999(12), 207.06546(5), 234.11363(78), 235.11806(18), 305.19163(9), 322.21536(41), 323.21729(10), 481.24186(4), 498.26193(18), 499.26601(8) | 47 |
8.07 | Coumaroyl feruloyl spermidine | C26H34N3O5+ | 468.24980 | 468.25212 | −2.32 | 145.0298(15), 147.04575(30), 177.05568(91), 178.05933(11), 204.10358(7), 218.11911(11), 234.11367(100), 235.1184(17), 275.17829(4), 292.20441(31), 293.2073(8), 322.2144(11), 468.25237(12) | 48 |
10.18 | Dicoumaroyl feruloyl spermidine | C35H40N3O7+ | 614.28660 | 614.29093 | −4.33 | 147.04457(28), 177.05516(20), 204.10272(37), 205.10568(6), 275.17654(18), 292.2026(15), 322.21375(9), 438.24022(16), 439.24275(6), 450.24011(27), 451.24069(13), 468.25028(100), 469.25447(39) | 49 |
Flavonol aglycones and glycosides | |||||||
Kaempferol and derivatives | |||||||
10.65 | Kaempferol | C15H9O6− | 285.04046 | 285.03807 | 2.39 | 137.01806(14), 143.04616(12), 159.04274(13), 169.06395(11), 171.04227(11), 227.02816(13), 229.04565(12), 285.03685(100) | 50 |
9.03 | Kaempferol-3-O-rhamnoside | C21H19O10− | 431.09780 | 431.09486 | 2.94 | 167.03136(12), 227.03074(17), 228.03391(3), 229.04647(7), 255.02551(35), 256.03171(12), 257.04112(8), 284.02828(100), 285.03481(98), 431.09522(3) | 51 |
10.58 | Kaempferol-3-O-(2″-caffeoyl)-pentoside | C29H23O13− | 579.11390 | 579.11117 | 2.73 | 119.04697(15), 135.04203(7), 161.02031(23), 167.03081(16), 179.03112(21), 273.07266(42), 284.02787(14), 285.03621(100) | 52 |
Quercetin and derivatives | |||||||
8.29 | Quercetin-3-O-pentoside | C20H17O11− | 433.07710 | 433.07418 | 2.92 | 151.00039(5), 178.99513(3), 243.026(2), 255.02592(9), 271.02113(17), 300.02387(100), 301.0298(44) | 53 |
8.56 | Quercetin-3-O-rhamnoside | C21H19O11− | 447.09329 | 447.09113 | 2.15 | 151.00018(8), 178.99427(6), 243.02576(2), 255.02571(9), 271.02108(14), 300.02357(100), 301.03023(70), 302.03304(13), 447.09113(2) | 54 |
8.09 | Quercetin-3-O-hexoside | C21H19O12− | 463.08770 | 463.08461 | 3.09 | 151.00027(4), 178.99675(3), 243.02612(2), 255.02545(6), 271.02096(12), 300.02391(100), 301.02983(45), 302.03285(8), 463.08461(2) | 55 |
8.36 | Quercetin-3-O-(2″-O-malonyl)-hexoside | C24H21O15− | 549.08800 | 549.09078 | −2.78 | 150.9999(2), 178.99483(1), 255.02579(3), 271.02161(5), 272.02413(2), 300.02326(100), 301.0289(44), 302.03184(8), 353.08461(1), 371.20109(1), 463.0827(4), 505.0947(10) | 56 |
Isorhamnetin and derivatives | |||||||
10.65 | Isorhamnetin | C16H11O7− | 315.05050 | 315.04771 | 2.79 | 109.99779(58), 137.99242(22), 165.98716(50), 216.03889(28), 227.03061(21), 229.01063(19), 243.02535(25), 255.02559(32), 256.03198(15), 271.02064(21), 300.02336(100), 301.02656(21) | 57 |
8.43 | Isorhamnetin-3-O-hexoside | C22H21O12− | 477.10330 | 477.10221 | 1.09 | 243.026(1), 255.02565(4), 271.02134(19), 272.026(6), 299.01593(100), 300.02225(50), 301.02528(9), 314.03923(46), 315.04484(19), 316.04814(4), 477.09914(5) | 58 |
8.70 | Isorhamnetin-3-O-(2″-O-malonyl)hexoside | C25H23O15− | 563.10370 | 563.10414 | −0.44 | 255.02482(5), 271.02042(9), 272.02707(5), 299.01571(69), 300.0228(86), 301.02615(16), 314.0392(100), 315.04585(75), 519.10947(12), 520.11297(4) | 59 |
7.95 | Isorhamnetin-3-O-(2″-O-rhamnosyl)-hexoside | C28H31O16− | 623.16176 | 623.16146 | 0.30 | 271.02022(5), 299.01578(44), 300.02102(13), 314.03929(100), 315.04402(30), 459.09002(2) | 60 |
7.75 | Isorhamnetin-3-O-(2″-O-hexosyl)-hexoside | C28H31O17− | 639.15610 | 639.15522 | 0.88 | 271.02061(6), 299.01575(46), 300.02139(20), 301.02526(4), 314.03876(100), 315.04437(45), 459.08813(5), 639.15169(57), 640.15602(23) | 61 |
8.29 | Isorhamnetin-3-O-(2″-rhamnosyl-6″-malonyl)-hexoside | C31H33O19− | 709.16160 | 709.15973 | 1.87 | 245.08653(16), 299.01595(22), 300.02294(7), 314.03893(100), 315.04304(41), 477.09566(34), 478.09593(10), 503.11065(6), 665.16689(80), 666.16824(39) | 62 |
8.02 | Isorhamnetin-3-O-(2″-hexosyl-6″-malonyl)-hexoside | C31H33O20− | 725.15650 | 725.15726 | −0.76 | 271.02093(3), 299.01569(25), 300.02244(10), 314.0393(72), 315.04471(30), 501.10108(4), 519.10951(2), 681.16378(100), 682.16645(41) | 63 |
Syringetin and derivatives | |||||||
10.78 | Syringetin | C17H13O8− | 345.06159 | 345.05680 | 4.79 | 109.99756(17), 138.99983(12), 149.02112(19), 164.97943(32), 243.02591(23), 259.02077(16), 271.02049(17), 287.01597(19), 315.01085(78), 316.01337(16), 330.03454(100), 331.03685(21) | 64 |
8.55 | Syringetin-3-O-hexoside | C23H23O13− | 507.11390 | 507.11478 | −0.88 | 286.00826(7), 301.03162(16), 302.03497(3), 314.00272(2), 329.02655(100), 330.03089(27), 331.03453(5), 344.04981(29), 345.05397(10), 507.11066(12), 508.11203(4) | 65 |
8.83 | Syringetin-3-O-(6″-O-acetyl)-hexoside | C25H25O14− | 549.12440 | 549.12488 | −0.48 | 286.00936(5), 287.01499(6), 301.02914(7), 302.03518(11), 314.0083(3), 329.02504(100), 330.03298(67), 331.03721(13), 344.04855(74), 345.05743(37), 549.12063(6) | 66 |
8.02 | Syringetin-3-O-(2″-O-rhamnosyl)-hexoside | C29H33O17− | 653.17180 | 653.17166 | 0.14 | 286.0089(2), 301.032(6), 314.00922(2), 329.02603(51), 330.03023(17), 331.03492(3), 344.04923(100), 345.05443(32), 346.05553(6), 489.10589(2), 653.16742(50), 654.17165(20) | 67 |
7.82 | Syringetin-3-O-(2″-O-hexosyl)-hexoside | C29H33O18− | 669.16670 | 669.16846 | −1.76 | 301.03153(7), 329.02541(60), 330.03067(29), 331.03945(5), 344.04997(100), 345.05497(52), 489.09743(4), 669.16273(81), 670.16648(29) | 68 |
8.35 | Syringetin-3-O-(2″-rhamnosyl-6″-malonyl)-hexoside | C32H35O20− | 739.17220 | 739.17622 | −4.02 | 274.06715(2), 329.02476(32), 330.03149(11), 331.02472(2), 343.04504(2), 344.05001(77), 345.05516(23), 507.10638(2), 531.10621(3), 695.17793(100), 696.18165(41), 697.18544(13) | 69 |
7.61 | Syringetin-3-O-(2″-hexosyl-6″-malonyl)-hexoside | C32H35O21− | 755.16710 | 755.17041 | −3.31 | 329.02716(10), 343.04169(25), 344.0484(12), 345.05686(59), 346.05923(13), 387.068(17), 506.10208(40), 507.10867(42), 549.12052(100), 550.12257(31), 591.12989(24), 711.17232(82), 712.17547(37) | 70 |
Dihydrochalcone and derivatives | |||||||
10.51 | Phloretin | C15H13O5− | 273.07630 | 273.07336 | 2.94 | 119.04713(77), 120.05022(8), 123.04207(100), 124.0449(10), 125.02151(27), 149.0205(4), 151.0001(18), 166.02379(3), 167.03139(47), 168.03575(5), 179.03097(3), 189.05214(20) | 71 |
8.96 | Phlorizin | C21H23O10− | 435.12910 | 435.12522 | 3.88 | 119.04741(4), 123.04197(11), 125.02092(11), 149.02096(1), 167.03131(100), 168.0345(10), 179.03118(11), 273.07283(55), 274.0765(12) | 72 |
11.46 | Phloretin-4′-O-(6″-benzoyl)-hexoside | C28H27O11− | 539.15530 | 539.15135 | 3.95 | 123.04213(4), 167.03152(56), 168.03385(6), 273.07201(100), 274.07703(21) | 73 |
11.72 | Phloretin-4′-O-(6″-cinnamoyl)-hexoside | C30H29O11− | 565.17100 | 565.16877 | 2.23 | 123.04197(5), 167.03137(47), 168.03374(5), 273.07284(100), 274.07638(18) | 74 |
8.49 | Phloretin-2′-O-(6″-pentosyl)-hexoside | C26H31O14− | 567.17146 | 567.16671 | 4.74 | 123.04146(3), 125.02106(5), 167.03093(28), 273.07291(100) | 75 |
10.11 | Phloretin-4′-O-(6″-caffeoyl)-hexoside | C30H29O13− | 597.16136 | 597.15946 | 1.90 | 125.01969(29), 135.04115(25), 161.02086(20), 167.03113(68), 273.07301(100), 435.07586(18) | 76 |
10.51 | Phloretin-4′-O-(6″-coumaroyl)-hexoside | C30H29O12− | 581.16645 | 581.16153 | 4.92 | 167.03146(38), 273.07312(100) | 77 |
10.65 | Phloretin-4′-O-(6″-feruloyl)-hexoside | C31H31O13− | 611.17702 | 611.17327 | 3.75 | 167.03134(33), 191.03157(5), 209.04169(4), 273.07264(100), 297.07234(10), 315.08316(5) | 78 |
9.70 | 3-Hydroxyphloretin | C15H13O6− | 289.07120 | 289.06787 | 3.33 | 109.02616(7), 123.04138(100), 124.04481(10), 125.02078(39), 135.041(15), 150.99938(9), 161.05586(5), 167.0315(74), 168.03428(7), 179.03461(3), 187.03663(1), 188.03959(2) | 79 |
8.49 | 3-Hydroxyphloretin-2′-O-hexoside | C21H23O11− | 451.12400 | 451.12041 | 3.59 | 109.02592(2), 123.04229(9), 125.02098(22), 167.03115(100), 168.03488(10), 271.05668(4), 272.06111(1), 289.06746(14), 290.07015(2) | 80 |
8.09 | 3-Hydroxyphloretin-2′-O-(6″-pentosyl)-hexoside | C26H31O15− | 583.16630 | 583.16519 | 1.11 | 123.04405(2), 125.02095(29), 167.03115(96), 168.03423(8), 245.08069(11), 246.08852(7), 247.09512(6), 271.05776(10), 289.06728(100), 290.07137(22) | 81 |
Flavanone and Flavan-3-ols | |||||||
10.51 | Naringenin | C15H11O5− | 271.06060 | 271.05721 | 3.39 | 107.01109(15), 119.04705(100), 120.05044(9), 123.04165(98), 124.0445(6), 125.02133(29), 135.04151(3), 151.00024(27), 152.00319(4), 167.0309(46), 189.05195(20) | 82 |
7.28 | Epicatechin | C15H13O6− | 289.07120 | 289.06865 | 2.55 | 109.02633(99), 121.02579(27), 122.03394(20), 123.04149(100), 125.02054(46), 135.03957(13), 137.01982(20), 149.02079(20), 151.0349(40), 161.05708(16), 187.03869(12), 203.0676(23), 221.07693(14) | 83 |
Organic acid and derivatives | |||||||
0.74 | Malic acid | C4H5O5− | 133.01370 | 133.01134 | 2.36 | 107.03461(5), 115.00018(100), 117.0057(3), 133.01289(5), 134.04167(3) | 84 |
5.99 | Isopropylmalic acid | C7H11O5− | 175.06060 | 175.05724 | 3.36 | 113.05706(54), 114.06148(5), 115.03661(100), 116.04104(7), 131.06927(3) | 85 |
0.87 | Citric acid | C6H7O7− | 191.01920 | 191.01841 | 0.79 | 111.00557(100), 112.00888(7) | 86 |
0.60 | Quinic acid | C7H11O6− | 191.05560 | 191.04957 | 6.03 | 108.01788(36), 109.02672(85), 110.02807(4), 111.00533(100), 112.03631(6), 113.02026(9), 127.03732(60), 137.01908(12), 171.02481(7), 173.0456(6), 191.0522(81), 192.05676(6) | 87 |
Compound Name | POLLEN SAMPLES (mg/100 g FW Pollen) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Red Aroma | Discovery | Summerred | Rubinstep | Elstar | Dolgo | Professor Sprenger | Asfari | Eden | Fryd | Katja | |
Phenolic acids and derivatives a | |||||||||||
Hydroxybenzoic acids and derivatives | |||||||||||
Hydroxybenzoic acid | <LOQ | 12.78 | 8.03 | 8.06 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 14.54 |
Hydroxybenzoic acid hexoside isomer I | <LOQ | 8.90 | 8.79 | 13.39 | <LOQ | 7.40 | <LOQ | 9.08 | <LOQ | <LOQ | <LOQ |
Hydroxybenzoic acid hexoside isomer II | 31.52 | 107.24 | 80.91 | 33.19 | 59.72 | 114.40 | 63.84 | 57.23 | 21.97 | 27.64 | 35.17 |
Dihydroxybenzoic acid hexoside isomer I | - | <LOQ | <LOQ | <LOQ | <LOQ | 7.85 | 16.39 | <LOQ | <LOQ | <LOQ | <LOQ |
Dihydroxybenzoic acid hexoside isomer II | <LOQ | <LOQ | 8.33 | 7.60 | 10.90 | 24.74 | 34.64 | <LOQ | <LOQ | <LOQ | <LOQ |
Vanillin | <LOQ | <LOQ | <LOQ | - | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Vanilloside | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Vanilloloside | - | <LOQ | - | - | - | <LOQ | - | <LOQ | <LOQ | <LOQ | <LOQ |
Vanillic acid hexoside isomer I | 13.45 | 15.97 | 13.61 | 20.70 | 7.98 | 14.81 | 7.45 | 13.72 | 6.86 | 7.31 | 6.88 |
Vanillic acid hexoside isomer II | 27.12 | 29.14 | 26.46 | 53.43 | 28.15 | 26.10 | 16.59 | 53.34 | 12.85 | 15.57 | 16.93 |
Gallic acid hexoside | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 7.88 | 19.09 | <LOQ | <LOQ | <LOQ | <LOQ |
Syringic acid hexoside | 8.40 | <LOQ | 8.55 | 16.16 | 8.14 | 8.65 | <LOQ | 11.60 | <LOQ | <LOQ | <LOQ |
∑ | 80.48 | 174.02 | 154.68 | 152.53 | 114.88 | 211.81 | 158.00 | 144.97 | 41.67 | 50.52 | 73.52 |
Hydroxycinnamic acids and derivatives | |||||||||||
3,4-Dimethoxycinnamic acid | 67.20 | 76.25 | 20.33 | 45.82 | 60.10 | 84.21 | 20.55 | 68.17 | 42.13 | 71.63 | 39.97 |
Coumaric acid hexoside | 49.95 | 51.69 | 45.29 | 9.25 | 52.68 | 55.08 | 23.63 | 39.79 | 30.66 | 49.39 | 46.93 |
Coumaroylquinic acid isomer I | 16.34 | 15.75 | 17.68 | 28.46 | 26.64 | 11.27 | 19.01 | 18.13 | 16.57 | 13.47 | 10.56 |
Coumaroylquinic acid isomer II | 31.46 | 34.84 | 45.19 | 41.57 | 53.21 | 41.42 | 43.02 | 72.04 | 46.90 | 27.67 | 34.09 |
Caffeic acid | 9.78 | - | 8.36 | 7.99 | 9.51 | 7.05 | 17.41 | 11.44 | - | 8.26 | - |
Caffeoyl deoxytetronic acid | - | - | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | - | <LOQ | - | <LOQ |
Caffeic acid hexoside | 48.90 | 63.30 | 53.06 | 68.17 | 61.17 | 65.44 | 74.93 | 100.08 | 57.99 | 74.49 | 43.97 |
Dicaffeoyl hexoside | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 12.33 | <LOQ |
Caffeoylquinic acid isomer I | 69.65 | 90.24 | 45.00 | 102.25 | 47.86 | 87.19 | 103.95 | 75.56 | 57.88 | 23.53 | 34.57 |
Caffeoylquinic acid isomer II | 93.44 | 107.56 | 84.61 | 94.11 | 94.88 | 102.10 | 93.78 | 99.43 | 82.25 | 51.02 | 75.28 |
Dicaffeoylquinic acid | 21.30 | 28.13 | 26.64 | 22.57 | 21.25 | 17.68 | 18.66 | 50.24 | 35.80 | 16.84 | 34.67 |
Coumaroyl-caffeoylquinic acid | 8.22 | 8.65 | 9.32 | 13.16 | 10.19 | 9.21 | 16.42 | 15.55 | 12.93 | <LOQ | 11.31 |
Ferulic acid hexoside isomer I | - | 14.64 | 14.16 | 18.21 | 10.47 | 11.96 | 10.96 | 18.45 | 9.45 | 18.86 | 9.40 |
Ferulic acid hexoside isomer II | 11.22 | 10.54 | <LOQ | - | - | - | - | 11.77 | 20.20 | - | 12.23 |
Diferuloyl hexoside isomer I | 11.55 | 12.60 | 12.61 | <LOQ | 7.98 | 9.31 | 9.52 | 14.31 | <LOQ | 12.03 | - |
Diferuloyl hexoside isomer II | 17.03 | 21.75 | 15.31 | 25.12 | 16.44 | 22.75 | 7.32 | 19.88 | 18.98 | 10.59 | 27.66 |
Feruloylquinic acid | 8.18 | 16.24 | 19.14 | 12.17 | 6.50 | 39.34 | 48.14 | 14.16 | 40.03 | <LOQ | 19.55 |
Feruloylcaffeic acid hexoside | 14.23 | 11.16 | <LOQ | 15.17 | 8.70 | 18.43 | <LOQ | 13.30 | 10.63 | 14.02 | 7.61 |
Sinapic acid hexoside | - | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
∑ | 478.44 | 563.35 | 416.71 | 504.03 | 487.59 | 582.44 | 507.31 | 642.32 | 482.40 | 404.15 | 407.79 |
∑∑ | 558.92 | 737.37 | 571.38 | 656.55 | 602.47 | 794.25 | 665.31 | 787.29 | 524.07 | 454.66 | 481.30 |
Flavonol aglycones and glycosides b | |||||||||||
Kaempferol and derivatives | |||||||||||
Kaempferol | <LOQ | <LOQ | 12.55 | 7.55 | <LOQ | <LOQ | <LOQ | <LOQ | 15.93 | 6.09 | 6.30 |
Kaempferol-3-O-rhamnoside | 16.75 | 8.14 | 14.07 | 25.65 | 5.84 | 27.06 | 7.73 | <LOQ | 24.35 | 9.93 | 17.50 |
Kaempferol 3-O-(2″-caffeoyl)-pentoside | <LOQ | 5.49 | <LOQ | 10.10 | <LOQ | <LOQ | <LOQ | 18.29 | 10.36 | <LOQ | <LOQ |
∑ | 16.75 | 13.62 | 26.61 | 43.30 | 5.84 | 27.06 | 7.73 | 18.29 | 50.64 | 16.03 | 23.79 |
Quercetin and derivatives | |||||||||||
Quercetin-3-O-pentoside | 31.32 | 34.70 | 38.34 | 40.52 | 33.30 | 49.83 | 55.10 | 40.28 | 31.89 | 24.06 | 29.31 |
Quercetin-3-O-rhamnoside | 33.60 | 16.51 | 22.94 | 27.14 | 16.63 | 35.10 | 20.77 | 11.52 | 13.92 | 17.19 | 10.82 |
Quercetin-3-O-hexoside | 18.16 | 20.83 | 33.99 | 45.53 | 27.48 | 50.64 | 80.80 | 29.16 | 25.67 | 16.30 | 20.62 |
Quercetin-3-O-(2″-O-malonyl)-hexoside | <LOQ | <LOQ | - | <LOQ | <LOQ | 12.65 | 16.25 | - | - | <LOQ | - |
∑ | 83.09 | 72.04 | 95.27 | 113.19 | 77.41 | 148.22 | 172.92 | 80.96 | 71.47 | 57.54 | 60.74 |
Isorhamnetin and derivatives | |||||||||||
Isorhamnetin | 22.08 | 17.75 | 65.82 | 19.08 | 11.95 | <LOQ | 28.34 | - | 70.86 | 37.53 | 78.54 |
Isorhamnetin-3-O-hexoside | 54.20 | - | - | - | 54.72 | 37.28 | 53.36 | - | 74.08 | - | - |
Isorhamnetin-3-O-(2″-O-malonyl)hexoside | 50.95 | 59.88 | 61.57 | 61.64 | 54.36 | 29.00 | 71.70 | 32.72 | 69.01 | 81.03 | 82.36 |
Isorhamnetin-3-O-(2″-O-rhamnosyl)-hexoside | - | 14.64 | 11.28 | <LOQ | - | <LOQ | 5.67 | 5.61 | 28.54 | 25.31 | 15.56 |
Isorhamnetin-3-O-(2″-O-hexosyl)-hexoside | 29.08 | 44.14 | 36.05 | 49.51 | 23.79 | 7.97 | 17.65 | 23.44 | 53.84 | 84.52 | 68.51 |
Isorhamnetin-3-O-(2″-rhamnosyl-6″-malonyl)-hexoside | - | - | - | - | - | <LOQ | - | <LOQ | <LOQ | <LOQ | <LOQ |
Isorhamnetin-3-O-(2″-hexosyl-6″-malonyl)-hexoside | 34.45 | 42.55 | 27.02 | 57.24 | 20.46 | 19.27 | 26.34 | 17.10 | 46.46 | 65.58 | 69.06 |
∑ | 190.75 | 178.96 | 201.74 | 187.48 | 165.28 | 93.53 | 203.06 | 78.87 | 342.78 | 293.98 | 314.03 |
Syringetin and derivatives | |||||||||||
Syringetin | 20.42 | 19.78 | 73.95 | 12.80 | 28.03 | 10.27 | 25.52 | 18.14 | 72.17 | 25.32 | 107.59 |
Syringetin-3-O-hexoside | 10.76 | 6.20 | 15.23 | 7.31 | 16.04 | 5.53 | 20.18 | <LOQ | 16.06 | 43.64 | 34.35 |
Syringetin-3-O-(6″-O-acetyl)-hexoside | - | - | - | - | 43.81 | - | - | - | - | 23.26 | 30.76 |
Syringetin-3-O-(2″-O-rhamnosyl)-hexoside | 12.82 | 9.75 | 17.41 | <LOQ | 20.26 | 14.57 | 7.11 | 23.41 | 20.40 | 18.00 | 16.31 |
Syringetin-3-O-(2″-O-hexosyl)-hexoside | - | - | <LOQ | <LOQ | - | - | - | - | 7.09 | 10.03 | 13.42 |
Syringetin-3-O-(2″-rhamnosyl-6″-malonyl)-hexoside | <LOQ | <LOQ | - | - | <LOQ | <LOQ | <LOQ | <LOQ | 8.45 | 5.67 | 9.37 |
Syringetin-3-O-(6″-hexosyl-6″-malonyl)-hexoside | - | <LOQ | 13.20 | <LOQ | 13.44 | - | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
∑ | 44.01 | 35.74 | 119.80 | 20.10 | 121.58 | 30.38 | 52.82 | 41.56 | 124.17 | 125.91 | 211.79 |
∑∑ | 334.59 | 300.37 | 443.42 | 364.06 | 370.12 | 299.18 | 436.53 | 219.67 | 589.07 | 493.46 | 610.36 |
Dihydrochalcone and derivatives b | |||||||||||
Phloretin | 7.98 | 43.18 | 49.68 | 7.81 | 28.87 | 31.83 | 111.20 | 56.70 | 67.07 | 16.77 | 10.86 |
Phlorizin | 87.55 | 85.21 | 87.57 | 59.54 | 62.21 | 57.53 | 72.39 | 68.67 | 109.64 | 102.99 | 115.81 |
Phloretin-4′-O-(6″-benzoyl)-hexoside | - | - | - | - | - | - | 18.39 | - | - | - | - |
Phloretin-4′-O-(6″-cinnamoyl)-hexoside | <LOQ | <LOQ | - | - | <LOQ | - | 10.14 | - | - | - | - |
Phloretin-2′-O-(6″-pentosyl)-hexoside | - | 32.28 | 16.94 | 46.33 | 11.87 | 16.46 | 12.15 | 7.69 | - | 10.52 | - |
Phloretin-4′-O-(6″-caffeoyl)-hexoside | <LOQ | 5.70 | <LOQ | - | <LOQ | <LOQ | 26.54 | 7.15 | <LOQ | <LOQ | <LOQ |
Phloretin-4′-O-(6″-coumaroyl)-hexoside | 10.99 | 17.50 | <LOQ | 14.04 | 18.45 | 8.51 | 50.63 | 15.69 | 6.82 | <LOQ | 5.96 |
Phloretin-4′-O-(6″-feruloyl)-hexoside | 36.59 | 34.93 | 8.72 | 36.04 | 54.01 | 33.97 | 57.18 | 59.01 | 32.46 | 19.84 | 23.75 |
3-Hydroxyphloretin | <LOQ | <LOQ | <LOQ | - | <LOQ | - | 9.33 | <LOQ | <LOQ | <LOQ | - |
3-Hydroxyphloretin-2′-O-hexoside | 27.40 | 28.43 | 27.18 | 18.74 | 33.91 | - | 12.32 | - | 28.87 | 24.04 | 23.47 |
3-Hydroxyphloretin-2′-O-(6″-pentosyl)-hexoside | 15.43 | 19.86 | <LOQ | 8.04 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 8.74 |
∑ | 185.95 | 267.08 | 190.10 | 206.67 | 209.31 | 148.29 | 380.27 | 214.91 | 244.86 | 174.16 | 188.59 |
Flavanone and Flavan-3-ols b | |||||||||||
Naringenin | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | 5.92 | 5.37 | 9.17 | 11.79 |
Epicatechin | <LOQ | 17.87 | 14.56 | 9.64 | 5.38 | 18.58 | 43.52 | 15.77 | 6.53 | 10.91 | <LOQ |
∑ | - | 17.87 | 14.56 | 9.64 | 5.38 | 18.58 | 43.52 | 21.69 | 11.90 | 20.08 | 11.79 |
∑∑∑ | 1079.45 | 1322.69 | 1219.46 | 1236.93 | 1187.28 | 1260.30 | 1525.63 | 1243.56 | 1369.91 | 1142.36 | 1292.03 |
kDa (Ranges) | No. Band | Pollen Samples (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Red Aroma | Discovery | Summerred | Rubinstep | Elstar | Dolgo | Professor Sprenger | Asfari | Eden | Fryd | Katja | ||
>95 kDa | 1 | 0.72 | 0.55 | 0.69 | 0.46 | - | 1.53 | 0.95 | - | - | - | - |
2 | 1.36 | 1.26 | 1.69 | 1.96 | 1.16 | 1.98 | 2.17 | 1.99 | 1.66 | 1.70 | 1.83 | |
3 | - | 0.89 | 1.15 | 0.49 | 0.83 | 1.16 | 1.23 | 0.84 | 1.09 | - | - | |
∑ | 2.09 | 2.70 | 3.53 | 2.90 | 1.99 | 4.67 | 4.35 | 2.83 | 2.74 | 1.70 | 1.83 | |
95–66 kDa | 4 | - | - | 0.82 | - | - | - | - | - | 0.98 | - | - |
5 | 0.68 | 0.80 | 0.78 | 0.92 | 1.35 | 1.52 | 1.97 | 1.12 | 1.07 | 1.51 | 0.92 | |
6 | 0.92 | 1.08 | 1.17 | 1.61 | 0.97 | 1.00 | 1.73 | 1.67 | 1.46 | 1.41 | 1.16 | |
7 | 1.83 | 1.79 | 2.86 | 2.05 | 2.09 | 2.22 | 3.12 | 2.46 | 2.58 | 2.26 | 2.15 | |
∑ | 3.42 | 3.67 | 5.63 | 4.58 | 4.42 | 4.75 | 6.81 | 5.25 | 6.08 | 5.17 | 4.23 | |
66–52 kDa | 8 | 0.83 | 0.95 | 1.06 | - | 0.82 | - | 0.95 | 0.82 | 1.42 | 1.54 | 1.42 |
9 | - | - | 1.14 | - | 1.34 | 1.64 | 1.36 | 1.15 | 0.91 | 1.11 | 1.43 | |
10 | - | - | 1.40 | - | - | - | - | - | 0.89 | - | - | |
11 | 1.57 | 1.11 | 1.49 | - | 1.41 | - | 1.90 | 1.46 | 2.05 | 1.28 | - | |
12 | 5.15 | 2.77 | 4.62 | 3.31 | 4.09 | 3.82 | 3.90 | 3.29 | 3.20 | 3.76 | 3.56 | |
13 | - | 1.20 | 0.95 | 0.79 | - | - | 1.58 | 1.05 | 1.64 | - | 1.06 | |
∑ | 7.55 | 6.02 | 10.67 | 4.10 | 7.66 | 5.46 | 9.69 | 7.78 | 10.10 | 7.68 | 7.46 | |
52–37 kDa | 14 | 2.00 | 0.77 | 2.33 | - | 1.31 | - | 1.59 | 1.28 | 1.04 | 1.86 | 0.73 |
15 | 2.70 | 2.85 | 3.06 | 2.09 | 2.13 | 2.05 | 2.37 | 2.48 | 2.38 | 3.41 | 1.94 | |
16 | 1.96 | 1.92 | 2.69 | 2.54 | 2.23 | 2.13 | 2.63 | 2.39 | 2.23 | 2.40 | 1.85 | |
17 | 1.86 | 1.87 | 1.24 | 1.32 | 1.36 | - | 1.70 | 1.41 | 1.94 | 1.59 | 1.40 | |
∑ | 8.53 | 7.42 | 9.32 | 5.95 | 7.03 | 4.19 | 8.29 | 7.57 | 7.58 | 9.26 | 5.92 | |
37–30 kDa | 18 | 1.58 | 1.76 | 2.27 | 1.94 | 2.00 | 1.33 | 1.92 | 2.38 | 1.66 | 3.00 | 1.84 |
19 | 0.99 | 1.16 | 0.87 | 1.07 | 1.12 | 1.28 | 1.36 | 1.58 | 1.26 | 1.34 | 1.30 | |
20 | 1.92 | 2.48 | 2.37 | 2.24 | 1.61 | 1.96 | 2.11 | 2.36 | 1.96 | 2.33 | 2.59 | |
21 | 3.41 | 1.97 | 1.96 | 2.25 | 2.23 | 2.11 | 2.55 | 2.11 | 3.08 | 2.02 | 1.61 | |
22 | 2.06 | 2.18 | 5.59 | 3.01 | 2.90 | 3.59 | 3.25 | 3.34 | 4.32 | 4.32 | 2.90 | |
23 | - | 1.58 | 1.39 | - | 0.97 | - | - | - | 1.21 | - | - | |
∑ | 9.96 | 11.13 | 14.45 | 10.50 | 10.84 | 10.28 | 11.19 | 11.77 | 13.49 | 13.01 | 10.25 | |
30–16 kDa | 24 | - | 1.15 | 2.16 | - | 1.62 | - | 1.91 | 1.56 | 1.38 | 1.05 | 1.08 |
25 | 3.41 | 3.78 | 3.08 | 3.78 | 4.19 | 3.07 | 2.76 | 3.71 | 3.32 | 4.36 | 3.66 | |
26 | - | 1.46 | 2.32 | - | - | 2.29 | - | 1.58 | 1.53 | - | 2.06 | |
27 | - | 0.98 | 1.44 | - | 1.41 | 2.81 | 5.84 | 1.94 | 1.21 | 1.57 | - | |
28 | 7.16 | 8.23 | 2.76 | 8.71 | 10.49 | 2.23 | - | 7.43 | 3.14 | 3.02 | 9.68 | |
29 | - | 1.68 | 2.73 | 1.52 | - | 2.28 | 3.08 | 2.34 | 4.54 | 12.18 | 2.33 | |
30 | 7.66 | 9.21 | 4.93 | 8.25 | 8.32 | 8.22 | 6.74 | 7.78 | 5.19 | - | 7.93 | |
31 | 5.40 | 4.62 | 5.04 | 6.40 | 6.66 | 7.00 | 5.64 | 5.50 | 5.90 | 7.67 | 7.66 | |
32 | 6.95 | 5.34 | 5.44 | 4.80 | 6.05 | 3.43 | 5.51 | 5.18 | 5.34 | 6.52 | 5.34 | |
∑ | 30.58 | 36.45 | 29.90 | 33.45 | 38.74 | 31.35 | 31.48 | 37.03 | 31.55 | 36.37 | 39.74 | |
16–6.5 kDa | 33 | 4.77 | 3.74 | 3.47 | 2.76 | 1.61 | 4.65 | 3.39 | 2.54 | 3.42 | 3.31 | 2.77 |
34 | 11.46 | 9.86 | 6.42 | 11.06 | 9.47 | 10.37 | 8.18 | 8.91 | 9.00 | 11.43 | 11.48 | |
35 | 5.50 | 4.05 | 6.41 | 5.12 | 4.18 | 4.97 | 4.83 | 2.42 | 3.19 | 3.17 | 2.28 | |
36 | 4.81 | 4.20 | 4.02 | 3.97 | 4.12 | 5.96 | 3.77 | 3.69 | 3.67 | 2.81 | 3.50 | |
∑ | 26.55 | 21.85 | 20.33 | 22.91 | 19.38 | 25.95 | 20.17 | 17.55 | 19.28 | 20.71 | 20.03 | |
<6.5 kDa | 37 | 4.21 | 3.56 | 1.15 | 4.20 | 2.40 | - | 1.77 | 3.05 | 2.37 | - | 2.51 |
38 | 7.10 | 5.57 | 3.40 | 6.87 | 5.75 | 9.28 | 5.25 | 5.99 | 5.42 | 6.10 | 7.13 | |
39 | - | 1.62 | 1.62 | 4.54 | 1.78 | 4.07 | 1.00 | 1.18 | 1.38 | - | 0.89 | |
∑ | 11.31 | 10.76 | 6.17 | 15.62 | 9.93 | 13.36 | 8.02 | 10.23 | 9.17 | 6.10 | 10.53 | |
∑∑ | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotirić Akšić, M.M.; Pešić, M.B.; Pećinar, I.; Dramićanin, A.; Milinčić, D.D.; Kostić, A.Ž.; Gašić, U.; Jakanovski, M.; Kitanović, M.; Meland, M. Diversity and Chemical Characterization of Apple (Malus sp.) Pollen: High Antioxidant and Nutritional Values for Both Humans and Insects. Antioxidants 2024, 13, 1374. https://doi.org/10.3390/antiox13111374
Fotirić Akšić MM, Pešić MB, Pećinar I, Dramićanin A, Milinčić DD, Kostić AŽ, Gašić U, Jakanovski M, Kitanović M, Meland M. Diversity and Chemical Characterization of Apple (Malus sp.) Pollen: High Antioxidant and Nutritional Values for Both Humans and Insects. Antioxidants. 2024; 13(11):1374. https://doi.org/10.3390/antiox13111374
Chicago/Turabian StyleFotirić Akšić, Milica M., Mirjana B. Pešić, Ilinka Pećinar, Aleksandra Dramićanin, Danijel D. Milinčić, Aleksandar Ž. Kostić, Uroš Gašić, Mihajlo Jakanovski, Marko Kitanović, and Mekjell Meland. 2024. "Diversity and Chemical Characterization of Apple (Malus sp.) Pollen: High Antioxidant and Nutritional Values for Both Humans and Insects" Antioxidants 13, no. 11: 1374. https://doi.org/10.3390/antiox13111374
APA StyleFotirić Akšić, M. M., Pešić, M. B., Pećinar, I., Dramićanin, A., Milinčić, D. D., Kostić, A. Ž., Gašić, U., Jakanovski, M., Kitanović, M., & Meland, M. (2024). Diversity and Chemical Characterization of Apple (Malus sp.) Pollen: High Antioxidant and Nutritional Values for Both Humans and Insects. Antioxidants, 13(11), 1374. https://doi.org/10.3390/antiox13111374