Ischemia-Modified Albumin (IMA) Is Associated with Poor Survival in Patients with Newly Diagnosed Idiopathic Pulmonary Fibrosis (IPF): A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ischemia-Modified Albumin
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.F.; Flaherty, K.R.; Lasky, J.A.; et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef]
- King, T.E., Jr.; Pardo, A.; Selman, M. Idiopathic pulmonary fibrosis. Lancet 2011, 378, 1949–1961. [Google Scholar] [CrossRef] [PubMed]
- Selvarajah, B.; Platé, M.; Chambers, R.C. Pulmonary fibrosis: Emerging diagnostic and therapeutic strategies. Mol. Asp. Med. 2023, 94, 101227. [Google Scholar] [CrossRef] [PubMed]
- Fois, A.G.; Paliogiannis, P.; Sotgia, S.; Mangoni, A.A.; Zinellu, E.; Pirina, P.; Carru, C.; Zinellu, A. Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: A systematic review. Respir. Res. 2018, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Paliogiannis, P.; Fois, A.G.; Collu, C.; Bandinu, A.; Zinellu, E.; Carru, C.; Pirina, P.; Mangoni, A.A.; Zinellu, A. Oxidative stress-linked biomarkers in idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Biomark. Med. 2018, 12, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Cheresh, P.; Kim, S.J.; Tulasiram, S.; Kamp, D.W. Oxidative stress and pulmonary fibrosis. Biochim. Biophys. Acta 2013, 1832, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278–286. [Google Scholar] [CrossRef]
- Kamp, D.W.; Graceffa, P.; Pryor, W.A.; Weitzman, S.A. The role of free radicals in asbestos-induced diseases. Free. Radic. Biol. Med. 1992, 12, 293–315. [Google Scholar] [CrossRef]
- Balık, Z.B.; Balık, A.R.; Oğuz, E.F.; Erel, Ö.; Tunca, M. Evaluation of Thiol Disulfide Homeostasis and Ischemia-Modified Albumin Levels as an Indicator of Oxidative Stress in Acne Vulgaris. Dermatol. Pract. Concept. 2023, 13, e2023280. [Google Scholar] [CrossRef]
- Turan, Ç.; Şenormancı, G.; Neşelioğlu, S.; Budak, Y.; Erel, Ö.; Şenormancı, Ö. Oxidative Stress and Inflammatory Biomarkers in People with Methamphetamine Use Disorder. Clin. Psychopharmacol. Neurosci. 2023, 21, 572–582. [Google Scholar] [CrossRef]
- Bar-Or, D.; Lau, E.; Winkler, J.V. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia-a preliminary report. J. Emerg. Med. 2000, 19, 311–315. [Google Scholar] [CrossRef]
- Bar-Or, D.; Winkler, J.V.; Vanbenthuysen, K.; Harris, L.; Lau, E.; Hetzel, F.W. Reduced albumin-cobalt binding with transient myocardial ischemia after elective percutaneous transluminal coronary angioplasty: A preliminary comparison to creatine kinase-MB, myoglobin, and troponin I. Am. Heart J. 2001, 141, 985–991. [Google Scholar] [CrossRef]
- Bakula, M.; Milicevic, G.; Bakula, M.; Kozic, I.; Rumenjak, V.; Dominkovic, A. Kinetics of Ischemia-Modified Albumin Following Exercise-Induced Myocardial Ischemia. Clin. Lab. 2016, 62, 563–571. [Google Scholar] [CrossRef]
- Sinha, M.K.; Vazquez, J.M.; Calvino, R.; Gaze, D.C.; Collinson, P.O.; Kaski, J.C. Effects of balloon occlusion during percutaneous coronary intervention on circulating Ischemia Modified Albumin and transmyocardial lactate extraction. Heart 2006, 92, 1852–1853. [Google Scholar] [CrossRef] [PubMed]
- Bhagavan, N.V.; Lai, E.M.; Rios, P.A.; Yang, J.; Ortega-Lopez, A.M.; Shinoda, H.; Honda, S.A.; Rios, C.N.; Sugiyama, C.E.; Ha, C.E. Evaluation of human serum albumin cobalt binding assay for the assessment of myocardial ischemia and myocardial infarction. Clin. Chem. 2003, 49, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Kaefer, M.; Piva, S.J.; De Carvalho, J.A.; Da Silva, D.B.; Becker, A.M.; Coelho, A.C.; Duarte, M.M.; Moresco, R.N. Association between ischemia modified albumin, inflammation and hyperglycemia in type 2 diabetes mellitus. Clin. Biochem. 2010, 43, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Dayanand, C.; Vegi, P.K.; Lakshmaiah, V.; Kutty, A. Association of ischemia modified albumin in terms of hypoxic risk with carbonylated protein, glycosylated hemoglobin and plasma insulin in type 2 diabetes mellitus. Int. J. Biotech. Biochem. 2013, 9, 275–284. [Google Scholar]
- Chawla, R.; Loomba, R.; Guru, D.; Loomba, V. Ischemia Modified Albumin (IMA)—A Marker of Glycaemic Control and Vascular Complications in Type 2 Diabetes Mellitus. J. Clin. Diagn. Res. JCDR 2016, 10, BC13–BC16. [Google Scholar] [CrossRef] [PubMed]
- Szulimowska, J.; Zalewska, A.; Taranta-Janusz, K.; Trocka, D.; Żendzian-Piotrowska, M.; Tomasiuk, R.; Maciejczyk, M. Association of Ischemia-Modified Albumin (IMA) in Saliva, Serum, and Urine with Diagnosis of Chronic Kidney Disease (CKD) in Children: A Case-Control Study. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2023, 29, e942230. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.F.; Liu, J.; Chen, L. The value of serum lipoprotein-associated phospholipase A2, ischemia-modified albumin, and cystatin C in predicting coronary heart disease risk: A single center retrospective cohort study. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 10730–10735. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Pogorelić, Z.; Agrawal, A.; Muñoz, C.M.L.; Kainth, D.; Verma, A.; Jindal, B.; Agarwala, S.; Anand, S. Utility of Ischemia-Modified Albumin as a Biomarker for Acute Appendicitis: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 5486. [Google Scholar] [CrossRef]
- Zhong, C.; Chen, T.; Shen, Y.; Zhang, Y.; Liu, Y.; Ning, L. The effects of serum ischemia modified albumin on diagnosis of cerebral infarction and vertebral basilar artery stenosis. Brain Inj. 2021, 35, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Afrose, D.; Chen, H.; Ranashinghe, A.; Liu, C.C.; Henessy, A.; Hansbro, P.M.; McClements, L. The diagnostic potential of oxidative stress biomarkers for preeclampsia: Systematic review and meta-analysis. Biol. Sex Differ. 2022, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Brusasco, V.; Crapo, R.; Viegi, G.; American Thoracic Society; European Respiratory Society. Coming together: The ATS/ERS consensus on clinical pulmonary function testing. Eur. Respir. J. 2005, 26, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Paliogiannis, P.; Sotgiu, E.; Mellino, S.; Mangoni, A.A.; Zinellu, E.; Negri, S.; Collu, C.; Pintus, G.; Serra, A.; et al. Blood Cell Count Derived Inflammation Indexes in Patients with Idiopathic Pulmonary Fibrosis. Lung 2020, 198, 821–827. [Google Scholar] [CrossRef]
- Achaiah, A.; Rathnapala, A.; Pereira, A.; Bothwell, H.; Dwivedi, K.; Barker, R.; Iotchkova, V.; Benamore, R.; Hoyles, R.K.; Ho, L.P. Neutrophil lymphocyte ratio as an indicator for disease progression in Idiopathic Pulmonary Fibrosis. BMJ Open Respir. Res. 2022, 9, e001202. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, J.; Zhang, M.; Yan, X. Prognostic Role of NLR, PLR and MHR in Patients With Idiopathic Pulmonary Fibrosis. Front. Immunol. 2022, 13, 882217. [Google Scholar] [CrossRef]
- Bernardinello, N.; Grisostomi, G.; Cocconcelli, E.; Castelli, G.; Petrarulo, S.; Biondini, D.; Saetta, M.; Spagnolo, P.; Balestro, E. The clinical relevance of lymphocyte to monocyte ratio in patients with Idiopathic Pulmonary Fibrosis (IPF). Respir. Med. 2022, 191, 106686. [Google Scholar] [CrossRef]
- Zinellu, A.; Collu, C.; Nasser, M.; Paliogiannis, P.; Mellino, S.; Zinellu, E.; Traclet, J.; Ahmad, K.; Mangoni, A.A.; Carru, C.; et al. The Aggregate Index of Systemic Inflammation (AISI): A Novel Prognostic Biomarker in Idiopathic Pulmonary Fibrosis. J. Clin. Med. 2021, 10, 4134. [Google Scholar] [CrossRef]
- Marzec, J.M.; Nadadur, S.S. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol. Appl. Pharmacol. 2022, 449, 116070. [Google Scholar] [CrossRef]
- Rogers, L.K.; Cismowski, M.J. Oxidative Stress in the Lung—The Essential Paradox. Curr. Opin. Toxicol. 2018, 7, 37–43. [Google Scholar] [CrossRef] [PubMed]
- van der Vliet, A.; Janssen-Heininger, Y.M.W.; Anathy, V. Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol. Asp. Med. 2018, 63, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Sarma, J.V.; Ward, P.A. Oxidants and redox signaling in acute lung injury. Compr. Physiol. 2011, 1, 1365–1381. [Google Scholar] [CrossRef] [PubMed]
Global Cohort (n = 56) | Survivors (n = 44) | Non-Survivors (n = 12) | p-Value | |
---|---|---|---|---|
Age, years | 70.3 ± 6.9 | 70.7 ± 6.9 | 68.8 ± 6.8 | 0.40 |
Gender (M/F) | 45/11 | 34/10 | 11/1 | 0.27 |
BMI (Kg/m2) | 27.5 ± 4.0 | 27.2 ± 3.6 | 28.4 ± 5.2 | 0.37 |
Smoking status, n (no/former/yes) | 13/42/1 | 11/32/1 | 2/10/0 | 0.71 |
Diabetes, n (no/yes) | 46/10 | 37/7 | 9/3 | 0.47 |
Arterial hypertension, n (no/yes) | 32/24 | 28/16 | 4/8 | 0.06 |
Cerebrovascular diseases, n (no/yes) | 52/4 | 41/3 | 11/1 | 0.86 |
Atrial arrhythmias, n (no/yes) | 49/7 | 40/4 | 9/3 | 0.19 |
GERD, n (no/yes) | 39/17 | 30/14 | 9/3 | 0.65 |
FEV1 (%) | 83.0 ± 21.2 | 85.7 ± 20.5 | 73.0 ± 21.2 | 0.07 |
FVC (%) | 75.7 ± 19.8 | 78.3 ± 19.8 | 66.0 ± 17.3 | 0.06 |
FEV1/FVC (%) | 89.3 ± 6.4 | 89.2 ± 6.8 | 91.0 ± 4.1 | 0.39 |
TLC (%) | 75.6 ± 17.0 | 78.2 ± 16.2 | 66.6 ± 17.6 | 0.035 |
DLCO (%) | 53.2 ± 20.6 | 54.7 ± 22.0 | 47.4 ± 14.2 | 0.30 |
6MWT (meters) | 323 ± 173 | 336 ± 173 | 266 ± 171 | 0.25 |
Stage (I/II/III) | 23/22/11 | 20/17/7 | 3/5/4 | 0.30 |
Therapy (no/nintedanib/pirfenidone) | 3/24/29 | 1/18/25 | 2/6/4 | 0.09 |
Survival (months) | 34 ± 22 | 37 ± 22 | 21 ± 17 | 0.03 |
WBC (×109 L) | 8.10 ± 2.39 | 8.11 ± 2.31 | 8.06 ± 2.79 | 0.95 |
Lymphocytes (×109 L) | 2.22 ± 0.91 | 2.42 ± 0.88 | 1.53 ± 0.65 | 0.002 |
Monocytes (×109 L) | 0.50 (0.40–0.60) | 0.50 (0.40–0.60) | 0.49 (0.35–0.60) | 0.28 |
Neutrophils (×109 L) | 4.91 ± 2.07 | 4.72 ± 1.95 | 5.60 ± 2.40 | 0.20 |
IMA (mABSU) | 481 ± 49 | 472 ± 42 | 508 ± 64 | 0.035 |
HR | 95% CI | p-Value | |
---|---|---|---|
Age | 0.9643 | 0.8789 to 1.0580 | 0.44 |
Gender | 0.4393 | 0.0566 to 3.4119 | 0.43 |
BMI | 1.0759 | 0.9375 to 1.2347 | 0.30 |
Smoking status | 1.0847 | 0.3067 to 3.8364 | 0.90 |
Diabetes | 2.6219 | 0.6871 to 10.005 | 0.16 |
Arterial hypertension | 2.4741 | 0.7442 to 8.2246 | 0.14 |
Cerebrovascular diseases | 0.8259 | 0.1062 to 6.4234 | 0.86 |
Atrial arrhythmias | 2.3974 | 0.6467 to 8.8876 | 0.19 |
GERD | 0.7503 | 0.2031 to 2.7713 | 0.67 |
FEV1 (%) | 0.9765 | 0.9480 to 1.0058 | 0.11 |
FVC (%) | 0.9720 | 0.9419 to 1.0031 | 0.08 |
FEV1/FVC | 1.0671 | 0.9687 to 1.1755 | 0.19 |
TLC (%) | 0.9587 | 0.9189 to 1.0001 | 0.051 |
DLCO (%) | 0.9875 | 0.9564 to 1.0196 | 0.44 |
6MWT | 0.9983 | 0.9947 to 1.0019 | 0.35 |
Stage | 1.8409 | 0.8369 to 4.0494 | 0.13 |
Therapy | 0.3993 | 0.1432 to 1.1135 | 0.08 |
WBC | 0.9784 | 0.7375 to 1.2980 | 0.88 |
Lymphocytes | 0.2671 | 0.1110 to 0.6427 | 0.003 |
Monocytes | 0.0410 | 0.0007 to 2.2530 | 0.12 |
Neutrophils | 1.1813 | 0.9219 to 1.5136 | 0.19 |
IMA | 1.0154 | 1.0035 to 1.0275 | 0.01 |
HR | 95% CI | p-Value | |
---|---|---|---|
FVC (%) | -- | -- | -- |
TLC (%) | 0.9556 | 0.9116 to 1.0018 | 0.06 |
Therapy | -- | -- | -- |
Lymphocytes | 0.3051 | 0.1349 to 0.6901 | 0.004 |
IMA | 1.0118 | 1.0008 to 1.0230 | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinellu, A.; Zoroddu, S.; Fois, S.; Mellino, S.; Scala, C.; Virdis, E.; Zinellu, E.; Sotgia, S.; Paliogiannis, P.; Mangoni, A.A.; et al. Ischemia-Modified Albumin (IMA) Is Associated with Poor Survival in Patients with Newly Diagnosed Idiopathic Pulmonary Fibrosis (IPF): A Pilot Study. Antioxidants 2024, 13, 278. https://doi.org/10.3390/antiox13030278
Zinellu A, Zoroddu S, Fois S, Mellino S, Scala C, Virdis E, Zinellu E, Sotgia S, Paliogiannis P, Mangoni AA, et al. Ischemia-Modified Albumin (IMA) Is Associated with Poor Survival in Patients with Newly Diagnosed Idiopathic Pulmonary Fibrosis (IPF): A Pilot Study. Antioxidants. 2024; 13(3):278. https://doi.org/10.3390/antiox13030278
Chicago/Turabian StyleZinellu, Angelo, Stefano Zoroddu, Simona Fois, Sabrina Mellino, Chiara Scala, Erika Virdis, Elisabetta Zinellu, Salvatore Sotgia, Panagiotis Paliogiannis, Arduino A. Mangoni, and et al. 2024. "Ischemia-Modified Albumin (IMA) Is Associated with Poor Survival in Patients with Newly Diagnosed Idiopathic Pulmonary Fibrosis (IPF): A Pilot Study" Antioxidants 13, no. 3: 278. https://doi.org/10.3390/antiox13030278
APA StyleZinellu, A., Zoroddu, S., Fois, S., Mellino, S., Scala, C., Virdis, E., Zinellu, E., Sotgia, S., Paliogiannis, P., Mangoni, A. A., Carru, C., Pirina, P., & Fois, A. G. (2024). Ischemia-Modified Albumin (IMA) Is Associated with Poor Survival in Patients with Newly Diagnosed Idiopathic Pulmonary Fibrosis (IPF): A Pilot Study. Antioxidants, 13(3), 278. https://doi.org/10.3390/antiox13030278