Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Surface-Modified TiO2 NPs with SA and 5-ASA
2.3. Optical Characterization of Surface-Modified TiO2 NPs with SA and 5-ASA
2.4. Animals and Experimental Design
2.5. Tissue Sampling
2.6. Biochemical Analysis
2.6.1. Serum Sex Hormones and Tumor Markers Analyses
2.6.2. Tissue Oxidative Stress Biomarkers Analyses
2.7. Statistical Analyses
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horikoshi, S.; Serpone, N. Introduction to nanoparticles. In Microwaves in Nanoparticle Synthesis: Fundamentals and Applications, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 1–24. [Google Scholar]
- Jomini, S.; Clivot, H.; Bauda, P.; Pagnout, C. Impact of manufactured TiO2 nanoparticles on planktonic and sessile bacterial communities. Environ. Pollut. 2015, 202, 196–204. [Google Scholar] [CrossRef]
- Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomed 2019, 14, 93–126. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, D.; Chen, D.; Tan, X.; Bai, X.; Liu, Z.; Yang, X.; Liu, W. Current advances of nanocarrier technology-based active cosmetic ingredients for beauty applications. Clin. Cosmet. Investig. Dermatol. 2021, 14, 867–887. [Google Scholar] [CrossRef]
- Lugani, Y.; Sooch, B.S.; Singh, P.; Kumar, S. Nanobiotechnology applications in food sector and future innovations. In Microbial Biotechnology in Food and Health; Elsevier: Amsterdam, The Netherlands, 2021; pp. 197–225. [Google Scholar]
- Paramo, L.A.; Feregrino-Pérez, A.A.; Guevara, R.; Mendoza, S.; Esquivel, K. Nanoparticles in agroindustry: Applications, toxicity, challenges, and trends. Nanomaterials 2020, 10, 1654. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, N.S.; de Kok, T.M.; Sijm, D.T.; van Breda, S.G.; Briedé, J.J.; Castenmiller, J.J.; Opperhuizen, A.; Chirino, Y.I.; Dirven, H.; Gott, D. Possible adverse effects of food additive e171 (titanium dioxide) related to particle specific human toxicity, including the immune system. Int. J. Mol. Sci. 2020, 22, 207. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical applications of TiO2 nanostructures: Recent advances. Int. J. Nanomed. 2020, 15, 3447–3470. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Hicks, A.L. Estimating human exposure to titanium dioxide from personal care products through a social survey approach. Integr. Environ. Assess. Manag. 2020, 16, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; Von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef] [PubMed]
- Farrell, T.P.; Magnuson, B. Absorption, distribution and excretion of four forms of titanium dioxide pigment in the rat. J. Food Sci. 2017, 82, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Musial, J.; Krakowiak, R.; Mlynarczyk, D.T.; Goslinski, T.; Stanisz, B.J. Titanium dioxide nanoparticles in food and personal care products—What do we know about their safety? Nanomaterials 2020, 10, 1110. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, G.; Chen, C.; Yu, H.; Wang, T.; Ma, Y.; Jia, G.; Gao, Y.; Li, B.; Sun, J. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 2007, 168, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zheng, P.; Han, S.; Zhang, J.; Li, Z.; Zhou, S.; Jia, G. Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. Nanoscale 2020, 12, 20033–20046. [Google Scholar] [CrossRef] [PubMed]
- Karimipour, M.; Javanmard, M.Z.; Ahmadi, A.; Jafari, A. Oral administration of titanium dioxide nanoparticle through ovarian tissue alterations impairs mice embryonic development. Int. J. Reprod. Biomed. 2018, 16, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Tassinari, R.; Cubadda, F.; Moracci, G.; Aureli, F.; D’Amato, M.; Valeri, M.; De Berardis, B.; Raggi, A.; Mantovani, A.; Passeri, D. Oral, short-term exposure to titanium dioxide nanoparticles in sprague-dawley rat: Focus on reproductive and endocrine systems and spleen. Nanotoxicology 2014, 8, 654–662. [Google Scholar] [CrossRef]
- Gao, G.; Ze, Y.; Li, B.; Zhao, X.; Zhang, T.; Sheng, L.; Hu, R.; Gui, S.; Sang, X.; Sun, Q. Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J. Hazard. Mater. 2012, 243, 19–27. [Google Scholar] [CrossRef]
- Brohi, R.D.; Wang, L.; Talpur, H.S.; Wu, D.; Khan, F.A.; Bhattarai, D.; Rehman, Z.-U.; Farmanullah, F.; Huo, L.-J. Toxicity of nanoparticles on the reproductive system in animal models: A review. Front. pharmacol. 2017, 8, 606. [Google Scholar] [CrossRef]
- Savić, T.D.; Šaponjić, Z.V.; Čomor, M.I.; Nedeljković, J.M.; Dramićanin, M.D.; Nikolić, M.G.; Veljković, D.Ž.; Zarić, S.D.; Janković, I.A. Surface modification of anatase nanoparticles with fused ring salicylate-type ligands (3-hydroxy-2-naphthoic acids): A combined dft and experimental study of optical properties. Nanoscale 2013, 5, 7601–7612. [Google Scholar] [CrossRef]
- Shahriari-Khalaji, M.; Zabihi, F.; Bahi, A.; Sredojević, D.; Nedeljković, J.M.; Macharia, D.K.; Ciprian, M.; Yang, S.; Ko, F. Photon-driven bactericidal performance of surface-modified TiO2 nanofibers. J. Mater. Chem. C 2023, 11, 5796–5805. [Google Scholar] [CrossRef]
- Bajić, V.; Spremo-Potparević, B.; Živković, L.; Čabarkapa, A.; Kotur-Stevuljević, J.; Isenović, E.; Sredojević, D.; Vukoje, I.; Lazić, V.; Ahrenkiel, S.P. Surface-modified TiO2 nanoparticles with ascorbic acid: Antioxidant properties and efficiency against DNA damage. Colloids Surf. B Biointerfaces 2017, 155, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Lazić, V.; Pirković, A.; Sredojević, D.; Marković, J.; Papan, J.; Ahrenkiel, S.P.; Janković-Častvan, I.; Dekanski, D.; Jovanović-Krivokuća, M.; Nedeljković, J.M. Surface-modified ZrO2 nanoparticles with caffeic acid: Characterization and in vitro evaluation of biosafety for placental cells. Chem. Biol. Interact. 2021, 347, 109618. [Google Scholar] [CrossRef] [PubMed]
- Dekanski, D.; Spremo-Potparević, B.; Bajić, V.; Živković, L.; Topalović, D.; Sredojević, D.N.; Lazić, V.; Nedeljković, J.M. Acute toxicity study in mice of orally administrated TiO2 nanoparticles functionalized with caffeic acid. Food Chem. Toxicol. 2018, 115, 42–48. [Google Scholar] [CrossRef]
- Milićević, B.; Đorđević, V.; Lončarević, D.; Ahrenkiel, S.P.; Dramićanin, M.; Nedeljković, J.M. Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives. Microporous Mesoporous Mater. 2015, 217, 184–189. [Google Scholar] [CrossRef]
- Božanić, D.K.; Garcia, G.A.; Nahon, L.; Sredojević, D.A.; Lazić, V.; Vukoje, I.; Ahrenkiel, S.P.; Djoković, V.; Šljivančanin, Z.E.; Nedeljković, J.M. Interfacial charge transfer transitions in colloidal TiO2 nanoparticles functionalized with salicylic acid and 5-aminosalicylic acid: A comparative photoelectron spectroscopy and dft study. J. Phys. Chem. C 2019, 123, 29057–29066. [Google Scholar] [CrossRef]
- Alamdari, D.H.; Paletas, K.; Pegiou, T.; Sarigianni, M.; Befani, C.; Koliakos, G. A novel assay for the evaluation of the prooxidant–antioxidant balance, before and after antioxidant vitamin administration in type ii diabetes patients. Clin. Biochem. 2007, 40, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef]
- Gérard-Monnier, D.; Erdelmeier, I.; Régnard, K.; Moze-Henry, N.; Yadan, J.-C.; Chaudiere, J. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem. Res. Toxicol. 1998, 11, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E. Red Cell Metabolism: A Manual of Biochemical Methods, 3rd ed.; Grune & Stratton: Orlando, FL, USA, 1984. [Google Scholar]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [PubMed]
- Salbitani, G.; Bottone, C.; Carfagna, S. Determination of reduced and total glutathione content in extremophilic microalga galdieria phlegrea. Bio-Protocol 2017, 7, e2372. [Google Scholar] [CrossRef] [PubMed]
- Miletić Vukajlović, J.; Drakulić, D.; Pejić, S.; Ilić, T.V.; Stefanović, A.; Petković, M.; Schiller, J. Increased plasma phosphatidylcholine/lysophosphatidylcholine ratios in patients with parkinson’s disease. Rapid Commun. Mass Spectrom. 2020, 34, e8595. [Google Scholar] [CrossRef]
- Cornu, R.; Béduneau, A.; Martin, H. Ingestion of titanium dioxide nanoparticles: A definite health risk for consumers and their progeny. Arch. Toxicol. 2022, 96, 2655–2686. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of titanium dioxide nanoparticles exposure on human health—A review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef]
- Almquist, C.B.; Biswas, P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. J. Catal. 2002, 212, 145–156. [Google Scholar] [CrossRef]
- Suttiponparnit, K.; Jiang, J.; Sahu, M.; Suvachittanont, S.; Charinpanitkul, T.; Biswas, P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 2011, 6, 27. [Google Scholar] [CrossRef]
- Rahman, H.S.; Othman, H.H.; Abdullah, R.; Edin, H.Y.A.S.; AL-Haj, N.A. Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet. Med. Sci. 2022, 8, 1769–1779. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Han, S.; Zheng, P.; Zhou, D.; Zhou, S.; Jia, G. Effect of oral exposure to titanium dioxide nanoparticles on lipid metabolism in sprague-dawley rats. Nanoscale 2020, 12, 5973–5986. [Google Scholar] [CrossRef]
- Warheit, D.; Brown, S.; Donner, E. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food Chem. Toxicol. 2015, 84, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Martucci, N.J.; Moreno-Olivas, F.; Tako, E.; Mahler, G.J. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine. NanoImpact 2017, 5, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, S.; Lei, R.; Gu, W.; Qin, Y.; Ma, S.; Chen, K.; Chang, Y.; Bai, X.; Xia, S. Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure. Nanoscale 2018, 10, 7736–7745. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, R.; Hutz, R.J. Gold nanoparticles enter rat ovarian granulosa cells and subcellular organelles, and alter in-vitro estrogen accumulation. J. Reprod. Dev. 2009, 55, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.-C.; Zhu, J.-Q. Nanoparticles and female reproductive system: How do nanoparticles affect oogenesis and embryonic development. Oncotarget 2017, 8, 109799–109817. [Google Scholar] [CrossRef]
- Hong, F.; Wang, L. Nanosized titanium dioxide-induced premature ovarian failure is associated with abnormalities in serum parameters in female mice. Int. J. Nanomed. 2018, 13, 2543–2549. [Google Scholar] [CrossRef] [PubMed]
- Minghui, F.; Ran, S.; Yuxue, J.; Minjia, S. Toxic effects of titanium dioxide nanoparticles on reproduction in mammals. Front. Bioeng. Biotechnol. 2023, 11, 1183592. [Google Scholar] [CrossRef] [PubMed]
- Canipari, R.; Cellini, V.; Cecconi, S. The ovary feels fine when paracrine and autocrine networks cooperate with gonadotropins in the regulation of folliculogenesis. Curr. Pharm. Des. 2012, 18, 245–255. [Google Scholar] [PubMed]
- Wang, R.; Song, B.; Wu, J.; Zhang, Y.; Chen, A.; Shao, L. Potential adverse effects of nanoparticles on the reproductive system. Int. J. Nanomed. 2018, 13, 8487–8506. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhang, M.; Deng, Y.; Li, H.; Bu, Q.; Liu, R.; Yu, J.; Liu, S.; Zeng, Z.; Sun, W. Copper nanoparticles lead to reproductive dysfunction by affecting key enzymes of ovarian hormone synthesis and metabolism in female rats. Ecotoxicol. Environ. Saf. 2023, 254, 114704. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, A.B.; El-Ghannam, M.A.; Hasan, A.A.; Mohammad, L.G.; Mesalam, N.M.; Alsayed, R.M. Selenium nanoparticles modulate steroidogenesis-related genes and improve ovarian functions via regulating androgen receptors expression in polycystic ovary syndrome rat model. Biol. Trace Element Res. 2023, 201, 5721–5733. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Q.; Wang, Z.; Yan, B. Effects of nanotoxicity on female reproductivity and fetal development in animal models. Int. J. Mol. Sci. 2013, 14, 9319–9337. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhang, J.; Lai, Z.; Tian, Y.; Fang, L.; Wu, M.; Xiong, J.; Qin, X.; Luo, A.; Wang, S. Long-term moderate oxidative stress decreased ovarian reproductive function by reducing follicle quality and progesterone production. PLoS ONE 2016, 11, e0162194. [Google Scholar] [CrossRef]
- Fijak, M.; Bhushan, S.; Meinhardt, A. Immunoprivileged sites: The testis. In Suppression and Regulation of Immune Responses: Methods and Protocols, 1st ed.; Humana Press: Totowa, NJ, USA, 2010; pp. 459–470. [Google Scholar]
- Blum, J.L.; Xiong, J.Q.; Hoffman, C.; Zelikoff, J.T. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol. Sci. 2012, 126, 478–486. [Google Scholar] [CrossRef]
- Yamashita, K.; Yoshioka, Y.; Higashisaka, K.; Mimura, K.; Morishita, Y.; Nozaki, M.; Yoshida, T.; Ogura, T.; Nabeshi, H.; Nagano, K. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat. Nanotechnol. 2011, 6, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Samrot, A.V.; Ram Singh, S.P.; Deenadhayalan, R.; Rajesh, V.V.; Padmanaban, S.; Radhakrishnan, K. Nanoparticles, a double-edged sword with oxidant as well as antioxidant properties—A review. Oxygen 2022, 2, 591–604. [Google Scholar] [CrossRef]
- PJ, J.C.; Saigeetha, S.; Samrot, A.V.; Ponniah, P.; Chakravarthi, S. Overview on toxicity of nanoparticles, it’s mechanism, models used in toxicity studies and disposal methods—A review. Biocatal. Agric. Biotechnol. 2021, 36, 102117. [Google Scholar]
- Yu, Z.; Li, Q.; Wang, J.; Yu, Y.; Wang, Y.; Zhou, Q.; Li, P. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res. Lett. 2020, 15, 115. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zou, L.; Bao, M.; Feng, Q.; Xia, W.; Zhu, C. Toxicity of polystyrene nanoparticles for mouse ovary and cultured human granulosa cells. Ecotoxicol. Environ. Saf. 2023, 249, 114371. [Google Scholar] [CrossRef]
- Hu, S.; Yang, J.; Rao, M.; Wang, Y.; Zhou, F.; Cheng, G.; Xia, W.; Zhu, C. Copper nanoparticle-induced uterine injury in female rats. Environ. Toxicol. 2019, 34, 252–261. [Google Scholar] [CrossRef]
- Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef]
- Yan, Y.; Ren, F.; Wang, P.; Sun, Y.; Xing, J. Synthesis and evaluation of a prodrug of 5-aminosalicylic acid for the treatment of ulcerative colitis. Iran. J. Basic Med. Sci. 2019, 22, 1452–1461. [Google Scholar] [PubMed]
- Desreumaux, P.; Ghosh, S. Mode of action and delivery of 5-aminosalicylic acid–new evidence. Aliment. Pharmacol. Ther. 2006, 24, 2–9. [Google Scholar] [CrossRef]
Group/Parameter | C | TiO2 | TiO2/SA | TiO2/5-ASA |
---|---|---|---|---|
Food intake (g/day) | 22.16 ± 0.42 a | 18.59 ± 0.41 b | 18.59 ± 0.90 b | 19.16 ± 0.42 b |
Water intake (ml/day) | 47.59 ± 0.85 a | 37.61 ± 0.44 b | 42.16 ± 0.76 c | 42.06 ± 0.59 c |
Body mass gain/loss (g) | 18.89 ± 2.47 a | −10.00 ± 3.23 b | 6.11 ± 3.98 a,b | 8.33 ± 2.36 a,b |
Group/Parameter | C | TiO2 | TiO2/SA | TiO2/5-ASA |
---|---|---|---|---|
Body mass (g) | 313.89 ± 4.06 a | 285.56 ± 1.77 b | 303.89 ± 8.85 a,b | 306.11 ± 4.98 a,b |
Wet ovaries mass/body mass (mg/g) | 0.41 ± 0.02 a | 0.61 ± 0.06 b | 0.73 ± 0.09 b | 0.53 ± 0.06 a,b |
Wet oviducts and uterus mass/body mass (mg/g) | 1.98 ± 0.17 a | 5.01 ± 0.42 b | 5.03 ± 1.39 b | 4.73 ± 0.33 a,b |
Group/Hormone | C | TiO2 | TiO2/SA | TiO2/5-ASA |
---|---|---|---|---|
Estradiol (pmol/L) | 132.11 ± 23.80 a | 169.44 ± 19.93 b | 167.44 ± 29.62 b | 172.67 ± 27.35 b |
Progesterone (nmol/L) | 112.77 ± 15.02 a | 69.51 ± 25.29 b | 37.96 ± 14.43 c | 45.48 ± 18.85 b,c |
Testosterone (nmol/L) | 0.32 ± 0.11 a | 0.35 ± 0.09 a | 0.33 ± 0.08 a | 0.63 ± 0.28 b |
Sex hormone-binding globulin (nmol/L) | <4.5 | <4.5 | <4.5 | <4.5 |
Follicle-stimulating hormone (IU/L) | <0.11 | <0.11 | <0.11 | <0.11 |
Luteinizing hormone (IU/L) | <0.12 | <0.12 | <0.12 | <0.12 |
Prolactin (mIU/L) | <17.22 | <17.22 | <17.22 | <17.22 |
Group/Tumor Marker | C | TiO2 | TiO2/SA | TiO2/5-ASA |
HE4 (pmol/L) | <20 | <20 | <20 | <20 |
CA 125 (IU/mL) | <1.1 | <1.1 | <1.1 | <1.1 |
Group/Parameter | C | TiO2 | TiO2/SA | TiO2/5-ASA |
---|---|---|---|---|
PAB (HKU) | 220.22 ± 7.59 a | 224.44 ± 6.28 a | 229.12 ± 11.47 a | 221.92 ± 10.17 a |
AOPP (µmol/L) | 92.48 ± 7.96 a | 108.30 ± 11.36 a | 103.48 ± 4.68 a | 106.95 ± 10.99 a |
MDA (µM) | 0.11 ± 0.00 a | 0.14 ± 0.01 a | 0.21 ± 0.01 b | 0.14 ± 0.01 a |
HNE (µM) | 0.25 ± 0.02 a | 0.31 ± 0.01 a | 0.49 ± 0.03 b | 0.24 ± 0.00 a |
MnSOD (U/mg) | 4.97 ± 0.58 a | 8.45 ± 0.64 b | 9.03 ± 0.85 b | 6.69 ± 0.73 a,b |
CuZnSOD (U/mg) | 55.61 ± 5.60 a | 34.29 ± 3.07 b | 23.96 ± 3.24 b | 36.42 ± 3.18 b |
CAT (U/mg) | 51.10 ± 5.11 a | 93.98 ± 6.68 b | 20.71 ± 3.73 c | 73.47 ± 7.73 a,b |
GPx (U/g) | 20.03 ± 1.28 a | 38.01 ± 1.53 b | 9.95 ± 1.47 c | 29.07 ± 1.62 d |
GSH/GSSG | 0.70 ± 0.06 a,c | 0.26 ± 0.07 b | 0.82 ± 0.14 a | 0.36 ± 0.05 c,b |
PC/LPC | 1.60 ± 0.21 a | 0.72 ± 0.02 b | 0.87 ± 0.04 b | 1.41 ± 0.28 a,b |
Group/Parameter | C | TiO2 | TiO2/SA | TiO2/5-ASA |
---|---|---|---|---|
PAB (HKU) | 318.74 ± 10.60 a | 374.81 ± 7.78 b | 318.23 ± 14.21 a | 314.24 ± 10.75 a |
AOPP (µmol/L) | 62.38 ± 1.53 a | 61.06 ± 3.70 a | 49.84 ± 2.70 b | 44.29 ± 1.67 b |
MDA (µM) | 0.12 ± 0.01 a | 0.19 ± 0.01 b | 0.17 ± 0.01 b,c | 0.13 ± 0.01 a,c |
HNE (µM) | 0.25 ± 0.03 a | 0.20 ± 0.04 a | 0.23 ± 0.04 a | 0.38 ± 0.01 b |
MnSOD (U/mg) | 5.35 ± 0.53 a,b | 7.09 ± 0.37 a | 6.50 ± 0.66 a,b | 4.37 ± 0.75 b |
CuZnSOD (U/mg) | 36.54 ± 2.66 a | 32.61 ± 4.06 a | 35.23 ± 3.61 a | 30.31 ± 4.72 a |
CAT (U/mg) | 59.36 ± 4.18 a | 75.71 ± 5.71 a | 77.37 ± 4.93 a | 66.77 ± 3.12 a |
GPx (U/g) | 33.37 ± 2.74 a | 59.91 ± 5.77 b | 40.30 ± 3.86 a | 38.48 ± 5.25 a |
GSH/GSSG | 0.87 ± 0.03 a | 0.49 ± 0.04 b | 0.49 ± 0.05 b,c | 0.77 ± 0.13 a,c |
PC/LPC | 1.59 ± 0.10 a,c | 1.12 ± 0.03 b | 1.35 ± 0.08 b,c | 1.61 ± 0.10 c |
Group/Parameter | C | TiO2 | TiO2/SA | TiO2/5-ASA |
---|---|---|---|---|
PAB (HKU) | 148.72 ± 11.63 a | 225.10 ± 7.39 b | 312.90 ± 28.44 c | 162.12 ± 14.23 a,b |
AOPP (µmol/L) | 65.19 ± 4.65 a,c | 105.80 ± 8.45 a | 161.78 ± 11.18 b | 69.36 ± 3.83 c |
MDA (µM) | 0.15 ± 0.01 a,c | 0.21 ± 0.02 b | 0.12 ± 0.01 a | 0.16 ± 0.01 c |
HNE (µM) | 0.24 ± 0.04 a | 0.20 ± 0.04 a | 0.31 ± 0.01 a | 0.36 ± 0.04 a |
MnSOD (U/mg) | 5.00 ± 0.67 a | 8.12 ± 0.56 b | 6.48 ± 0.71 a,b | 5.46 ± 0.89 a,b |
CuZnSOD (U/mg) | 26.79 ± 2.71 a | 51.81 ± 5.56 b | 44.64 ± 4.94 b | 25.98 ± 3.74 a |
CAT (U/mg) | 43.30 ± 4.04 a,b | 36.15 ± 2.78 a | 58.66 ± 6.69 b | 33.20 ± 5.00 a |
GPx (U/g) | 23.80 ± 2.87 a | 17.66 ± 2.30 a | 24.40 ± 1.14 a | 16.41 ± 2.70 a |
GSH/GSSG | 1.49 ± 0.10 a | 0.88 ± 0.05 b,c | 0.52 ± 0.09 c | 1.07 ± 0.16 a,b |
PC/LPC | 1.45 ± 0.16 a | 1.27 ± 0.13 a | 0.74 ± 0.04 b | 1.36 ± 0.06 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorović, A.; Bobić, K.; Veljković, F.; Pejić, S.; Glumac, S.; Stanković, S.; Milovanović, T.; Vukoje, I.; Nedeljković, J.M.; Radojević Škodrić, S.; et al. Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats. Antioxidants 2024, 13, 231. https://doi.org/10.3390/antiox13020231
Todorović A, Bobić K, Veljković F, Pejić S, Glumac S, Stanković S, Milovanović T, Vukoje I, Nedeljković JM, Radojević Škodrić S, et al. Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats. Antioxidants. 2024; 13(2):231. https://doi.org/10.3390/antiox13020231
Chicago/Turabian StyleTodorović, Ana, Katarina Bobić, Filip Veljković, Snežana Pejić, Sofija Glumac, Sanja Stanković, Tijana Milovanović, Ivana Vukoje, Jovan M. Nedeljković, Sanja Radojević Škodrić, and et al. 2024. "Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats" Antioxidants 13, no. 2: 231. https://doi.org/10.3390/antiox13020231
APA StyleTodorović, A., Bobić, K., Veljković, F., Pejić, S., Glumac, S., Stanković, S., Milovanović, T., Vukoje, I., Nedeljković, J. M., Radojević Škodrić, S., Pajović, S. B., & Drakulić, D. (2024). Comparable Toxicity of Surface-Modified TiO2 Nanoparticles: An In Vivo Experimental Study on Reproductive Toxicity in Rats. Antioxidants, 13(2), 231. https://doi.org/10.3390/antiox13020231