The Hidden Dangers: E-Cigarettes, Heated Tobacco, and Their Impact on Oxidative Stress and Atherosclerosis—A Systematic Review and Narrative Synthesis of the Evidence
Abstract
:1. Introduction
2. Epidemiology
3. Electronic Cigarette
4. Heated Tobacco Products
5. Effects of Smoking on the Endothelium and Oxidative Stress
Author | Type of Study | Exposure | Findings |
---|---|---|---|
Giebe S [29] | In vitro | Primary human endothelial cells exposed to aqueous smoke extracts (AqEs) of a heated tobacco product (HTP), an electronic cigarette (e-cig), a conventional cigarette (3R4F), and pure nicotine. | -3R4F stimulation, but not alternative smoking products, reduced endothelial cell viability and wound healing. -Aqueous extracts of different smoking products activated dose-dependent NRF2 antioxidant defense system in primary human endothelial cells. -Smoking leads to a statistically increased adhesion of monocytes to endothelial cells compared to controls (p < 0.05). -Stimulation with tobacco and nicotine products induces pro-inflammatory endothelial phenotype. |
Giebe S [30] | In vitro | Monocytes exposed to aqueous smoke extracts (AqEs) of a heated tobacco product (HTP), an electronic cigarette (e-cig), a conventional cigarette (3R4F), and pure nicotine (nic). | -3R4F, but not next-generation tobacco, and nicotine products (NGPs) mediated cytotoxic effects on the cell viability of human monocytes. -Antioxidative signaling pathways are activated by the AqEs of tobacco and nicotine products. -Treatment with AqEs of different tobacco products regulate pro-inflammatory signaling pathways. |
Horinouchi T [31] | In vitro | Human vascular endothelial cells exposed to the smoke of heated cigarette-derived smoke extract (hCSE) of three different cigarette heating devices and burned CSE (bCSE). | -hCSE/bCSE reduced the mitochondrial metabolic activity (MTS) in a statistically significant way (p < 0.01) in terms of delayed damage. The inhibitory effects were attenuated by removing the particulate phase from the mainstream smoke. -hCSE/bCSE reduced eNOS phosphorylation with different kinds of potency depending on the different kinds of devices. |
Fetterman JL [32] | In vitro | Isolated endothelial cells from non-smoker and smoker participants who used nonmenthol- or menthol-flavored tobacco cigarettes; human aortic endothelial cells incubated with vanillin, menthol, cinnamaldehyde, eugenol, dimethylpyrazine, diacetyl, isoamyl acetate, eucalyptol, and acetylpyrazine. | -Endothelial cells collected from nonmenthol and menthol cigarette smokers had lower NO production in response to stimulation compared with cells from non-smokers (p = 0.003 non-smokers versus nonmenthol cigarette smokers; p = 0.012 non-smokers versus menthol cigarette smokers). -The impairment in stimulated nitric oxide production was similar between nonmenthol cigarette smokers and menthol cigarette smokers (p = 0.86). -Lower concentrations of selected flavors (vanillin, menthol, cinnamaldehyde, eugenol, and acetylpyridine) induced both inflammation and impaired A23187-stimulated nitric oxide production consistent with endothelial dysfunction. |
Mohammadi L. [33] | In vitro and human | Chronic e-cigarette users, chronic cigarette smokers, and nonusers: FMD and cultured endothelial cells. | -FMD was reduced in both e-cigarette users and cigarette smokers relative to the nonusers (5.3 ± 2.3% and 6.5 ± 2.8% vs. 10.7 ± 5.2%, respectively, adjusted p = 0.0496 for smokers vs. nonusers, 0.0020 for ecig vs. nonusers). -Smokers and e-cigarette users had significantly lower NO production after stimulation than nonusers (adjusted p = 0.0496 for smokers vs. nonusers, 0.0093 for e-cigs vs. nonusers). -Clinically observed vascular dysfunction in smokers and e-cigarette users is paralleled by the inhibitory effects of serum on endothelial cell NO production, although the correlation was not observed on the per-participant level by Pearson analysis (r = 0.2). -S100A8, HMGB1, IFN-β, soluble ICAM-1, vWF, and myeloperoxidase (MPO) were unchanged in smokers but were substantially higher in e-cigarette users than in the other groups. -IL-1β (trend as p = 0.06), RAGE, and soluble PECAM-1 were unchanged in e-cigarette users and were elevated in cigarette smokers. -There was a significant increase in the level of RAGE ligands S100A8 and HMGB1 in serum from e-cigarette users compared to the other groups. |
Nabazivadeh P [34] | Animal | Pre-exposure and post-exposure FMD of mice exposed to IQOS aerosol from single Heatsticks, mainstream smoke from single Marlboro Red cigarettes. | -FMD was reduced after 15 s exposures to IQOS aerosol (10.6 ± 2.9% pre-exposure vs. 4.5 ± 1.9% post-exposure, p = 0.0009) and cigarette smoke (10.6 ± 2.0% pre-exposure vs. 4.6 ± 1.3% post-exposure, p = 0.0004). FMD was not affected in the clean air control group (8.3 ± 1.9% vs. 8.8 ± 4.5%, p = 0.82). -FMD was impaired after 5 s exposures to IQOS aerosol and cigarette smoke (10.8 ± 1.0% pre-exposure vs. 3.8 ± 2.6% post-exposure, p = 0.0001; and 11.2 ± 2.6% pre-exposure vs. 4.2 ± 2.3% post-exposure, p = 0.0006, respectively). FMD was not affected in the air control group (9.5 ± 3.0% vs. 8.1 ± 1.8%, p = 0.85). -The percent FMD impairment was not significantly different in groups exposed for 5 s compared with 15 s (p = 0.27). |
Kuntic M [35] | Animal | -Vascular (endothelial) mice function, oxidative stress, and inflammation after exposure to unflavored e-cigarette liquids with and without nicotine. -Evaluation of human endothelial cells | -E-cigarette vapor exposure reduced FMD (p = 0.017). -E-cigarette vapor exposure (with nicotine) for 1, 3, and 5 days caused endothelial dysfunction determined by acetylcholine-dependent relaxation in wild-type mice upon all exposure protocols -E-cigarette smoking increased the ROS-producing enzyme NOX-2 (p < 0.01). |
Olfert MI [36] | Animal | Ultrasound cardiac function and arterial stiffness (AS) with pulse wave velocity (PWV) in chronic exposure to E-cig vapor, standard (3R4F reference) cigarette smoke, or filtered air in mice. | -AS increased 2.5- and 2.8-fold in the E-cig- and 3R4F-exposed mice, respectively, compared with the air-exposed control mice (p < 0.05). -3R4F exposure altered cardiac function by reducing fractional shortening and ejection fraction after 8 months (p < 0.05). A similar, although not statistically significant, tendency was also observed with E-cig exposure (p < 0.10). |
Rao P [37] | Animal | FMD in mice exposed to aerosol from e-liquids with and without nicotine, JUUL pods (Virginia Tobacco, Mango, and menthol), and an IQOS heated tobacco product; Marlboro Red cigarette smoke and clean air as controls. | -FMD was impaired by aerosol from previous generation e-cig (pre-exposure 9.8 ± 2.9% vs. post-exposure 5.4 ± 1.4%, p = 0.006), new-generation e-cig (11.2 ± 2.2% vs. 6.1 ± 2.3%, p = 0.0002), JUUL Virginia Tobacco (10.9 ± 3.5% vs. 5.6 ± 2.9%, p = 0.0001), JUUL Mango (10.5 ± 2.9% vs. 5.3 ± 2.7%, p = 0.0009), and JUUL Menthol (11.9 ± 3.4% vs. 6.4 ± 3.7%, p = 0.001), IQOS (11.2 ± 2.2% vs. 5.2 ± 3.2%, p = 0.0009), and Marlboro Red cigarette smoke (9.0 ± 3.3% vs. 3.2 ± 2.3%, p = 0.002) vs. no significant impairment of FMD was seen in the air group (7.8 ± 2.3% vs. 7.9 ± 4.3%, p = 0.98). |
Carnevale R [38] | Human | Markers of oxidative stress, nitric oxide bioavailability, and vitamin E levels; flow-mediated dilation (FMD) measured in 40 healthy subjects (20 smokers and 20 non-smokers). | -In both e-cigarettes and traditional cigarettes significant increase in the levels of soluble NOX2-derived peptide and 8-iso-prostaglandin F2α and a significant decrease in nitric oxide bioavailability, vitamin E levels, and FMD. -Effects of e-cigarettes vs. traditional cigarettes on vitamin E levels (p = 0.413) and FMD (p = 0.311) were not statistically different. -E-cigarettes showed a lower impact than traditional cigarettes on levels of soluble NOX2-derived peptide (p = 0.001), 8-iso-prostaglandin F2α (p = 0.046), and nitric oxide bioavailability (p = 0.001). |
Youn JY [39] | Human | Circulating nitrite levels in three different cohorts of young adults (n = 33, 21–25 years old): e-cigarette users (n = 13), tobacco cigarette smokers (n = 11), and nonusers (n = 9). | -Circulating nitrite levels were significantly lower in young adult e-cigarette users compared to those of nonusers (7.25 ± 0.45 vs. 11.06 ± 1.80, p < 0.05). |
Antoniewicz L [40] | Human | Endothelial progenitor cells (EPCs) and microvesicles (MVs) in 16 healthy young volunteers randomized into two groups, either exposed or not to the inhalation of e-cigarette vapor (ECV). | -EPC levels in blood were significantly increased at 1 h and 4 h following exposure to ECV (p = 0.003 and p = 0.036, respectively) and returned to baseline values after 24 h. -No statistical differences in MV levels between the groups with the exception of CD62E positive MVs (p < 0.038). |
Caporale A [41] | Human | Markers of endothelial function evaluated through magnetic resonance (MRI) in 31 non-smokers after the inhalation of aerosol from nicotine-free e-cigarettes. | -Resistivity index was higher (0.03 of 1.30 [2.3%]; p < 0.05), luminal flow-mediated dilation (−3.2% of 9.4% [−34%]; p < 0.001), along with reduced peak velocity (−9.9 of 56.6 cm/s [−17.5%]; p < 0.001), hyperemic index (−3.9 of 15.1 cm/s2 [−25.8%]; p < 0.001), and delayed time to peak (2.1 of 7.1 s [29.6%]; p = 0.005); baseline SvO2 was lower (−13 of 65%HbO2 [−20%]; p <0.001) and overshoot higher (10 of 19%HbO2 [52.6%]; p <0.001); and aortic pulse wave velocity marginally increased (0.19 of 6.05 m/s [3%]; p = 0.05). -No other parameters changed after aerosol inhalation. |
Biondi-Zoccai G [42] | Human | Parameters of oxidative stress, antioxidant reserve, platelet function, FMD, and blood pressure in 20 traditional smokers, with allocation to different cycles of heat-not-burn cigarettes (HNBC), electronic vaping cigarettes (EVC), and traditional combustion cigarettes (TC). | -Single use of any product led to an adverse impact on oxidative stress, antioxidant reserve, platelet function, flow-mediated dilation, and blood pressure. -HNBC had less impact than EVC and TC on soluble Nox2-derived peptide (respectively, p = 0.004 and 0.001), 8-iso-prostaglandin F2α- III (p = 0.004 and <0.001), and vitamin E (p = 0.018 and 0.044). -HNBC and EVC were equally less impactful than TCs on flow-mediated dilation (p = 0.872 for HNBC versus EVC), H2O2 (p = 0.522), H2O2 breakdown activity (p = 0.091), soluble CD 40 ligand (p = 0.849), and soluble p-selectin (p = 0.821). -The effect of HNBC and, to a lesser extent, EVC, on blood pressure was less evident than that of TC, whereas HNBC appeared more satisfying than EVC (all p < 0.05). |
Loffredo L [43] | Human | Parameters of oxidative stress and endothelial and platelet function in 78 children (2–18 years) divided into three groups: HNBC passive smokers (n = 26), traditional tobacco (TT) cigarette exposed (n = 26), and control (CNT) group (n = 26, unexposed). | -Significant increased serum sNOX2-dp (25.96 ± 5.26 TT, 24.87 ± 7.64 HNBC vs. 17.65 ± 7.92), isoprostanes (176.43 ± 43.75 TT, 178.5 ± 36.26 HNBC vs. 142.50 ± 20.89), H2O2 (32.35 ± 7.61 TT, 29.04 ± 6.13 HNBC vs. 23.19 ± 5.41), and sP-selectin (6.77 ± 1.92 TT, 6.33 ± 1.20 HNBC vs. 5.10 ± 1.74) in children exposed to the passive smoking of both HNBC and TT versus controls. -Exposed children showed a reduced brachial FMD (5.78 ± 2.92 TT, 5.51 ± 3.0 HNBC vs. 7.93 ± 2.30, p < 0.01) and serum NO bioavailability (49.92 ± 9.01 TT, 48.12 ± 11.15 HNBC vs. 60.69 ± 11.44 p < 0.001). |
Loffredo L [4] | Human | An observational study assessing endothelial function, oxidative stress, and platelet activation in chronic smokers of traditional tobacco and users of heated tobacco products. | -Compared to non-smokers, the chronic smokers of TT and HNBC had lower brachial FMD [7.1 (2.8–11.5), 1.6 (0–3.9), and 3.3 (2.4–6.0)], nitric oxide (NO) bioavailability [41 (38–49), 10 (9–13), and 10 (8–13) (µM)], sNox2-dp (19 (15–23), 46 (41–50), and 40 (34–41) pg/mL), H2O2 [8.8 (7.2–11.9), 33.5 (19.5–52.7), and 26.7 (21.9–33.8) μM)], sCD40L [1.6 (1.1–2.1), 3.2 (2.5–4.4), and 3.0 (2.5–3.3) ng/mL], sP-selectin [3.0 (2.0–3.9), 9.2 (6.7–12.0), and 8.1 (5.5–9.2) ng/mL], and platelet aggregation [62 (58–70), 80 (77–80), and 76 (70–80)%]. |
Fetterman JL [44] | Arterial stiffness including carotid–femoral pulse wave velocity, augmentation index, carotid–radial pulse wave velocity, and central blood pressures in individuals without known cardiovascular disease or cardiovascular disease risk factors who were non-smokers (n = 94), users of combustible cigarettes (n = 285), users of e-cigarettes (n = 36), or dual users (n = 52). | -Combustible cigarette smokers had a higher augmentation index compared with nonusers (129.8 ± 1.5 versus 118.8 ± 2.7, p = 0.003). -The augmentation index was similar between combustible cigarette smokers compared with sole e-cigarette users (129.8 ± 1.5 versus 126.2 ± 5.9, p = 1.0) and dual users (129.8 ± 1.5 versus 134.9 ± 4.0, p = 1.0). | |
Boakye [45] | Human | FMD and reactive hyperemia index (RHI), high-sensitivity C-reactive protein, interleukin-6, fibrinogen, p-selectin, and myeloperoxidase in 46 participants (23 exclusive e-cigarette users; 23 nonusers). | - FMD was slightly lower among e-cigarette users (6.32%) compared to nonusers (6.53%); however, no statistically significant difference. -Levels of inflammatory markers were generally high but did not differ between e-cigarette users and nonusers. |
Hamptonstall [46] | Human | FMD in healthy young people to compare the effects of acute and chronic tobacco cigarette (TC) smoking and electronic cigarette (EC): 47 non-smokers (NS), 49 chronic EC vapers, and 40 chronic TC smokers at baseline. | -Baseline FMD was not different among the groups (NS, 7.7 ± 4.5 vs. EC:6.6 ± 3.6 vs. TC, 7.9 ± 3.7%∆, p = 0.35), even when compared by group and sex. -Acute TC smoking versus control impaired FMD (FMD pre-/postsmoking, −2.52 ± 0.92 vs. 0.65 ± 0.93%∆, p = 0.02). -Acute EC vaping did not impair FMD. |
Ikonomidis [48] | Human | Effects of heat-not-burn cigarette (HNBC) and tobacco cigarette (Tcig), on myocardial, coronary, and arterial function; oxidative stress; and platelet activation in 75 smokers. | -Acute HNBC smoking caused a smaller increase in PWV than Tcig (change 1.1 vs. 0.54 m/s, p < 0.05) without change in CO and biomarkers in contrast to Tcig. -Compared to Tcig, switching to HNBC for 1 month improved CO, FMD, CFR, TAC, GLS, GWW, MDA, and TxB2 (differences 10.42 ppm, 4.3%, 0.98, 1.8 mL/mmHg, 2.35%, 19.72 mmHg%, 0.38 nmol/L, and 45 pg/mL, respectively, p < 0.05). |
6. Effect of Smoking on Platelets and Oxidative Stress
7. Cardiovascular Effects of Smoking on Children
8. Cardiovascular Effects of Smoking in Adults
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Cao, J.; Zhang, J.; Chen, G.; Luo, C.; Huang, L. Research progress and prospect on the safety of heated tobacco products. Toxicology 2024, 505, 153823. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Carnevale, R.; Loffredo, L.; Pignatelli, P.; Gallin, J.I. NADPH Oxidase-2 and Atherothrombosis: Insight from Chronic Granulomatous Disease. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 218–225. [Google Scholar] [CrossRef] [PubMed]
- McCaughey, C.J.; Murphy, G.; Jones, J.; Mirza, K.B.; Hensey, M. Safety and efficacy of e-cigarettes in those with atherosclerotic disease: A review. Open Heart 2023, 10, e002341. [Google Scholar] [CrossRef]
- Loffredo, L.; Carnevale, R.; Battaglia, S.; Marti, R.; Pizzolo, S.; Bartimoccia, S.; Nocella, C.; Cammisotto, V.; Sciarretta, S.; Chimenti, I.; et al. Impact of chronic use of heat-not-burn cigarettes on oxidative stress, endothelial dysfunction and platelet activation: The SUR-VAPES Chronic Study. Thorax 2021, 76, 618–620. [Google Scholar] [CrossRef]
- Loffredo, L.; Zicari, A.M.; Occasi, F.; Perri, L.; Carnevale, R.; Battaglia, S.; Angelico, F.; Del Ben, M.; Martino, F.; Nocella, C.; et al. Passive Smoking Exacerbates Nicotinamide-Adenine Dinucleotide Phosphate Oxidase Isoform 2-Induced Oxidative Stress and Arterial Dysfunction in Children with Persistent Allergic Rhinitis. J. Pediatr. 2018, 202, 252–257. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Report on Trends in Prevalence of Tobacco Use 2000–2025, 4th ed.; World Health Organization: Geneva, Switzerland, 2021; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- World Health Organization. Noncommunicable Diseases: Progress Monitor 2022; World Health Organization: Geneva, Switzerland, 2022; License: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Veeranki, S.P.; Mamudu, H.M.; Zheng, S. Secondhand smoke exposure among never-smoking youth in 168 countries. J. Adolesc. Health 2015, 56, 167–173. [Google Scholar] [CrossRef]
- Marques, P.; Piqueras, L.; Sanz, M.J. An updated overview of e-cigarette impact on human health. Respir. Res. 2021, 22, 151. [Google Scholar] [CrossRef]
- Rubinstein, M.L.; Delucchi, K.; Benowitz, N.L.; Ramo, D.E. Adolescent Exposure to Toxic Volatile Organic Chemicals From E-Cigarettes. Pediatrics 2018, 141, e20173557. [Google Scholar] [CrossRef]
- Behar, R.Z.; Davis, B.; Wang, Y.; Bahl, V.; Lin, S.; Talbot, P. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol. Vitr. 2014, 28, 198–208. [Google Scholar] [CrossRef]
- Eaton, D.; Jakaj, B.; Forster, M.; Nicol, J.; Mavropoulou, E.; Scott, K.; Liu, C.; McAdam, K.; Murphy, J.; Proctor, C.J. Assessment of tobacco heating product THP1.0. Part 2: Product design, operation and thermophysical characterisation. Regul. Toxicol. Pharmacol. 2018, 93, 4–13. [Google Scholar] [CrossRef]
- Smith, M.R.; Clark, B.; Ludicke, F.; Schaller, J.P.; Vanscheeuwijck, P.; Hoeng, J.; Peitsch, M.C. Evaluation of the Tobacco Heating System 2.2. Part 1: Description of the system and the scientific assessment program. Regul. Toxicol. Pharmacol. 2016, 81 (Suppl. S2), S17–S26. [Google Scholar] [CrossRef] [PubMed]
- Uguna, C.N.; Snape, C.E. Should IQOS Emissions Be Considered as Smoke and Harmful to Health? A Review of the Chemical Evidence. ACS Omega 2022, 7, 22111–22124. [Google Scholar] [CrossRef] [PubMed]
- Auer, R.; Concha-Lozano, N.; Jacot-Sadowski, I.; Cornuz, J.; Berthet, A. Heat-Not-Burn Tobacco Cigarettes: Smoke by Any Other Name. JAMA Intern. Med. 2017, 177, 1050–1052. [Google Scholar] [CrossRef]
- Münzel, T.; Sinning, C.; Post, F.; Warnholtz, A.; Schulz, E. Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann. Med. 2008, 40, 180–196. [Google Scholar] [CrossRef]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, L.; Soresina, A.; Cinicola, B.L.; Capponi, M.; Salvatori, F.; Bartimoccia, S.; Picchio, V.; Forte, M.; Caputi, C.; Poscia, R.; et al. Impaired arterial dilation and increased NOX2 generated oxidative stress in subjects with ataxia-telangiectasia mutated (ATM) kinase. Redox Biol. 2024, 77, 103347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Messner, B.; Bernhard, D. Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, A.; Cusa, C.; Mazzucchelli, I.; Vezzoli, M.; Ottini, E.; Ghio, S.; Tossini, G.; Pacifici, R.; Zuccaro, P. Cigarette smoking and hypertension influence nitric oxide release and plasma levels of adhesion molecules. Clin. Chem. Lab. Med. 2001, 39, 822–826. [Google Scholar] [CrossRef]
- Jaimes, E.A.; DeMaster, E.G.; Tian, R.X.; Raij, L. Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1031–1036. [Google Scholar] [CrossRef]
- Klein, J.; Diaba-Nuhoho, P.; Giebe, S.; Brunssen, C.; Morawietz, H. Regulation of endothelial function by cigarette smoke and next-generation tobacco and nicotine products. Pflug. Arch. 2023, 475, 835–844. [Google Scholar] [CrossRef]
- Förstermann, U.; Münzel, T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation 2006, 113, 1708–1714. [Google Scholar] [CrossRef]
- Talukder, M.A.; Johnson, W.M.; Varadharaj, S.; Lian, J.; Kearns, P.N.; El-Mahdy, M.A.; Liu, X.; Zweier, J.L. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H388–H396. [Google Scholar] [CrossRef] [PubMed]
- Kalra, V.K.; Ying, Y.; Deemer, K.; Natarajan, R.; Nadler, J.L.; Coates, T.D. Mechanism of cigarette smoke condensate induced adhesion of human monocytes to cultured endothelial cells. J. Cell. Physiol. 1994, 160, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Rattan, V.; Sultana, C.; Kalra, V.K. Cigarette smoke condensate-induced adhesion molecule expression and transendothelial migration of monocytes. Am. J. Physiol. 1996, 270, H1624–H1633. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Cacciola, R.R.; Guarino, F.; Polosa, R. Relevance of endothelial-haemostatic dysfunction in cigarette smoking. Curr. Med. Chem. 2007, 14, 1887–1892. [Google Scholar] [CrossRef]
- Giebe, S.; Hofmann, A.; Brux, M.; Lowe, F.; Breheny, D.; Morawietz, H.; Brunssen, C. Comparative study of the effects of cigarette smoke versus next generation tobacco and nicotine product extracts on endothelial function. Redox Biol. 2021, 47, 102150. [Google Scholar] [CrossRef]
- Giebe, S.; Brux, M.; Hofmann, A.; Lowe, F.; Breheny, D.; Morawietz, H.; Brunssen, C. Comparative study of the effects of cigarette smoke versus next-generation tobacco and nicotine product extracts on inflammatory biomarkers of human monocytes. Pflug. Arch. 2023, 475, 823–833. [Google Scholar] [CrossRef]
- Horinouchi, T.; Miwa, S. Comparison of cytotoxicity of cigarette smoke extract derived from heat-not-burn and combustion cigarettes in human vascular endothelial cells. J. Pharmacol. Sci. 2021, 147, 223–233. [Google Scholar] [CrossRef]
- Fetterman, J.L.; Weisbrod, R.M.; Feng, B.; Bastin, R.; Tuttle, S.T.; Holbrook, M.; Baker, G.; Robertson, R.M.; Conklin, D.J.; Bhatnagar, A.; et al. Flavorings in Tobacco Products Induce Endothelial Cell Dysfunction. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1607–1615. [Google Scholar] [CrossRef]
- Mohammadi, L.; Han, D.D.; Xu, F.; Huang, A.; Derakhshandeh, R.; Rao, P.; Whitlatch, A.; Cheng, J.; Keith, R.J.; Hamburg, N.M.; et al. Chronic E-Cigarette Use Impairs Endothelial Function on the Physiological and Cellular Levels. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 1333–1350. [Google Scholar] [CrossRef] [PubMed]
- Nabavizadeh, P.; Liu, J.; Havel, C.M.; Ibrahim, S.; Derakhshandeh, R.; Jacob Iii, P.; Springer, M.L. Vascular endothelial function is impaired by aerosol from a single IQOS HeatStick to the same extent as by cigarette smoke. Tob. Control 2018, 27, s13–s19. [Google Scholar] [CrossRef] [PubMed]
- Kuntic, M.; Oelze, M.; Steven, S.; Kröller-Schön, S.; Stamm, P.; Kalinovic, S.; Frenis, K.; Vujacic-Mirski, K.; Bayo Jimenez, M.T.; Kvandova, M.; et al. Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: Evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). Eur. Heart J. 2020, 41, 2472–2483. [Google Scholar] [CrossRef] [PubMed]
- Olfert, I.M.; DeVallance, E.; Hoskinson, H.; Branyan, K.W.; Clayton, S.; Pitzer, C.R.; Sullivan, D.P.; Breit, M.J.; Wu, Z.; Klinkhachorn, P.; et al. Chronic exposure to electronic cigarettes results in impaired cardiovascular function in mice. J. Appl. Physiol. 2018, 124, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Han, D.D.; Tan, K.; Mohammadi, L.; Derakhshandeh, R.; Navabzadeh, M.; Goyal, N.; Springer, M.L. Comparable Impairment of Vascular Endothelial Function by a Wide Range of Electronic Nicotine Delivery Devices. Nicotine Tob. Res. 2022, 24, 1055–1062. [Google Scholar] [CrossRef]
- Carnevale, R.; Sciarretta, S.; Violi, F.; Nocella, C.; Loffredo, L.; Perri, L.; Peruzzi, M.; Marullo, A.G.; De Falco, E.; Chimenti, I.; et al. Acute Impact of Tobacco vs Electronic Cigarette Smoking on Oxidative Stress and Vascular Function. Chest 2016, 150, 606–612. [Google Scholar] [CrossRef]
- Youn, J.Y.; Middlekauff, H.R.; Reudiseuli, I.; Huang, K.; Cai, H. Endothelial damage in young adult e-cigarette users. Redox Biol. 2023, 62, 102688. [Google Scholar] [CrossRef]
- Antoniewicz, L.; Bosson, J.A.; Kuhl, J.; Abdel-Halim, S.M.; Kiessling, A.; Mobarrez, F.; Lundback, M. Electronic cigarettes increase endothelial progenitor cells in the blood of healthy volunteers. Atherosclerosis 2016, 255, 179–185. [Google Scholar] [CrossRef]
- Caporale, A.; Langham, M.C.; Guo, W.; Johncola, A.; Chatterjee, S.; Wehrli, F.W. Acute Effects of Electronic Cigarette Aerosol Inhalation on Vascular Function Detected at Quantitative MRI. Radiology 2019, 293, 97–106. [Google Scholar] [CrossRef]
- Biondi-Zoccai, G.; Sciarretta, S.; Bullen, C.; Nocella, C.; Violi, F.; Loffredo, L.; Pignatelli, P.; Perri, L.; Peruzzi, M.; Marullo, A.G.M.; et al. Acute Effects of Heat-Not-Burn, Electronic Vaping, and Traditional Tobacco Combustion Cigarettes: The Sapienza University of Rome-Vascular Assessment of Proatherosclerotic Effects of Smoking (SUR-VAPES) 2 Randomized Trial. J. Am. Heart Assoc. 2019, 8, e010455. [Google Scholar] [CrossRef]
- Loffredo, L.; Carnevale, R.; Pannunzio, A.; Cinicola, B.L.; Palumbo, I.M.; Bartimoccia, S.; Nocella, C.; Cammisotto, V.; Violi, F.; Biondi-Zoccai, G.; et al. Impact of heat-not-burn cigarette passive smoking on children’s oxidative stress, endothelial and platelet function. Environ. Pollut. 2024, 345, 123304. [Google Scholar] [CrossRef] [PubMed]
- Fetterman, J.L.; Keith, R.J.; Palmisano, J.N.; McGlasson, K.L.; Weisbrod, R.M.; Majid, S.; Bastin, R.; Stathos, M.M.; Stokes, A.C.; Robertson, R.M.; et al. Alterations in Vascular Function Associated With the Use of Combustible and Electronic Cigarettes. J. Am. Heart Assoc. 2020, 9, e014570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boakye, E.; Uddin, S.M.I.; Osuji, N.; Meinert, J.; Obisesan, O.H.; Mirbolouk, M.; Tasdighi, E.; El-Shahawy, O.; Erhabor, J.; Osei, A.D.; et al. Examining the association of habitual e-cigarette use with inflammation and endothelial dysfunction in young adults: The VAPORS-Endothelial function study. Tob. Induc. Dis. 2023, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Haptonstall, K.P.; Choroomi, Y.; Moheimani, R.; Nguyen, K.; Tran, E.; Lakhani, K.; Ruedisueli, I.; Gornbein, J.; Middlekauff, H.R. Differential effects of tobacco cigarettes and electronic cigarettes on endothelial function in healthy young people. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H547–H556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 327, n71. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Vlastos, D.; Kostelli, G.; Kourea, K.; Katogiannis, K.; Tsoumani, M.; Parissis, J.; Andreadou, I.; Alexopoulos, D. Differential effects of heat-not-burn and conventional cigarettes on coronary flow, myocardial and vascular function. Sci. Rep. 2021, 11, 11808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Granata, S.; Vivarelli, F.; Morosini, C. Toxicological Aspects Associated with Consumption from Electronic Nicotine Delivery System (ENDS): Focus on Heavy Metals Exposure and Cancer Risk. Int. J. Mol. Sci. 2024, 25, 2737. [Google Scholar] [CrossRef]
- Li, Z.; Delaney, M.K.; O’Brien, K.A.; Du, X. Signaling during platelet adhesion and activation. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2341–2349. [Google Scholar] [CrossRef]
- Violi, F.; Loffredo, L.; Carnevale, R.; Pignatelli, P.; Pastori, D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxid. Redox Signal. 2017, 27, 1083–1124. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, Y.; Dusting, G.J. NADPH oxidase-mediated redox signaling: Roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol. Rev. 2011, 63, 218–242. [Google Scholar] [CrossRef]
- Caccese, D.; Pratico, D.; Ghiselli, A.; Natoli, S.; Pignatelli, P.; Sanguigni, V.; Iuliano, L.; Violi, F. Superoxide anion and hydroxyl radical release by collagen-induced platelet aggregation--role of arachidonic acid metabolism. Thromb. Haemost. 2000, 83, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Pulcinelli, F.M.; Lenti, L.; Gazzaniga, P.P.; Violi, F. Hydrogen peroxide is involved in collagen-induced platelet activation. Blood 1998, 91, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Pratico, D.; Pasin, M.; Barry, O.P.; Ghiselli, A.; Sabatino, G.; Iuliano, L.; FitzGerald, G.A.; Violi, F. Iron-dependent human platelet activation and hydroxyl radical formation: Involvement of protein kinase C. Circulation 1999, 99, 3118–3124. [Google Scholar] [CrossRef] [PubMed]
- Dayal, S.; Wilson, K.M.; Motto, D.G.; Miller, F.J., Jr.; Chauhan, A.K.; Lentz, S.R. Hydrogen peroxide promotes aging-related platelet hyperactivation and thrombosis. Circulation 2013, 127, 1308–1316. [Google Scholar] [CrossRef]
- Di Marzo, N.; Chisci, E.; Giovannoni, R. The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 2018, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Antoniades, C.; Tousoulis, D.; Tentolouris, C.; Toutouza, M.; Marinou, K.; Goumas, G.; Tsioufis, C.; Toutouzas, P.; Stefanadis, C. Effects of antioxidant vitamins C and E of endothelial function and thrombosis/fibrinolysis system in smokers. Thromb. Haemost. 2003, 89, 990–995. [Google Scholar] [CrossRef]
- Carnevale, R.; Loffredo, L.; Pignatelli, P.; Nocella, C.; Bartimoccia, S.; Di Santo, S.; Martino, F.; Catasca, E.; Perri, L.; Violi, F. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers. J. Thromb. Haemost. 2012, 10, 125–132. [Google Scholar] [CrossRef]
- Hom, S.; Chen, L.; Wang, T.; Ghebrehiwet, B.; Yin, W.; Rubenstein, D.A. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations. Platelets 2016, 27, 694–702. [Google Scholar] [CrossRef]
- Qasim, H.; Karim, Z.A.; Silva-Espinoza, J.C.; Khasawneh, F.T.; Rivera, J.O.; Ellis, C.C.; Bauer, S.L.; Almeida, I.C.; Alshbool, F.Z. Short-Term E-Cigarette Exposure Increases the Risk of Thrombogenesis and Enhances Platelet Function in Mice. J. Am. Heart Assoc. 2018, 7, e009264. [Google Scholar] [CrossRef]
- Ramirez, J.E.M.; Karim, Z.A.; Alarabi, A.B.; Hernandez, K.R.; Taleb, Z.B.; Rivera, J.O.; Khasawneh, F.T.; Alshbool, F.Z. The JUUL E-Cigarette Elevates the Risk of Thrombosis and Potentiates Platelet Activation. J. Cardiovasc. Pharmacol. Ther. 2020, 25, 578–586. [Google Scholar] [CrossRef]
- Snoderly, H.T.; Alkhadrawi, H.; Panchal, D.M.; Weaver, K.L.; Vito, J.N.; Freshwater, K.A.; Santiago, S.P.; Olfert, I.M.; Nurkiewicz, T.R.; Bennewitz, M.F. Short-term exposure of female BALB/cJ mice to e-cigarette aerosol promotes neutrophil recruitment and enhances neutrophil-platelet aggregation in pulmonary microvasculature. J. Toxicol. Environ. Health A 2023, 86, 246–262. [Google Scholar] [CrossRef] [PubMed]
- Gauer, J.S.; Ajjan, R.A.; Ariens, R.A.S. Platelet-Neutrophil Interaction and Thromboinflammation in Diabetes: Considerations for Novel Therapeutic Approaches. J. Am. Heart Assoc. 2022, 11, e027071. [Google Scholar] [CrossRef] [PubMed]
- Nocella, C.; Biondi-Zoccai, G.; Sciarretta, S.; Peruzzi, M.; Pagano, F.; Loffredo, L.; Pignatelli, P.; Bullen, C.; Frati, G.; Carnevale, R. Impact of Tobacco Versus Electronic Cigarette Smoking on Platelet Function. Am. J. Cardiol. 2018, 122, 1477–1481. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, R.; Iuliano, L.; Nocella, C.; Bartimoccia, S.; Trape, S.; Russo, R.; Gentile, M.C.; Cangemi, R.; Loffredo, L.; Pignatelli, P.; et al. Relationship between platelet and urinary 8-Iso-PGF2alpha levels in subjects with different degrees of NOX2 regulation. J. Am. Heart Assoc. 2013, 2, e000198. [Google Scholar] [CrossRef]
- Lyytinen, G.; Brynedal, A.; Anesäter, E.; Antoniewicz, L.; Blomberg, A.; Wallén, H.; Bosson, J.A.; Hedman, L.; Mobarrez, F.; Tehrani, S.; et al. Electronic Cigarette Vaping with Nicotine Causes Increased Thrombogenicity and Impaired Microvascular Function in Healthy Volunteers: A Randomised Clinical Trial. Cardiovasc. Toxicol. 2023, 23, 255–264. [Google Scholar] [CrossRef]
- Lyytinen, G.; Melnikov, G.; Brynedal, A.; Anesäter, E.; Antoniewicz, L.; Blomberg, A.; Wallén, H.; Bosson, J.A.; Hedman, L.; Tehrani, S.; et al. Use of heated tobacco products (IQOS) causes an acute increase in arterial stiffness and platelet thrombus formation. Atherosclerosis 2024, 390, 117335. [Google Scholar] [CrossRef]
- Umphres, S.S.; Alarabi, A.B.; Ali, H.E.A.; Khasawneh, F.T.; Alshbool, F.Z. Investigation of the impact of thirdhand e-cigarette exposure on platelet function: A pre-clinical study. Tob. Induc. Dis. 2024, 22, 10. [Google Scholar] [CrossRef]
- Loffredo, L.; Zicari, A.M.; Occasi, F.; Perri, L.; Carnevale, R.; Angelico, F.; Del Ben, M.; Martino, F.; Nocella, C.; De Castro, G.; et al. Role of NADPH oxidase-2 and oxidative stress in children exposed to passive smoking. Thorax 2018, 73, 986–988. [Google Scholar] [CrossRef]
- Loffredo, L.; Zicari, A.M.; Occasi, F.; Perri, L.; Carnevale, R.; Angelico, F.; Del Ben, M.; Martino, F.; Nocella, C.; Savastano, V.; et al. Endothelial dysfunction and oxidative stress in children with sleep disordered breathing: Role of NADPH oxidase. Atherosclerosis 2015, 240, 222–227. [Google Scholar] [CrossRef]
- Loffredo, L.; Zicari, A.M.; Del Ben, M. Effetti Cardiovascolari Del Fumo Di Seconda E Terza Mano. G. Ital. Dell’Arterioscler. 2017, 8, 30–37. [Google Scholar]
- West, H.W.; Juonala, M.; Gall, S.L.; Kahonen, M.; Laitinen, T.; Taittonen, L.; Viikari, J.S.; Raitakari, O.T.; Magnussen, C.G. Exposure to parental smoking in childhood is associated with increased risk of carotid atherosclerotic plaque in adulthood: The Cardiovascular Risk in Young Finns Study. Circulation 2015, 131, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Ayer, J.G.; Belousova, E.; Harmer, J.A.; David, C.; Marks, G.B.; Celermajer, D.S. Maternal cigarette smoking is associated with reduced high-density lipoprotein cholesterol in healthy 8-year-old children. Eur. Heart J. 2011, 32, 2446–2453. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Li, M.; Chen, B.; Xu, Y.; Li, T.D. Deterioration of endothelial function and carotid intima-media thickness in Tibetan male adolescents exposed to second-hand smoke. J. Renin-Angiotensin-Aldosterone Syst. 2012, 13, 413–419. [Google Scholar] [CrossRef]
- Simonetti, G.D.; Schwertz, R.; Klett, M.; Hoffmann, G.F.; Schaefer, F.; Wuhl, E. Determinants of blood pressure in preschool children: The role of parental smoking. Circulation 2011, 123, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Luca, A.C.; Curpăn, A.; Iordache, A.C.; Mîndru, D.E.; Țarcă, E.; Luca, F.A.; Pădureț, I.A. Cardiotoxicity of Electronic Cigarettes and Heat-Not-Burn Tobacco Products-A Problem for the Modern Pediatric Cardiologist. Healthcare 2023, 11, 491. [Google Scholar] [CrossRef]
- Qasim, H.; Karim, Z.A.; Rivera, J.O.; Khasawneh, F.T.; Alshbool, F.Z. Impact of Electronic Cigarettes on the Cardiovascular System. J. Am. Heart Assoc. 2017, 6, e006353. [Google Scholar] [CrossRef]
- Trovato Battagliola, E.; Pacella, F.; Malvasi, M.; Scalinci, S.Z.; Turchetti, P.; Pacella, E.; La Torre, G.; Arrico, L. Risk factors in central retinal vein occlusion: A multi-center case-control study conducted on the Italian population: Demographic, environmental, systemic, and ocular factors that increase the risk for major thrombotic events in the retinal venous system. Eur. J. Ophthalmol. 2022, 32, 2801–2809. [Google Scholar] [CrossRef]
- Anand, S.S. Smoking: A Dual Pathogen for Arterial and Venous Thrombosis. Circulation 2017, 135, 17–20. [Google Scholar] [CrossRef]
- La Torre, G.; Pacella, E.; Saulle, R.; Giraldi, G.; Pacella, F.; Lenzi, T.; Mastrangelo, O.; Mirra, F.; Aloe, G.; Turchetti, P.; et al. The synergistic effect of exposure to alcohol, tobacco smoke and other risk factors for age-related macular degeneration. Eur. J. Epidemiol. 2013, 28, 445–446. [Google Scholar] [CrossRef]
- Ambrose, J.A.; Barua, R.S. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. The Health Consequences of Smoking-50 Years of Progress: A Report of the Surgeon General; US Department of Health and Human Services: Atlanta, GA, USA, 2014; Reports of the Surgeon General. [Google Scholar]
- Vlachopoulos, C.; Ioakeimidis, N.; Abdelrasoul, M.; Terentes-Printzios, D.; Georgakopoulos, C.; Pietri, P.; Stefanadis, C.; Tousoulis, D. Electronic Cigarette Smoking Increases Aortic Stiffness and Blood Pressure in Young Smokers. J. Am. Coll. Cardiol. 2016, 67, 2802–2803. [Google Scholar] [CrossRef] [PubMed]
- Franzen, K.F.; Willig, J.; Cayo Talavera, S.; Meusel, M.; Sayk, F.; Reppel, M.; Dalhoff, K.; Mortensen, K.; Droemann, D. E-cigarettes and cigarettes worsen peripheral and central hemodynamics as well as arterial stiffness: A randomized, double-blinded pilot study. Vasc. Med. 2018, 23, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Franzen, K.F.; Belkin, S.; Goldmann, T.; Reppel, M.; Watz, H.; Mortensen, K.; Droemann, D. The impact of heated tobacco products on arterial stiffness. Vasc. Med. 2020, 25, 572–574. [Google Scholar] [CrossRef]
- Vansickel, A.R.; Eissenberg, T. Electronic cigarettes: Effective nicotine delivery after acute administration. Nicotine Tob. Res. 2013, 15, 267–270. [Google Scholar] [CrossRef]
- Nides, M.A.; Leischow, S.J.; Bhatter, M.; Simmons, M. Nicotine blood levels and short-term smoking reduction with an electronic nicotine delivery system. Am. J. Health Behav. 2014, 38, 265–274. [Google Scholar] [CrossRef]
- Yan, X.S.; D’ruiz, C. Effects of using electronic cigarettes on nicotine delivery and cardiovascular function in comparison with regular cigarettes. Regul. Toxicol. Pharmacol. 2015, 71, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Moheimani, R.S.; Bhetraratana, M.; Yin, F. Increased Cardiac Sympathetic Activity and Oxidative Stress in Habitual Electronic Cigarette Users: Implications for Cardiovascular Risk. JAMA Cardiol. 2017, 2, 278–284. (In English) [Google Scholar] [CrossRef]
- Moheimani, R.S.; Bhetraratana, M.; Peters, K.M. Sympathomimetic Effects of Acute E-Cigarette Use: Role of Nicotine and Non-Nicotine Constituents. J. Am. Heart Assoc. 2017, 6, e006579. (In English) [Google Scholar] [CrossRef]
- Ip, M.; Diamantakos, E.; Haptonstall, K. Tobacco and electronic cigarettes adversely impact ECG indexes of ventricular repolarization: Implication for sudden death risk. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1176–H1184. (In English) [Google Scholar] [CrossRef]
- Yaman, B.; Akpınar, O.; Kemal, H.S.; Cerit, L.; Yüksek, Ü.; Söylemez, N.; Duygu, H. Comparison of IQOS (heated tobacco) and cigarette smoking on cardiac functions by two-dimensional speckle tracking echocardiography. Toxicol. Appl. Pharmacol. 2021, 423, 115575. [Google Scholar] [CrossRef]
- George, J.; Hussain, M.; Vadiveloo, T.; Ireland, S.; Hopkinson, P.; Struthers, A.D.; Donnan, P.T.; Khan, F.; Lang, C.C. Cardiovascular Effects of Switching From Tobacco Cigarettes to Electronic Cigarettes. J. Am. Coll. Cardiol. 2019, 74, 3112–3120. [Google Scholar] [CrossRef]
- Polosa, R.; Morjaria, J.B.; Caponnetto, P.; Battaglia, E.; Russo, C.; Ciampi, C.; Adams, G.; Bruno, C.M. Blood Pressure Control in Smokers with Arterial Hypertension Who Switched to Electronic Cigarettes. Int. J. Environ. Res. Public Health 2016, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.; Cibella, F.; Caponnetto, P.; Campagna, D.; Morjaria, J.B.; Battaglia, E.; Caruso, M.; Russo, C.; Polosa, R. Effect of continuous smoking reduction and abstinence on blood pressure and heart rate in smokers switching to electronic cigarettes. Intern. Emerg. Med. 2016, 11, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Skotsimara, G.; Antonopoulos, A.S.; Oikonomou, E.; Siasos, G.; Ioakeimidis, N.; Tsalamandris, S.; Charalambous, G.; Galiatsatos, N.; Vlachopoulos, C.; Tousoulis, D. Cardiovascular effects of electronic cigarettes: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2019, 26, 1219–1228. [Google Scholar] [CrossRef]
- Alzahrani, T.; Pena, I.; Temesgen, N.; Glantz, S.A. Association Between Electronic Cigarette Use and Myocardial Infarction. Am. J. Prev. Med. 2018, 55, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Polosa, R.; Cibella, F.; Niaura, R. Is e-cigarette use associated with coronary heart disease and myocardial infarction? Insights from the 2016 and 2017 National Health Interview Surveys. Ther. Adv. Chronic Dis. 2019, 10, 2040622319877741. [Google Scholar] [CrossRef]
- Wang, J.B.; Olgin, J.E.; Nah, G.; Vittinghoff, E.; Cataldo, J.K.; Pletcher, M.J.; Marcus, G.M. Cigarette and e-cigarette dual use and risk of cardiopulmonary symptoms in the Health eHeart Study. PLoS ONE 2018, 13, e0198681. [Google Scholar] [CrossRef]
- Osei, A.D.; Mirbolouk, M.; Orimoloye, O.A.; Dzaye, O.; Uddin, S.M.I.; Benjamin, E.J.; Hall, M.E.; DeFilippis, A.P.; Stokes, A.; Bhatnagar, A.; et al. Association Between E-Cigarette Use and Cardiovascular Disease Among Never and Current Combustible-Cigarette Smokers. Am. J. Med. 2019, 132, 949–954.e942. [Google Scholar] [CrossRef]
- Berlowitz, J.B.; Xie, W.; Harlow, A.F.; Hamburg, N.M.; Blaha, M.J.; Bhatnagar, A.; Benjamin, E.J.; Stokes, A.C. E-Cigarette Use and Risk of Cardiovascular Disease: A Longitudinal Analysis of the PATH Study (2013–2019). Circulation 2022, 145, 1557–1559. [Google Scholar] [CrossRef]
- Kang, D.; Choi, K.H.; Kim, H.; Park, H.; Heo, J.; Park, T.K.; Lee, J.M.; Cho, J.; Yang, J.H.; Hahn, J.Y.; et al. Prognosis after switching to electronic cigarettes following percutaneous coronary intervention: A Korean nationwide study. Eur. Heart J. 2024, ehae705. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.S.; Shipley, M.J.; Tsementzis, S.A.; Hornby, R.; Gill, S.K.; Hitchcock, E.R.; Beevers, D.G. Cigarette smoking. A risk factor for hemorrhagic and nonhemorrhagic stroke. Arch. Intern. Med. 1989, 149, 2053–2057. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Sathe, T.; Fazio, V.; Mazzone, P.; Weksler, B.; Janigro, D.; Rapp, E.; Cucullo, L. Tobacco smoke: A critical etiological factor for vascular impairment at the blood-brain barrier. Brain Res. 2009, 1287, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, I.M.; Cojocaru, M.; Sapira, V.; Ionescu, A. Evaluation of oxidative stress in patients with acute ischemic stroke. Rom. J. Intern. Med. 2013, 51, 97–106. [Google Scholar]
- Parekh, T.; Pemmasani, S.; Desai, R. Risk of Stroke With E-Cigarette and Combustible Cigarette Use in Young Adults. Am. J. Prev. Med. 2020, 58, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Kaisar, M.A.; Villalba, H.; Prasad, S.; Liles, T.; Sifat, A.E.; Sajja, R.K.; Abbruscato, T.J.; Cucullo, L. Offsetting the impact of smoking and e-cigarette vaping on the cerebrovascular system and stroke injury: Is Metformin a viable countermeasure? Redox Biol. 2017, 13, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, H.; Arrick, D.M.; Mayhan, W.G. Chronic nicotine exposure exacerbates transient focal cerebral ischemia-induced brain injury. J. Appl. Physiol. 2016, 120, 328–333. [Google Scholar] [CrossRef]
- Paulson, J.R.; Yang, T.; Selvaraj, P.K.; Mdzinarishvili, A.; Van der Schyf, C.J.; Klein, J.; Bickel, U.; Abbruscato, T.J. Nicotine exacerbates brain edema during in vitro and in vivo focal ischemic conditions. J. Pharmacol. Exp. Ther. 2010, 332, 371–379. [Google Scholar] [CrossRef]
- Sifat, A.E.; Vaidya, B.; Kaisar, M.A.; Cucullo, L.; Abbruscato, T.J. Nicotine and electronic cigarette (E-Cig) exposure decreases brain glucose utilization in ischemic stroke. J. Neurochem. 2018, 147, 204–221. [Google Scholar] [CrossRef]
- Will, J.C.; Galuska, D.A.; Ford, E.S.; Mokdad, A.; Calle, E.E. Cigarette smoking and diabetes mellitus: Evidence of a positive association from a large prospective cohort study. Int. J. Epidemiol. 2001, 30, 540–546. [Google Scholar] [CrossRef]
- Prasad, S.; Sajja, R.K.; Park, J.H.; Naik, P.; Kaisar, M.A.; Cucullo, L. Impact of cigarette smoke extract and hyperglycemic conditions on blood-brain barrier endothelial cells. Fluids Barriers CNS 2015, 12, 18. [Google Scholar] [CrossRef]
- Dodd, S.; Widnall, E.; Russell, A.E. School-based peer education interventions to improve health: A global systematic review of effectiveness. BMC Public Health 2022, 22, 2247. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magna, A.; Polisena, N.; Polisena, L.; Bagnato, C.; Pacella, E.; Carnevale, R.; Nocella, C.; Loffredo, L. The Hidden Dangers: E-Cigarettes, Heated Tobacco, and Their Impact on Oxidative Stress and Atherosclerosis—A Systematic Review and Narrative Synthesis of the Evidence. Antioxidants 2024, 13, 1395. https://doi.org/10.3390/antiox13111395
Magna A, Polisena N, Polisena L, Bagnato C, Pacella E, Carnevale R, Nocella C, Loffredo L. The Hidden Dangers: E-Cigarettes, Heated Tobacco, and Their Impact on Oxidative Stress and Atherosclerosis—A Systematic Review and Narrative Synthesis of the Evidence. Antioxidants. 2024; 13(11):1395. https://doi.org/10.3390/antiox13111395
Chicago/Turabian StyleMagna, Arianna, Nausica Polisena, Ludovica Polisena, Chiara Bagnato, Elena Pacella, Roberto Carnevale, Cristina Nocella, and Lorenzo Loffredo. 2024. "The Hidden Dangers: E-Cigarettes, Heated Tobacco, and Their Impact on Oxidative Stress and Atherosclerosis—A Systematic Review and Narrative Synthesis of the Evidence" Antioxidants 13, no. 11: 1395. https://doi.org/10.3390/antiox13111395
APA StyleMagna, A., Polisena, N., Polisena, L., Bagnato, C., Pacella, E., Carnevale, R., Nocella, C., & Loffredo, L. (2024). The Hidden Dangers: E-Cigarettes, Heated Tobacco, and Their Impact on Oxidative Stress and Atherosclerosis—A Systematic Review and Narrative Synthesis of the Evidence. Antioxidants, 13(11), 1395. https://doi.org/10.3390/antiox13111395