EGCG, a Green Tea Compound, Increases NO Production and Has Antioxidant Action in a Static and Shear Stress In Vitro Model of Preeclampsia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants Selection
2.2. Cell Culture
2.3. Intracellular NO
2.4. ROS Quantification
2.5. Superoxide Quantification
2.6. Antioxidant Capacity
2.7. Shear Stress
2.8. Nitrite Supernatant Quantification
2.9. Statistical Analyses
3. Results
3.1. EGCG Increases NO Levels in PE Group via PI3K and eNOS
3.2. EGCG Does Not Alter ROS and O2•− Levels
3.3. EGCG Increases Antioxidant Potential
3.4. EGCG Increases Nitrite Levels and Has Antioxidant Capacity in Shear Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, e237–e260. [CrossRef] [PubMed]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Roberts, J.M.; Gammill, H.S. Preeclampsia: Recent Insights. Hypertension 2005, 46, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; Taylor, R.N.; Musci, T.J.; Rodgers, G.M.; Hubel, C.A.; McLaughlin, M.K. Preeclampsia: An Endothelial Cell Disorder. Am. J. Obstet. Gynecol. 1989, 161, 1200–1204. [Google Scholar] [CrossRef]
- Staff, A.C. The Two-Stage Placental Model of Preeclampsia: An Update. J. Reprod. Immunol. 2019, 134–135, 1–10. [Google Scholar] [CrossRef]
- Sandrim, V.C.; Palei, A.C.; Metzger, I.F.; Gomes, V.A.; Cavalli, R.C.; Tanus-Santos, J.E. Nitric Oxide Formation Is Inversely Related to Serum Levels of Antiangiogenic Factors Soluble Fms-like Tyrosine Kinase-1 and Soluble Endogline in Preeclampsia. Hypertension 2008, 52, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.; de Groot, C.; Cho, Y.; Lim, K.-H. Circulating Factors as Markers and Mediators of Endothelial Cell Dysfunction in Preeclampsia. Semin. Reprod. Med. 1998, 16, 17–31. [Google Scholar] [CrossRef]
- Sutton, E.F.; Gemmel, M.; Powers, R.W. Nitric Oxide Signaling in Pregnancy and Preeclampsia. Nitric Oxide 2020, 95, 55–62. [Google Scholar] [CrossRef]
- Lowe, D.T. Nitric Oxide Dysfunction in the Pathophysiology of Preeclampsia. Nitric Oxide 2000, 4, 441–458. [Google Scholar] [CrossRef]
- Siddiqui, N.; Hladunewich, M. Understanding the Link Between the Placenta and Future Cardiovascular Disease. Trends Cardiovasc. Med. 2011, 21, 188–193. [Google Scholar] [CrossRef]
- Ukah, U.V.; De Silva, D.A.; Payne, B.; Magee, L.A.; Hutcheon, J.A.; Brown, H.; Ansermino, J.M.; Lee, T.; von Dadelszen, P. Prediction of Adverse Maternal Outcomes from Pre-Eclampsia and Other Hypertensive Disorders of Pregnancy: A Systematic Review. Pregnancy Hypertens. 2018, 11, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Suganya, N.; Bhakkiyalakshmi, E.; Sarada, D.V.L.; Ramkumar, K.M. Reversibility of Endothelial Dysfunction in Diabetes: Role of Polyphenols. Br. J. Nutr. 2016, 116, 223–246. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Tagami, M.; Yamori, Y. Dietary Polyphenols Regulate Endothelial Function and Prevent Cardiovascular Disease. Nutrition 2015, 31, 28–37. [Google Scholar] [CrossRef]
- Yamagata, K. Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease. Curr. Pharm. Des. 2019, 25, 2443–2458. [Google Scholar] [CrossRef]
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and Its Consumption: Benefits and Risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef]
- Zhao, T.; Li, C.; Wang, S.; Song, X. Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. Molecules 2022, 27, 3909. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.; Wessler, S.; Follmann, E.; Michaelis, W.; Düsterhöft, T.; Baumann, G.; Stangl, K.; Stangl, V. A Constituent of Green Tea, Epigallocatechin-3-Gallate, Activates Endothelial Nitric Oxide Synthase by a Phosphatidylinositol-3-OH-kinase-, CAMP-Dependent Protein Kinase-, and Akt-Dependent Pathway and Leads to Endothelial-Dependent Vasorelaxation. J. Biol. Chem. 2004, 279, 6190–6195. [Google Scholar] [CrossRef]
- Yamagata, K. Protective Effect of Epigallocatechin Gallate on Endothelial Disorders in Atherosclerosis. J. Cardiovasc. Pharmacol. 2020, 75, 292–298. [Google Scholar] [CrossRef]
- Kim, J.-A.; Formoso, G.; Li, Y.; Potenza, M.A.; Marasciulo, F.L.; Montagnani, M.; Quon, M.J. Epigallocatechin Gallate, a Green Tea Polyphenol, Mediates NO-dependent Vasodilation Using Signaling Pathways in Vascular Endothelium Requiring Reactive Oxygen Species and Fyn. J. Biol. Chem. 2007, 282, 13736–13745. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, D. (-)-Epigallocatechin-3-Gallate Inhibits ENOS Uncoupling and Alleviates High Glucose-Induced Dysfunction and Apoptosis of Human Umbilical Vein Endothelial Cells by PI3K/AKT/ENOS Pathway. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, ume 13, 2495–2504. [Google Scholar] [CrossRef]
- Zhong, M.; Peng, J.; Xiang, L.; Yang, X.; Wang, X.; Zhu, Y. Epigallocatechin Gallate (EGCG) Improves Anti-Angiogenic State, Cell Viability, and Hypoxia-Induced Endothelial Dysfunction by Downregulating High Mobility Group Box 1 (HMGB1) in Preeclampsia. Med. Sci. Monit. 2020, 26, e926924-1–e926924-8. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wang, J.; Shi, J.; Sun, Q.; Jia, N.; Li, H. The Efficacy Mechanism of Epigallocatechin Gallate against Pre-Eclampsia Based on Network Pharmacology and Molecular Docking. Reprod. Sci. 2022, 29, 1859–1873. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.-D.; Guo, J.-J.; Zhou, L.; Wang, N. Epigallocatechin Gallate Enhances Treatment Efficacy of Oral Nifedipine against Pregnancy-Induced Severe Pre-Eclampsia: A Double-Blind, Randomized and Placebo-Controlled Clinical Study. J. Clin. Pharm. Ther. 2018, 43, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Sankaralingam, S.; Xu, H.; Davidge, S.T. Arginase Contributes to Endothelial Cell Oxidative Stress in Response to Plasma from Women with Preeclampsia. Cardiovasc. Res. 2010, 85, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Bachetti, T.; Morbidelli, L. Endothelial Cells in Culture: A Model for Studying Vascular Functions. Pharmacol. Res. 2000, 42, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Caldeira-Dias, M.; Montenegro, M.F.; Bettiol, H.; Barbieri, M.A.; Cardoso, V.C.; Cavalli, R.C.; Sandrim, V.C. Resveratrol Improves Endothelial Cell Markers Impaired by Plasma Incubation from Women Who Subsequently Develop Preeclampsia. Hypertens. Res. 2019, 42, 1166–1174. [Google Scholar] [CrossRef]
- Viana-Mattioli, S.; Cinegaglia, N.; Bertozzi-Matheus, M.; Bueno-Pereira, T.O.; Caldeira-Dias, M.; Cavalli, R.C.; Sandrim, V.C. SIRT1-Dependent Effects of Resveratrol and Grape Juice in an in vitro Model of Preeclampsia. Biomed. Pharmacother. 2020, 131, 110659. [Google Scholar] [CrossRef]
- Caldeira-Dias, M.; Luizon, M.R.; Deffune, E.; Tanus-Santos, J.E.; Freire, P.P.; Carvalho, R.F.; Bettiol, H.; Cardoso, V.C.; Barbieri, M.A.; Cavalli, R.C.; et al. Preeclamptic Plasma Stimulates the Expression of miRNAs, Leading to a Decrease in Endothelin-1 Production in Endothelial Cells. Pregnancy Hypertens. 2018, 12, 75–81. [Google Scholar] [CrossRef]
- Paz, N.G.D.; Walshe, T.E.; Leach, L.L.; Saint-Geniez, M.; D’Amore, P.A. Role of Shear-Stress-Induced VEGF Expression in Endothelial Cell Survival. J. Cell Sci. 2012, 125, 831–843. [Google Scholar] [CrossRef]
- Kojima, H.; Sakurai, K.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T. Development of a Fluorescent Indicator for Nitric Oxide Based on the Fluorescein Chromophore. Chem. Pharm. Bull. 1998, 46, 373–375. [Google Scholar] [CrossRef]
- Crow, J.P. Dichlorodihydrofluorescein and Dihydrorhodamine 123 Are Sensitive Indicators of Peroxynitritein Vitro:Implications for Intracellular Measurement of Reactive Nitrogen and Oxygen Species. Nitric Oxide 1997, 1, 145–157. [Google Scholar] [CrossRef]
- Laurindo, F.R.M.; Fernandes, D.C.; Santos, C.X.C. Assessment of Superoxide Production and NADPH Oxidase Activity by HPLC Analysis of Dihydroethidium Oxidation Products. Methods Enzymol. 2008, 44, 237–260. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Seligman, S.P.; Buyon, J.P.; Clancy, R.M.; Young, B.K.; Abramson, S.B. The Role of Nitric Oxide in the Pathogenesis of Preeclampsia. Am. J. Obstet. Gynecol. 1994, 171, 944–948. [Google Scholar] [CrossRef]
- Bernardi, F.; Constantino, L.; Machado, R.; Petronilho, F.; Dal-Pizzol, F. Plasma Nitric Oxide, Endothelin-1, Arginase and Superoxide Dismutase in Pre-Eclamptic Women. J. Obstet. Gynaecol. Res. 2008, 34, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Johal, T.; Lees, C.C.; Everett, T.R.; Wilkinson, I.B. The Nitric Oxide Pathway and Possible Therapeutic Options in Pre-Eclampsia. Br. J. Clin. Pharmacol. 2014, 78, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.; Klinkner, L.; Baumann, G.; Stangl, K.; Stangl, V. Endothelial NO Production Is Mandatory for Epigallocatechin-3-Gallate–induced Vasodilation: Results from ENOS Knockout (ENOS-/-) Mice. J. Cardiovasc. Pharmacol. 2015, 65, 607–610. [Google Scholar] [CrossRef]
- Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C.M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative Stress: Normal Pregnancy versus Preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165354. [Google Scholar] [CrossRef] [PubMed]
- Taysi, S.; Tascan, A.S.; Ugur, M.G.; Demir, M. Radicals, Oxidative/Nitrosative Stress and Preeclampsia. Mini-Rev. Med. Chem. 2019, 19, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.S.; Moodley, J.; Dutton, M.F.; Theron, A.J. Oxidative Stress in Pre-Eclampsia. Acta Obstet. Gynecol. Scand. 2001, 80, 719–725. [Google Scholar] [CrossRef]
- Gomes, H.F.; Palei, A.C.T.; Machado, J.S.R.; da Silva, L.M.; Montenegro, M.F.; A Jordão, A.; Duarte, G.; E Tanus-Santos, J.; Cavalli, R.C.; Sandrim, V.C. Assessment of Oxidative Status Markers and NO Bioavailability in Hypertensive Disorders of Pregnancy. J. Hum. Hypertens. 2013, 27, 345–348. [Google Scholar] [CrossRef]
- Bueno-Pereira, T.O.; Bertozzi-Matheus, M.; Zampieri, G.M.; Abbade, J.F.; Cavalli, R.C.; Nunes, P.R.; Sandrim, V.C. Markers of Endothelial Dysfunction Are Attenuated by Resveratrol in Preeclampsia. Antioxidants 2022, 11, 2111. [Google Scholar] [CrossRef] [PubMed]
- Na, H.-K.; Kim, E.-H.; Jung, J.-H.; Lee, H.-H.; Hyun, J.-W.; Surh, Y.-J. (−)-Epigallocatechin Gallate Induces Nrf2-Mediated Antioxidant Enzyme Expression via Activation of PI3K and ERK in Human Mammary Epithelial Cells. Arch. Biochem. Biophys. 2008, 476, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, Z.; Chu, P.; Song, Y.; Yang, Y.; Sun, B.; Niu, M.; Qaed, E.; Shopit, A.; Han, G.; et al. Neuroprotective Effect of Phosphocreatine on Oxidative Stress and Mitochondrial Dysfunction Induced Apoptosis in vitro and in vivo: Involvement of Dual PI3K/Akt and Nrf2/HO-1 Pathways. Free. Radic. Biol. Med. 2018, 120, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, J.; Duan, H.; Li, R.; Peng, W.; Wu, C. Activation of Nrf2/HO-1 Signaling: An Important Molecular Mechanism of Herbal Medicine in the Treatment of Atherosclerosis via the Protection of Vascular Endothelial Cells from Oxidative Stress. J. Adv. Res. 2021, 34, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Mokra, D.; Joskova, M.; Mokry, J. Therapeutic Effects of Green Tea Polyphenol (–)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int. J. Mol. Sci. 2022, 24, 340. [Google Scholar] [CrossRef] [PubMed]
- Viana-Mattioli, S.; Fonseca-Alaniz, M.H.; Pinheiro-De-Sousa, I.; Krieger, J.E.; Sandrim, V.C. Missing Links in Preeclampsia Cell Model Systems of Endothelial Dysfunction. Trends Mol. Med. 2023, 29, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Kublickiene, K.R.; Lindblom, B.; Krüger, K.; Nisell, H. Preeclampsia: Evidence for Impaired Shear Stress–Mediated Nitric Oxide Release in Uterine Circulation. Am. J. Obstet. Gynecol. 2000, 183, 160–166. [Google Scholar] [CrossRef]
- Baker, P.N.; Stranko, C.P.; Davidge, S.T.; Davies, P.S.; Roberts, J.M. Mechanical Stress Eliminates the Effects of Plasma from Patients with Preeclampsia on Endothelial Cells. Am. J. Obstet. Gynecol. 1996, 174, 730–736. [Google Scholar] [CrossRef]
- Rowe, J.; Campbell, S.; Gallery, E.D.M. Nitric Oxide Production by Decidual Endothelial Cells Is Not Reduced in Preeclampsia. Hypertens. Pregnancy 2003, 22, 63–75. [Google Scholar] [CrossRef]
- Gomes, A.M.; Pinto, T.S.; Fernandes, C.J.d.C.; da Silva, R.A.; Zambuzzi, W.F. Wortmannin Targeting Phosphatidylinositol 3-Kinase Suppresses Angiogenic Factors in Shear-stressed Endothelial Cells. J. Cell. Physiol. 2020, 235, 5256–5269. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sun, Z.; Chu, P.; Li, H.; Ahsan, A.; Zhou, Z.; Zhang, Z.; Sun, B.; Wu, J.; Xi, Y.; et al. EGCG Protects against Homocysteine-Induced Human Umbilical Vein Endothelial Cells Apoptosis by Modulating Mitochondrial-Dependent Apoptotic Signaling and PI3K/Akt/ENOS Signaling Pathways. Apoptosis 2017, 22, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Xie, Y.; Suzuki, S.; Tagami, M. Epigallocatechin-3-Gallate Inhibits VCAM-1 Expression and Apoptosis Induction Associated with LC3 Expressions in TNFα-stimulated Human Endothelial Cells. Phytomedicine 2015, 22, 431–437. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertozzi-Matheus, M.; Bueno-Pereira, T.O.; Nunes, P.R.; Sandrim, V.C. EGCG, a Green Tea Compound, Increases NO Production and Has Antioxidant Action in a Static and Shear Stress In Vitro Model of Preeclampsia. Antioxidants 2024, 13, 158. https://doi.org/10.3390/antiox13020158
Bertozzi-Matheus M, Bueno-Pereira TO, Nunes PR, Sandrim VC. EGCG, a Green Tea Compound, Increases NO Production and Has Antioxidant Action in a Static and Shear Stress In Vitro Model of Preeclampsia. Antioxidants. 2024; 13(2):158. https://doi.org/10.3390/antiox13020158
Chicago/Turabian StyleBertozzi-Matheus, Mariana, Thaina Omia Bueno-Pereira, Priscila Rezeck Nunes, and Valeria Cristina Sandrim. 2024. "EGCG, a Green Tea Compound, Increases NO Production and Has Antioxidant Action in a Static and Shear Stress In Vitro Model of Preeclampsia" Antioxidants 13, no. 2: 158. https://doi.org/10.3390/antiox13020158
APA StyleBertozzi-Matheus, M., Bueno-Pereira, T. O., Nunes, P. R., & Sandrim, V. C. (2024). EGCG, a Green Tea Compound, Increases NO Production and Has Antioxidant Action in a Static and Shear Stress In Vitro Model of Preeclampsia. Antioxidants, 13(2), 158. https://doi.org/10.3390/antiox13020158