Low-Dose Melittin Enhanced Pigment Production Through the Upregulation of Tyrosinase Activity and Dendricity in Melanocytes by Limiting Oxidative Stress: A Therapeutic Implication for Vitiligo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Culture of Melanocytes from Human Skin
2.2. Melittin and NB-UVB Treatment of Cultured Melanocytes
2.3. Cell Viability and Proliferation Assay
2.4. Melanin Content, Tyrosinase Activity Assay, and Melanocyte Dendricity Analysis
2.5. Gene Expression Analysis by qPCR (Quantitative Polymerase Chain Reaction)
2.6. Analysis of Oxidative Stress in Cultured Melanocytes
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tobin, D.J. Biochemistry of the skin—Our brain on the outside. Chem. Soc. Rev. 2006, 35, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Hearing, V.J. Update on the regulation of mammalian melanocyte function and skin pigmentation. Exper. Rev. Dermatol. 2011, 6, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Schallreuter, K.U.; Bahadoran, P.; Picardo, M.; Slominski, A.; Elassiuty, Y.E.; Kemp, E.H.; Giachino, C.; Liu, J.B.; Luiten, R.M.; Lambe, T.; et al. Vitiligo pathogenesis: Autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else? Exp. Dermatol. 2008, 17, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Picardo, M.; Grammatico, P.; Roccella, F.; Roccella, M.; Grandinetti, M.; Del Porto, G.; Passi, S. Imbalance in the antioxidant pool in melanoma cells and normal melanocytes from patient with melanoma. J. Invest. Dermatol. 1996, 107, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Tembhre, M.K.; Parihar, A.S.; Sharma, V.K.; Sharma, A.; Chattopadhyay, P.; Gupta, S. Alteration in regulatory T cells and programmed cell death 1-expressing regulatory T cells in active generalized vitiligo and their clinical correlation. Br. J. Dermatol. 2015, 172, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Taieb, A. Intrinsic and extrinsic pathomechanisms in vitiligo. Pigment. Cell Res. 2000, 13, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Westerhof, W.; Nieuweboer-Krobotova, L. Treatment of vitiligo with UV-B radiation vs topical psoralen plus UV-A. Arch Dermatol. 1997, 133, 1525–1528. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, A.; Leone, G. Photo(chemo) therapy for vitiligo. Photodermatol. Photoimmunol. Photomed. 2011, 27, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.M.; Jung, H.M.; Hong, B.Y.; Lee, J.H.; Choi, W.J.; Lee, J.H.; Kim, G.M. Phototherapy for Vitiligo: A Systematic Review and Meta-analysis. JAMA Dermatol. 2017, 153, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Hsieh, C.L. Clinical applications of Bee venom acupoint injection. Toxins 2020, 12, 618. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Ferrie, R.P.; Ghimire, J.; Ventura, C.R.; Wu, E.; Sun, L.; Kim, S.Y.; Wiedman, G.R.; Hristova, K.; Wimley, W.C. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem. Pharmacol. 2021, 193, 114769–114816. [Google Scholar] [CrossRef] [PubMed]
- Maitip, J.; Mookhploy, W.; Khorndork, S.; Chantawannakul, P. Comparative study of antimicrobial properties of Bee venom extracts and melittins of honey bees. Antibiotics 2021, 10, 1503. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Kim, Y.S.; Jung, D.M.; Lee, K.S.; Lee, J.M.; Kim, K.K. Melittin-derived peptides exhibit variations in cytotoxicity and antioxidant, anti-inflammatory and allergenic activities. Anim. Cells Syst. 2022, 26, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Aufschnaiter, A.; Kohler, V.; Khalifa, S.; El-Wahed, A.A.; Du, M.; El-Seedi, H.; Büttner, S. Apitoxin and its components against cancer, neurodegeneration and rheumatoid arthritis: Limitations and possibilities. Toxins 2020, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Gajski, G.; Garaj-Vrhovac, V. Melittin: A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol. 2013, 36, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.; Park, M.H.; Kollipara, P.S.; An, B.J.; Song, H.S.; Han, S.B.; Kim, J.H.; Song, M.J.; Hong, J.T. Anti-cancereffect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors andinhibition of JAK2/STAT3 pathway. Toxicol. Appl. Pharmacol. 2012, 258, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Rady, I.; Siddiqui, I.A.; Rady, M.; Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017, 402, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Somwongin, S.; Chantawannakul, P.; Chaiyana, W. Antioxidant activity and irritation property of venoms From Apis species. Toxicon 2018, 145, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, T.B.; Breathnach, A.S. The Epidermal Melanin Unit System. Dermatol. Wochenschr. 1963, 147, 481–489. [Google Scholar] [PubMed]
Gene | Gene Accession Number | Primer Sequence Forward Primers (5′-3′) Reverse Primers (5′-3′) |
---|---|---|
βeta-ACTIN | NM_003088.4 | GCGTGACATTAAGGAGAAG GAAGGAAGGCTGGAAGAG |
MITF | NM_006722.3 | CAGACCTATTCCGCTCCATCTC CTTATCGGAGGCTTGGAGGC |
TYR | NM_000372.5 | GAAGGCACCGTCCTCTTCAA AGAGTCTGGGTCTGAATCTTGT |
MC1R | NM_002386.4 | CGAAATGTCCTGGGGACCTG GGGCTCAGGGATTCTCACAA |
MYO5A | NM_000259.3 | GTGAGCGAGGAGCTTGATGT TGGGTTGGATGGCCTCTTTC |
RAB27A | NM_183236.3 | GCAAGGTTGTGGAGAAAAGCA CCCTACACCAGAGTCTCCCA |
FSCN1 | NM_003088.4 | CTGTCTGCCAATCAGGACGA CACTTTTTGGTGTCGCGGTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tembhre, M.K.; Shipra. Low-Dose Melittin Enhanced Pigment Production Through the Upregulation of Tyrosinase Activity and Dendricity in Melanocytes by Limiting Oxidative Stress: A Therapeutic Implication for Vitiligo. Antioxidants 2024, 13, 1424. https://doi.org/10.3390/antiox13111424
Tembhre MK, Shipra. Low-Dose Melittin Enhanced Pigment Production Through the Upregulation of Tyrosinase Activity and Dendricity in Melanocytes by Limiting Oxidative Stress: A Therapeutic Implication for Vitiligo. Antioxidants. 2024; 13(11):1424. https://doi.org/10.3390/antiox13111424
Chicago/Turabian StyleTembhre, Manoj Kumar, and Shipra. 2024. "Low-Dose Melittin Enhanced Pigment Production Through the Upregulation of Tyrosinase Activity and Dendricity in Melanocytes by Limiting Oxidative Stress: A Therapeutic Implication for Vitiligo" Antioxidants 13, no. 11: 1424. https://doi.org/10.3390/antiox13111424
APA StyleTembhre, M. K., & Shipra. (2024). Low-Dose Melittin Enhanced Pigment Production Through the Upregulation of Tyrosinase Activity and Dendricity in Melanocytes by Limiting Oxidative Stress: A Therapeutic Implication for Vitiligo. Antioxidants, 13(11), 1424. https://doi.org/10.3390/antiox13111424