Dimethyl Sulfoxide (DMSO) as a Potential Source of Interference in Research Related to Sulfur Metabolism—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Polymerosomes Partially Loaded with DMSO via the Film Rehydration Method
2.2. Characterization of Polymerosome Suspensions
2.3. Cell Culture
2.4. Cell Homogenization
2.5. The Crystal Violet Staining Assay
2.6. Enzyme Assays
2.6.1. MPST Activity Assay
2.6.2. TST Activity Assay
2.6.3. CTH Activity Assay
2.7. The Sulfane Sulfur Level
2.8. The Protein Content Determination
2.9. Determination of Concentration of Low-Molecular Weight Sulfur-Containing Compounds Using RP-HPLC
2.10. Determination of Total GSH Content In Vitro
2.11. Total RNA Isolation
2.12. Reverse Transcription of RNA
2.13. Polymerase Chain Reaction (PCR)
2.14. Statistical Analysis
3. Results
3.1. Effect of DMSO on the Polymer Vesicle Preparation and Loading
3.2. Effect of DMSO on the Proliferation of Selected Cell Lines
3.3. Effect of DMSO on the Level of Non-Protein Sulfur-Containing Compounds in the Selected Cell Lines
3.4. Effect of DMSO on Total Glutathione Level In Vitro
3.5. Effect of DMSO on the Expression of the Sulfurtransferases in the Selected Cell Lines
3.6. Effect of DMSO on the Activity of Sulfurtransferases in the Selected Cell Lines
4. Discussion
4.1. DMSO Is Deleterious to Tested Cell Lines In Vitro
4.2. DMSO Affects the Levels of Glutathione, Cystine, and Sulfane Sulfur-Containing Compounds
4.3. DMSO Causes Changes in the Non-Oxidative Metabolism of Sulfur
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Z.W.; Quinn, P.J. Dimethyl sulphoxide: A review of its applications in cell biology. Biosci. Rep. 1994, 14, 259–281. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.T.; Nguyen, H.T.; Truong, K.D. Comparative cytotoxic effect of methanol, ethanol and DMSO on human cancer cell lines. Biomed. Res. Ther. 2020, 7, 3855–3859. [Google Scholar] [CrossRef]
- Capriotti, K.; Capriotti, J.A. Dimethyl sulfoxide: History, chemistry and clinical utility in dermatology. J. Clin. Aesthet. Dermatol. 2012, 5, 24–26. [Google Scholar] [PubMed]
- Brayton, C.F. Dimethyl sulfoxide (DMSO): A review. Cornell Vet. 1986, 76, 61–90. [Google Scholar]
- U.S. Department of Health and Human Services Food and Drug Administration (FDA). Q3C—Tables and List Guidance for Industry. 2017. Available online: https://www.fda.gov/media/71737/download (accessed on 24 March 2024).
- The International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use, (ICH). ICH Guideline Q3C (R5) on Impurities: Guideline for Residual Solvents. 2011. Available online: https://database.ich.org/sites/default/files/ICH_Q3C-R8_Guideline_Step4_2021_0422_1.pdf (accessed on 24 March 2024).
- Santos, N.C.; Figueira-Coelho, J.; Martins-Silva, J.; Saldanha, C. Multidisciplinary utilization of dimethyl sulfoxide: Pharmacological, cellular, and molecular aspects. Biochem. Pharmacol. 2005, 65, 1035–1041. [Google Scholar] [CrossRef]
- Dludla, P.V.; Jack, B.; Viraragavan, A.; Pheiffer, C.; Johnson, R.; Louw, J.; Muller, C.J.F. A dose-dependent effect of dimethyl sulfoxide on lipid content, cell viability and oxidative stress in 3T3-L1 adipocytes. Toxicol. Rep. 2018, 5, 1014–1020. [Google Scholar] [CrossRef]
- Tunçer, S.; Gurbanov, R.; Sheraj, I.; Solel, E.; Esenturk, O.; Banerjee, S. Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Sci. Rep. 2018, 8, 14828. [Google Scholar] [CrossRef] [PubMed]
- Verheijen, M.; Lienhard, M.; Schrooders, Y.; Clayton, O.; Nudischer, R.; Boerno, S.; Timmermann, B.; Selevsek, N.; Schlapbach, R.; Gmuender, H.; et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 2019, 9, 4641. [Google Scholar] [CrossRef]
- Sanmartin-Suarez, C.; Soto-Otero, R.; Sanchez-Sellero, I.; Mendez-Alvarez, E. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants. J. Pharmacol. Toxicol. Methods 2011, 63, 209–215. [Google Scholar] [CrossRef]
- Hajighasemi, F.; Tajic, S. Assessment of cytotoxicity of dimethyl sulfoxide in human hematopoietic tumor cell lines. Iran. J. Blood Cancer 2007, 9, 48–53. [Google Scholar]
- Xiang, J.-C.; Gao, Q.-H.; Wu, A.-X. Solvents as Reagents in Organic Synthesis: Reaction and Applications, 1st ed.; Wu, X.-F., Ed.; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Yuan, C.; Gao, J.; Guo, J.; Bai, L.; Marshall, C.; Cai, Z.; Wang, L.; Xiao, M. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes. PLoS ONE 2014, 9, e107477. [Google Scholar] [CrossRef] [PubMed]
- Notman, R.; den Otter, W.K.; Noro, M.G.; Briels, W.J.; Anwar, J. The permability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics. Biophys. J. 2007, 93, 2056–2068. [Google Scholar] [CrossRef]
- de Ménorval, M.-A.; Mir, L.M.; Fernández, M.L.; Reigada, R. Effects of dimethyl sulfoxide in cholesterol-containing lipid membranes: A comparative study of experiments in silico and with cells. PLoS ONE 2012, 7, e41733. [Google Scholar] [CrossRef] [PubMed]
- Gad, S.E.; Sullivian, D.W. Dimethyl sulfoxide (DMSO). In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 166–168. [Google Scholar] [CrossRef]
- Awan, M.; Buriak, I.; Fleck, R.; Fuller, B.; Goltsev, A.; Kerby, J.; Lowdell, M.; Mericka, P.; Petrenko, A.; Petrenko, Y.; et al. Dimethyl sulfoxide: A central player since the dawn of cryobiology, is efficacy balanced by toxicity. Regen. Med. 2020, 15, 1463–1491. [Google Scholar] [CrossRef]
- Kerns, E.H.; Di, L. Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization, 1st ed.; Academic Press: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Sharma, S.; Raymond, E.; Soda, H.; Izbicka, E.; Davidson, K.; Lawrence, R.; von Hoff, D.D. Dimethyl sulfoxide (DMSO) causes a reversible inhibition of telomerase activity in a Burkitt lymphoma cell line. Leuk. Res. 1998, 8, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Busby, W.F., Jr.; Ackermann, J.M.; Crespi, C.L. Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vivo activities of cDNA-expressed human cytochromes P-450. Drug Metab. Dispos. 1999, 27, 246–249. [Google Scholar] [PubMed]
- Carr, R.L.; Nail, C.A. Effect of different administration paradigms on cholinesterase inhibition following repeated chlorpyrifos exposure in late preweanling rats. Toxicol. Sci. 2008, 106, 186–192. [Google Scholar] [CrossRef]
- Wiggers, H.J.; Cheleski, J.; Zottis, A.; Oliva, G.; Andricopulo, A.D.; Montanari, C.A. Effects of organic solvents on the enzyme activity of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase in calorimetric assays. Anal. Biochem. 2007, 370, 107–114. [Google Scholar] [CrossRef]
- Tjäderhane, L.; Mehtälä, P.; Scaffa, P.; Vidal, C.; Pääkkönen, V.; Breschi, L.; Hebling, J.; Tay, F.R.; Nascimento, F.D.; Pashley, D.H.; et al. The effect of dimethyl sulfoxide (DMSO) on dentin bonding and nanoleakage of etch-and-rinse adhesives. Dent. Mater. 2013, 10, 1055–1062. [Google Scholar] [CrossRef]
- Sakalli, S.; Burkina, V.; Zlabek, V.; Zamaratskaia, G. Effects of acetone, acetonitrile, ethanol, methanol and DMSO on cytochrome P450 in rainbow trout (Oncorhynchus mykiss) hepatic microsomes. Toxicol. Mech. Methods 2015, 25, 501–506. [Google Scholar]
- Misuri, L.; Cappiello, M.; Balestri, F.; Moschini, R.; Barracco, V.; Mura, U.; Del-corso, A. The use of dimethylsulfoxide as a solvent in enzyme inhibition studies: The case of aldose reductase. J. Enzyme Inhib. Med. Chem. 2017, 32, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Giugliarelli, A.; Urbanelli, L.; Ricci, M.; Paolantoni, M.; Emiliani, C.; Saccardi, R.; Mazzanti, B.; Lombardini, L.; Morresi, A.; Sassi, P. Evidences of DMSO-induced protein aggregation in cells. J. Phys. Chem. A 2016, 120, 5065–5070. [Google Scholar] [CrossRef] [PubMed]
- Modesitt, S.C.; Parsons, S.J. In vitro and in vivo histone deacetylase inhibitor therapy with vorinostat and paclitaxel in ovarian cancer models: Does timing matter? Gynecol. Oncol. 2010, 119, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Sankpal, U.T.; Abdelrahim, M.; Connelly, S.F.; Lee, C.M.; Madero-Visbal, R.; Colon, J.; Smith, J.; Safe, S.; Maliakal, P.; Basha, R. Small molecule tolfenamic acid inhibits PC-3 cell proliferation and invasion in vitro, and tumor growth in orthotopic mouse model for prostate cancer. Prostate 2012, 72, 1648–1658. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, L.; Chen, L.; Dastidar, S.G.; Verma, C.; Li, J.; Tan, D.; Beuerman, R. Effect of structural parameters if peptides on dimer formation and highly oxidized side products in the oxidation of thiols of linear analogues of human beta-defensin 3 by DMSO. J. Pept. Sci. 2009, 15, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Atcher, J.; Alfonso, I. The effect of DMSO in the aqueous thiol-disulfide dynamic covalent chemistry of model pseudopeptides. RSC Adv. 2013, 3, 25605–25608. [Google Scholar] [CrossRef]
- Madsen, B.K.; Hilscher, M.; Zetner, D.; Rosenberg, J. Adverse reactions of dimethyl sulfoxide in humans: A systematic review. F1000Research 2018, 7, 1746. [Google Scholar] [CrossRef]
- Wróbel, M. Comparative Study on Physiological Roles of Enzymes That Participate in Sulfane Sulfur Production and Metabolism in Animal Tissues; Jagiellonian University Press: Kraków, Poland, 2000. [Google Scholar]
- Stipanuk, M.H. Sulfur amino acid metabolism pathways for production and removal of homocysteine and cysteine. Ann. Rev. Nutr. 2004, 24, 539–577. [Google Scholar] [CrossRef]
- Nagahara, N. Catalytic site cysteine of thiol enzyme: Sulfurtransferases. J. Amino Acids 2011, 2011, 709404. [Google Scholar] [CrossRef]
- Stipanuk, M.H.; Ueki, I. Dealing with methionine/homocysteine sulfur: Cysteine metabolism to taurine and inorganic sulfur. J. Inherit. Metab. Dis. 2011, 34, 17–32. [Google Scholar] [CrossRef]
- Kaczor-Kamińska, M.; Sura, P.; Wróbel, M. Multidirectional changes in parameters related to sulfur metabolism in frog tissues exposed to heavy metal-stress. Biomolecules 2020, 10, 574. [Google Scholar] [CrossRef] [PubMed]
- Kaczor-Kamińska, M.; Kamiński, K.; Wróbel, M. Heparan sulfate, mucopolysaccharidosis IIIB and sulfur metabolism disorders. Antioxidants 2022, 11, 678. [Google Scholar] [CrossRef] [PubMed]
- Toohey, J.I. Sulfane sulfur in biological systems: A possible regulatory role. Biochem. J. 1989, 264, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Kaczor-Kamińska, M.; Kamiński, K.; Wróbel, M. The expression and activity of rhodanese, 3-mercaptopyruvate sulfurtransferase, cystathionine γ-lyase in the most frequently chosen cellular research models. Biomolecules 2021, 11, 1859. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, H.T.; Goon, D.J.; Crankshaw, D.L.; Vince, R.; Patterson, S.E. Novel, orally effective cyanide antidotes. J. Med. Chem. 2007, 50, 6462–6464. [Google Scholar] [CrossRef] [PubMed]
- Iciek, M.; Bilska-Wilkosz, A.; Kozdrowicki, M.; Górny, M. Reactive sulfur species and their significance in health and disease. Biosci. Rep. 2022, 42, BSR20221006. [Google Scholar] [CrossRef] [PubMed]
- Kaczor-Kamińska, M.; Stalińska, K.; Kamiński, K.; Pisarek, A.; Maziarz, U.; Feldman, A.; Wróbel, M. Murine cellular model of mucopolysaccharidosis, type IIIB (MPS IIIB)—A preliminary study with particular emphasis on the non-oxidative L-cysteine metabolism. Biochimie 2020, 174, 84–94. [Google Scholar] [CrossRef]
- Kotzé, A.F.; Lueßen, H.L.; de Leeuw, B.J.; Verhoef, J.C.; Junginger, H.E. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J. Control. Release 1998, 51, 35–46. [Google Scholar] [CrossRef]
- Sonia, T.A.; Sharma, C.P. Experimental techniques involved in the development of oral insulin carriers. In Oral Delivery of Insulin; Woodhead Publishing: Sawston, UK, 2014; pp. 169–217. [Google Scholar] [CrossRef]
- Gillies, R.J.; Didier, N.; Denton, M. Determination of cell number in monolayer cultures. Anal. Biochem. 1986, 159, 109–113. [Google Scholar] [CrossRef]
- Valentine, W.N.; Frankenfeld, J.K. 3-Mercaptopyruvate sulfur transferase (EC: 2.8.1.2): A simple assay adapted to human blood cells. Clin. Chim. Acta 1974, 51, 205–210. [Google Scholar] [CrossRef]
- Wróbel, M.; Jurkowska, H.; Śliwa, L.; Srebro, Z. Sulfurtransferases and cyanide detoxification in mouse liver, kidney and brain. Toxicol. Mech. Methods 2004, 14, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Sörbo, B. Rhodanese. In Methods in Enzymology; Colowick, S.P., Kaplan, N.O., Eds.; Academy Press: New York, NY, USA, 1955; Volume 2, pp. 334–337. [Google Scholar]
- Matsuo, Y.; Greenberg, D.M. A crystalline enzyme that cleaves homoserine and cystathionine. J. Biol. Chem. 1958, 230, 545–560. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.L. Sulfane sulfur. Methods Enzymol. 1987, 143, 25–29. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.I. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Dominic, P.K.; Cassidy, P.B.; Roberts, J.C. A new and versatile method for determination of thiolamines of biological importance. J. Chromatogr. B. Biomed. Sci. 2001, 761, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bronowicka-Adamska, P.; Zagajewski, J.; Czubak, J.; Wróbel, M. RP-HPLC method for quantitative determination of cystathionine, cysteine and glutathione: An application for the study of the metabolism of cysteine in human brain. J. Chromatogr. B. 2011, 8, 2005–2009. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Kaczor-Kamińska, M.; Kamiński, K.; Stalińska, K.; Wróbel, M.; Feldman, A. Effect of glycosaminoglycans accumulation on the non-oxidative sulfur metabolism in mouse model of Sanfilippo syndrome, type B. Acta Biochim. Pol. 2019, 66, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Lupton, J.R.; Turner, N.D.; Fang, Y.-Z.; Yang, S. Glutathione metabolism and its implication for health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef]
- Kloverpris, H.; Fomsgaard, A.; Handley, A.; Ackland, J.; Sullivan, M.; Goulder, P. Dimethyl sulfoxide (DMSO) exposure to human peripheral blood mononuclear cells (PBMCs) abolish T cell responses only in high concentrations and following coincubation for more than two hours. J. Immunol. Methods 2010, 356, 70–78. [Google Scholar] [CrossRef]
- Galvao, J.; Davis, B.; Tilley, M.; Normando, E.; Duchen, M.R.; Cordeiro, M.F. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 2014, 28, 1317–1330. [Google Scholar] [CrossRef]
- Piña, Y.; Decatur, C.; Murray, T.; Houston, S.; Gologorsky, D.; Cavalcante, M.; Hernandez, E.; Celdran, M.; Feuer, W.; Lampidis, T. Advanced retinoblastoma treatment: Targeting hypoxia by inhibition of the mammalian target of rapamycin (mTOR) in LHBETATAG retinal tumors. Clin. Ophthalmol. 2011, 5, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Homer, N.Z.M.; Reglinski, J.; Sowden, R.; Spickett, C.M.; Wilson, R.; Walker, J.J. Dimethylsulfoxide oxidizes glutathione in vitro and in human erythrocytes: Kinetic analysis by 1H NMR. Cryobiology 2005, 50, 317–324. [Google Scholar] [CrossRef]
- Madesclaire, M. Reduction of sulfoxides to thioethers. Tetrahedron 1988, 44, 6537–6580. [Google Scholar] [CrossRef]
- Jurkowska, H.; Kaczor-Kamińska, M.; Bronowicka-Adamska, P.; Wróbel, M. Cystathionine γ-lyase. Adv. Hyg. Exp. Med. 2014, 68, 1–9. [Google Scholar] [CrossRef]
- Arora, M. Cell culture media: A review. Mater Methods 2013, 3, 175. [Google Scholar] [CrossRef]
- Nagahara, N.; Tanaka, M.; Tanaka, Y.; Ito, T. Novel characterization of antioxidant enzyme 3-mercaptopyruvate sulfurtransferase-knockout mice: Overexpression of the evolutionarily-related enzyme rhodanese. Antioxidants 2019, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Henderson, T.R.; Henderson, R.F.; York, J.L. Effect of dimethyl sulfoxide on subunit proteins. Ann. N. Y. Acad. Sci. 1975, 243, 38–53. [Google Scholar] [CrossRef]
- Arakawa, T.; Kita, Y.; Timasheff, S.N. Protein precipitation and denaturation by dimethyl sulfoxide. Biophys. Chem. 2007, 131, 62–70. [Google Scholar] [CrossRef]
Group | Sulfane Sulfur | Glutathione Reduced (GSH) | Glutathione Oxidized (GSSG) | Cysteine (CSH) | Cystine (CSSC) | |
---|---|---|---|---|---|---|
[nmole/mg Protein·min] | [nmole/mg Protein] | |||||
culture medium supplemented with serum | ||||||
Caco2 | Control | 349.88 ± 100.75 | 80.57 ± 7.9 | <LOQ | 0.08 | <LOQ |
3% DMSO | 300.63 ± 54.41 | 79.82 ± 7.0 | <LOQ | <LOD | <LOQ | |
WT | Control | 208.69 ± 6.16 | 134.45 ± 10.1 | 1.05 ± 0.1 | <LOQ | <LOD |
1% DMSO | 170.94 ± 15.33 ### | 156.26 ± 7.2 * | 0.25 a | <LOQ | <LOD | |
Naglu−/− | Control | 172.41 ± 15.46 | 119.97 ± 4.6 | <LOQ | <LOQ | 4.53 ± 0.1 |
1% DMSO | 132.32 ± 15.46 ### | 81.06 ± 3.4 * | <LOQ | <LOQ | 4.53 a | |
serum-free culture medium | ||||||
Caco2 | Control | 252.87 ± 106.31 | 76.47 ± 8.2 | <LOQ | <LOQ | <LOQ |
3% DMSO | 284.69 ± 72.99 | 83.36 ± 4.4 | <LOQ | <LOQ | <LOQ | |
WT | Control | 191.91 ± 21.92 | 109.44 ± 6.8 | 0.16 ± 0.1 | <LOQ | 2.21 ± 0.1 |
1% DMSO | 169.97 ± 11.45 # | 107.74 ± 13.5 | <LOQ | <LOQ | 4.90 ± 0.03 * | |
Naglu−/− | Control | 129.04 ± 15.86 | 37.29 ± 6.6 | <LOQ | <LOQ | <LOD |
1% DMSO | 111.60 ± 10.13 # | 30.84 ± 1.3 | <LOQ | <LOQ | <LOD | |
polymerosomes, serum-free culture medium | ||||||
Caco2 | Control | 209.38 ± 28.48 | 82.12 ± 13.1 | <LOQ | 1.49 a | <LOQ |
3% DMSO | 233.56 ± 19.85 # | 86.18 ± 15.8 | <LOQ | 1.45 a | <LOQ | |
WT | Control | 159.29 ± 29.86 | 78.50 ± 4.7 | <LOQ | <LOQ | <LOD |
1% DMSO | 139.21 ± 30.80 | 50.75 ± 4.9 * | <LOQ | <LOQ | 4.85 a | |
Naglu−/− | Control | 180.79 ± 30.43 | 53.90 ± 3.1 | <LOQ | <LOQ | 2.56 a |
1% DMSO | 143.42 ± 22.53 # | 46.45 ± 3.2 * | <LOQ | <LOQ | 3.29 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczor-Kamińska, M.; Kaszuba, K.; Bilska-Wilkosz, A.; Iciek, M.; Wróbel, M.; Kamiński, K. Dimethyl Sulfoxide (DMSO) as a Potential Source of Interference in Research Related to Sulfur Metabolism—A Preliminary Study. Antioxidants 2024, 13, 582. https://doi.org/10.3390/antiox13050582
Kaczor-Kamińska M, Kaszuba K, Bilska-Wilkosz A, Iciek M, Wróbel M, Kamiński K. Dimethyl Sulfoxide (DMSO) as a Potential Source of Interference in Research Related to Sulfur Metabolism—A Preliminary Study. Antioxidants. 2024; 13(5):582. https://doi.org/10.3390/antiox13050582
Chicago/Turabian StyleKaczor-Kamińska, Marta, Kinga Kaszuba, Anna Bilska-Wilkosz, Małgorzata Iciek, Maria Wróbel, and Kamil Kamiński. 2024. "Dimethyl Sulfoxide (DMSO) as a Potential Source of Interference in Research Related to Sulfur Metabolism—A Preliminary Study" Antioxidants 13, no. 5: 582. https://doi.org/10.3390/antiox13050582
APA StyleKaczor-Kamińska, M., Kaszuba, K., Bilska-Wilkosz, A., Iciek, M., Wróbel, M., & Kamiński, K. (2024). Dimethyl Sulfoxide (DMSO) as a Potential Source of Interference in Research Related to Sulfur Metabolism—A Preliminary Study. Antioxidants, 13(5), 582. https://doi.org/10.3390/antiox13050582