Studies on the Increasing Saltiness and Antioxidant Effects of Peanut Protein Maillard Reaction Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Enzyme-Hydrolyzed Peanut Protein and Its Maillard Reaction Products
2.3. Spectral Determination of Maillard Reaction Products of Peanut Protein
2.3.1. Ultraviolet Absorption Spectra Assay
2.3.2. Fourier Transform Infrared Spectroscopy (FT-IR) Assay
2.3.3. Fluorescence Spectroscopy Assay
2.4. Sensory Properties of Maillard Reaction Products of Peanut Protein
2.4.1. Electronic Tongue Assay
2.4.2. Sensory Evaluation Assay
2.5. Color Difference Assay
2.6. Molecular Weight Distribution Assay
2.7. Determination of Amino Acids Contents
2.8. Antioxidant Activity Assay
2.8.1. Reducing Capability
2.8.2. DPPH Radical Scavenging Activity
2.8.3. Fe2+ Chelating Ability
2.9. Statistical Analysis
3. Results
3.1. Secondary Conformation Changes of PPH and Its Four Glycation Products
3.1.1. UV–Visible Spectroscopy Analysis
3.1.2. FT-IR Spectroscopy Analysis
3.1.3. Fluorescence Spectroscopy Analysis
3.2. Analysis of Sensory Properties of Four Maillard Reaction Products
3.2.1. Sensory Evaluation of Four Maillard Reaction Products
3.2.2. Electronic Tongue Evaluation of Four Maillard Reaction Products
3.2.3. Correlation of Saltiness Response Values between Electronic Tongue and Sensory Saltiness Scores
3.3. Color Difference Analysis of PP, PPH and Ga-MRPs
3.4. Molecular Weight Analysis of Ga-MRPs
3.5. Amino Acid Analysis of Ga-MRPs
3.6. Antioxidant Properties of PPH and Ga-MRPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PP | peanut protein |
PPH | peanut protein hydrolysates |
MRPs | Maillard reaction products |
Ga-MRPs | galactose-Maillard reaction products |
Gl-MRPs | glucose-Maillard reaction products |
X-MRPs | xylose-Maillard reaction products |
A-MRPs | arabinose-Maillard reaction products |
References
- Hariharan, S.; Patti, A.; Arora, A. Functional proteins from biovalorization of peanut meal: Advances in process technology and applications. Plant Foods Hum. Nutr. 2023, 78, 13–24. [Google Scholar] [CrossRef]
- Shi, A.; Liu, H.; Liu, L.; Hu, H.; Wang, Q.; Adhikari, A. Isolation, purification and molecular mechanism of a peanut protein-derived ACE-inhibitory peptide. PLoS ONE 2014, 9, e111188. [Google Scholar] [CrossRef] [PubMed]
- Ruffin, E.; Schmit, T.; Lafitte, G.; Dollat, J.; Chambin, O. The impact of whey protein preheating on the properties of emulsion gel bead. Food Chem. 2014, 151, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Karnchanatat, A. Anti-inflammatory action of two novel peptides derived from peanut worms (Sipunculus nudus) in lipopolysaccharide-induced RAW264.7 macrophages. Food Funct. 2020, 11, 552–560. [Google Scholar] [CrossRef]
- Zhao, F.; Zhai, X.; Liu, X.; Lian, M.; Liang, G.T.; Cui, J.X.; Dong, H.Z.; Wang, W.T. Effects of High-Intensity ultrasound pretreatment on structure, properties, and enzymolysis of walnut protein isolate. Molecules 2021, 27, 208. [Google Scholar] [CrossRef]
- Li, C.; Zhu, B.; Xue, H.R.; Chen, Z.Y.; Ding, Q.; Wang, X.G. Physicochemical properties of dry-heated peanut protein isolate conjugated with dextran or gum arabic. Am. Oil Chem. Soc. 2013, 90, 1801–1807. [Google Scholar] [CrossRef]
- Jamdar, S.N.; Rajalakshmi, V.; Pednekar, M.D.; Juan, F.; Yardi, V.; Sharma, A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 2010, 121, 178–184. [Google Scholar] [CrossRef]
- Zhang, J.; Sun-Waterhouse, D.; Feng, Y.; Su, G.; Zhao, M.; Lin, L. The umami intensity enhancement of peanut protein isolate hydrolysate and its derived factions and peptides by Maillard reaction and the analysis of peptide (EP) Maillard products. Food Res. Int. 2018, 120, 895–903. [Google Scholar] [CrossRef]
- Deckers, I.; Van, D.; Engeland, M.V.; Soetekouw, P.M.M.B.; Baldewijns, M.M.L.L.; Goldbohm, R.A.; Schouten, L.A. Long-term dietary sodium, potassium and fluid intake; exploring potential novel risk factors for renal cell cancer in the Netherlands cohort study on diet and cancer. Br. J. Cancer 2014, 110, 797–801. [Google Scholar] [CrossRef]
- Wilck, N.; Matus, M.G.; Kearney, S.M.; Olesen, S.W.; Forslund, K.; Bartolomaeus, H.; Haase, S.; Mähler, A.; Balogh, A.; Markó, L.; et al. Salt-responsive gut commensal modulates TH 17 axis and disease. Nature 2017, 551, 585–589. [Google Scholar] [CrossRef]
- Garofalo, C.; Borrelli, S.; Provenzano, M.; Stefano, T.D.; Vita, C.; Chiodini, P.; Minutolo, R.; Nicola, L.; Conte, G. Dietary salt restriction in chronic kidney disease: A meta-analysis of randomized clinical trials. Nutrients 2018, 10, 732. [Google Scholar] [CrossRef] [PubMed]
- Nasri, N.; Septier, C.; Beno, N.; Salles, C.; Thomas-Danguin, T. Enhancing salty taste through odour–taste–taste interactions: Influence of odour intensity and salty tastants’ nature. Food Qual. Prefer. 2013, 28, 134–140. [Google Scholar] [CrossRef]
- Dugat-Bony, E.; Bonnarme, P.; Fraud, S.; Catellote, J.; Sarthou, A.; Loux, V.; Rué, O.; Bel, N.; Chuzeville, S.; Helinck, S. Effect of sodium chloride reduction or partial substitution with potassium chloride on the microbiological, biochemical and sensory characteristics of semi-hard and soft cheeses. Food Res. Int. 2019, 125, 108643. [Google Scholar] [CrossRef] [PubMed]
- Tada, M.; Shinoda, I.; Okai, H. L-ornithyltaurine, a new salty peptide. Agric. Food Chem. 1984, 32, 992–996. [Google Scholar] [CrossRef]
- Zhang, C.; Alashi, A.M.; Singh, N.; Chelikani, P.; Aluko, R.E. Glycated beef protein hydrolysates as sources of bitter taste modifiers. Nutrients 2019, 11, 2166. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Li, Y.; Prakash, S.; Dai, X.N.; Meng, Y.Y. Enzymolysis and glycosylation synergistic modified ovalbumin: Functional and structural characteristics. Int. J. Food Prop. 2018, 21, 395–406. [Google Scholar] [CrossRef]
- Feng, T.; Zhou, Y.; Wang, X.; Wang, X.; Xia, S. α-Dicarbonyl compounds related to antimicrobial and antioxidant activity of maillard reaction products derived from xylose, cysteine and corn peptide hydrolysate. Food Biosci. 2021, 41, 100951. [Google Scholar] [CrossRef]
- Zhang, W.W.; Han, Y.Q.; Shi, K.X.; Wang, J.M.; Yang, C.; Xu, X. Effect of different sulfur-containing compounds on the structure, sensory properties and antioxidant activities of Maillard reaction products obtained from Pleurotus citrinopileatus hydrolysates. LWT 2022, 171, 114144. [Google Scholar] [CrossRef]
- Shakoor, A.; Zhang, C.P.; Xie, J.C.; Yang, X.L. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem. 2022, 393, 133416. [Google Scholar] [CrossRef]
- Ni, Z.J.; Liu, X.; Xia, B.; Hu, L.T.; Thakur, K.; Wei, Z.J. Effects of sugars on the flavor and antioxidant properties of the Maillard reaction products of camellia seed meals. Food Chem. X 2021, 11, 100127. [Google Scholar] [CrossRef]
- Naik, R.R.; Ye, Q.Y.; Wang, Y.; Selomulya, C. Assessing the effect of Maillard reaction products on the functionality and antioxidant properties of Amaranth-red seaweed blends. Food Res. Int. 2024, 175, 113759. [Google Scholar] [CrossRef] [PubMed]
- Viturat, S.; Thongngam, M.; Lumdubwong, N.; Zhou, W.B.; Klinkesorn, U. Ultrasound-assisted formation of chitosan-glucose Maillard reaction products to fabricate nanoparticles with enhanced antioxidant activity. Ultrason. Sonochem. 2023, 97, 106466. [Google Scholar] [CrossRef] [PubMed]
- Han, J.R.; Yan, J.R.; Sun, S.G.; Tang, Y.; Shang, W.H.; Li, A.T.; Guo, X.K.; Du, Y.N.; Wu, H.T.; Zhu, B.W.; et al. Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (Chlamys farreri) mantle hydrolysates-ribose Maillard reaction products. Food Chem. 2018, 261, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Xing, W.J.; Chen, F.L.; Liang, M.L.; Zhang, N. Process optimization for the preparation of salt-enhancing digests based on deep enzymatic digestion of peanut proteins. J. Food Saf. Qual. 2023, 14, 65–73. (In Chinese) [Google Scholar] [CrossRef]
- Sun, L.B.; Wang, D.H.; Huang, Z.; Elfalleh, W.; Qin, L.X.; Yu, D.Y. Structure and flavor characteristics of Maillard reaction products derived from soybean meal hydrolysates-reducing sugars. LWT 2023, 185, 115097. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.; Wang, Z.; Wang, X.; Liu, Y. Physicochemical and sensory variables of Maillard reaction products obtained from Takifugu obscurus muscle hydrolysates. Food Chem. 2019, 290, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.U.; Li, X.; Du, L.; Zhang, X.; Yang, W.; Zhang, H. Effect of ultrasound assisted heating on structure and antioxidant activity of whey protein peptide grafted with galactose. LWT Food Sci. Technol. 2019, 109, 130–136. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, G.; Zhao, M.; Ren, J.; Yang, B. Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction. Food Chem. 2012, 131, 901–906. [Google Scholar] [CrossRef]
- He, S.D.; Zhang, Z.Y.; Sun, H.J.; Zhu, Y.C.; Zhao, J.L.; Tang, M.M.; Wu, X.Y.; Cao, Y.P. Contributions of temperature and L-cysteine on the physicochemical properties and sensory characteristics of rapeseed flavor enhancer obtained from the rapeseed peptide and D-xylose Maillard reaction system. Ind. Crops Prod. 2019, 128, 455–463. [Google Scholar] [CrossRef]
- Yu, B.B.; Wu, W.; Wang, B.; Zhang, N.; Bak, K.H.; Soladoye, O.P.; Aluko, R.E.; Zhang, Y.H.; Fu, Y. Maillard-reacted peptides from glucosamine-induced glycation exhibit a pronounced salt taste-enhancing effect. Food Chem. 2022, 374, 131776. [Google Scholar] [CrossRef]
- Zha, F.C.; Dong, S.Y.; Rao, J.J. The structural modification of pea protein concentrate with gum Arabic by controlled Maillard reaction enhances its functional properties and flavor attributes. Food Hydrocoll. 2019, 92, 30–40. [Google Scholar] [CrossRef]
- Wu, Q.; Cai, Q.F.; Tao, Z.P.; Sun, L.C.; Shen, J.D.; Zhang, L.J.; Liu, G.M.; Cao, M.J. Purification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from abalone (Haliotis discus hannai Ino) gonads. Eur. Food Res. Technol. 2015, 240, 137–145. [Google Scholar] [CrossRef]
- Zhao, T.T.; Zhang, Q.; Wang, S.G.; Qiu, C.Y.; Liu, Y.; Su, G.W.; Zhao, M.M. Effects of Maillard reaction on bioactivities promotion of anchovy protein hydrolysate: The key role of MRPs and newly formed peptides with basic and aromatic amino acids. LWT–Food Sci. Technol. 2018, 97, 245–253. [Google Scholar] [CrossRef]
- Sampath, K.N.S.; Nazeer, R.A.; Jaiganesh, R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids 2012, 42, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.M.; Chen, J.; Hao, L.W.; Yu, H. Antioxidant activity of maillard reaction products from glucose and oyster enzymatic hydrolysate. Food Sci. 2018, 39, 47–52. [Google Scholar] [CrossRef]
- Pino, F.R.; Galvez, R.; Carpio, F.; Guadix, E. Evaluation of Tenebrio molitor protein as a source of peptides for modulating physiological processes. Food Funct. 2020, 11, 4376–4386. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, J.; Zhang, W.; Wæhrens, S.S.; Tøstesen, M.; Hansen, E.T.; Lametsch, R. Exopeptidase treatment combined with Maillard reaction modification of protein hydrolysates derived from porcine muscle and plasma: Structure–taste relationship. Food Chem. 2020, 306, 125613. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, D.; Xu, P.; Geng, Z.; Xu, W. Structural and antimicrobial properties of Maillard reaction products in chicken liver protein hydrolysate after sonication. Food Chem. 2021, 343, 128417. [Google Scholar] [CrossRef]
- Chen, W.J.; Ma, X.B.; Wang, W.J.; Lv, R.L.; Guo, M.M.; Ding, T.; Ye, X.Q.; Miao, S.; Liu, D.H. Preparation of modified whey protein isolate with gum acacia by ultrasound Maillard reaction. Food Hydrocoll. 2019, 95, 298–307. [Google Scholar] [CrossRef]
- Liu, L.P.; Lu, X.M.; Li, N.Y.; Zheng, Z.J.; Qiao, X.G. Characterization, variables, and antioxidant activity of the Maillard reaction in a fructose-histidine model system. Molecules 2019, 24, 56. [Google Scholar] [CrossRef]
- Fu, B.F.; Xu, X.B.; Zhang, X.; Cheng, S.Z.; ElSeedi, H.R.; Du, M. Identification and characterisation of taste-enhancing peptides from oysters (Crassostrea gigas) via the Maillard reaction. Food Chem. 2023, 424, 136412. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Fang, D.L.; Muinde, K.B.; Chen, X.; Wu, X.; Du, J.X.; Yang, Q.; Chen, H.; Zheng, H.H.; An, X.X.; et al. Analysis of umami taste substances of morel mushroom (Morchella sextelata) hydrolysates derived from different enzymatic systems. Food Chem. 2021, 362, 130192. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tang, L.; Yu, M.; Li, T.; Song, H.L.; Li, P.; Li, K.; Xiong, J. Fractionation and identification of salty peptides from yeast extract. J. Food Sci. Technol. 2020, 58, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Yang, X.; Ding, Q.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T.; Sun, Y. Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate. Food Res. Int. 2017, 102, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Vhangani, L.N.; Wyk, J.V. Antioxidant activity of Maillard reaction products (MRPs) derived from fructose-lysine and ribose-lysine model systems. Food Chem. 2013, 137, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem. 2019, 275, 644–660. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.D.; Wang, Q.; Zeng, X.F.; Fu, J.Y.; Liu, Y.R.; Dong, H. Antioxidant activities of chicken peptide-Maillard reaction products (Cp-Mrps) derived from chicken peptides and D-glucose system. J. Food Process. Preserv. 2017, 41, e13041. [Google Scholar] [CrossRef]
- Shang, Y.F.; Cao, H.; Wei, C.K.; Thakur, K.; Liao, A.M.; Huang, J.H.; Wei, Z.J. Effect of sugar types on structural and flavor properties of peony seed derived Maillard reaction products. J. Food Process. Preserv. 2020, 44, e14341. [Google Scholar] [CrossRef]
- Yan, F.; Cui, H.P.; Zhang, Q.; Hayat, K.; Yu, J.Y.; Hussain, S.; Tahir, M.U.; Zhang, X.M.; Ho, C.T. Small peptides hydrolyzed from pea protein and their Maillard reaction products as taste modifiers: Saltiness, Umami, and Kokumi enhancement. Food Bioprocess Technol. 2021, 14, 1132–1141. [Google Scholar] [CrossRef]
- Xu, J.J.; Elkaddi, N.; Garcia-Blanco, A.; Spielman, A.I.; Bachmanov, A.A.; Chung, H.Y.; Ozdener, M.H. Arginyl dipeptides increase the frequency of NaCl-elicited responses via epithelial sodium channel alpha and delta subunits in cultured human fungiform taste papillae cells. Sci. Rep. 2017, 7, 7483. [Google Scholar] [CrossRef]
- Huang, M.; Liu, P.; Song, S.; Zhang, X.M.; Hayat, K.; Xia, S.Q.; Jia, C.S.; Gu, F.L. Contribution of sulfur-containing compounds to the colour-inhibiting effect and improved antioxidant activity of Maillard reaction products of soybean protein hydrolysates. J. Sci. Food Agric. 2011, 91, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Lancker, F.V.; Adams, A.; Kimpe, N.D. Formation of pyrazines in Maillard model systems of lysine-containing dipeptides. J. Agric. Food Chem. 2010, 58, 2470–2478. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.G.; Li, H.Y.; Liu, Y.; Li, C.; Fang, Z.F.; Hu, B.; Li, X.L.; Zeng, Z.; Liu, Y.T. Changes in flavor and biological activities of Lentinula edodes hydrolysates after Maillard reaction. Food Chem. 2023, 431, 137138. [Google Scholar] [CrossRef] [PubMed]
Sugar Type | Sourness | Bitterness | Astringency | Umami | Richness | Saltiness |
---|---|---|---|---|---|---|
X-MRPs | −12.61 ± 0.01 a | 1.56 ± 0.01 a | −0.75 ± 0.01 a | 6.50 ± 0.03 d | 1.35 ± 0.03 d | 15.58 ± 0.02 d |
A-MRPs | −14.37 ± 0.01 b | 1.50 ± 0.10 b | −5.85 ± 0.02 b | 6.61 ± 0.01 c | 1.79 ± 0.02 c | 16.38 ± 0.03 c |
Gl-MRPs | −17.73 ± 0.02 c | 0.72 ± 0.12 c | −9.75 ± 0.01 c | 8.16 ± 0.05 b | 1.97 ± 0.01 b | 20.04 ± 0.04 b |
Ga-MRPs | −20.17 ± 0.01 d | 0.50 ± 0.12 d | −12.59 ± 0.01 d | 9.14 ± 0.03 a | 2.25 ± 0.02 a | 24.01 ± 0.01 a |
Electronic Tongue Saltiness Value | Sensory Saltiness Value | ||
---|---|---|---|
Electronic tongue saltiness value | Pearson Correlation | 1 | 0.909 ** |
Sig. | 0.000 | ||
Number of cases | 20 | 20 | |
Sensory saltiness value | Pearson Correlation | 0.909 ** | 1 |
Sig. | 0.000 | ||
Number of cases | 20 | 20 |
Samples | L* | a* | b* |
---|---|---|---|
PP | 52.48 ± 0.05 a | 6.96 ± 0.12 c | 7.51 ± 0.12 c |
PPH | 47.94 ± 0.34 b | 7.34 ± 0.13 b | 8.59 ± 0.17 b |
Ga-MRPs | 46.49 ± 0.31 c | 7.56 ± 0.16 a | 9.61 ± 0.15 a |
Molecular Weight Range (Da) | Ga-MRPs (%) |
---|---|
<100 | 1.82 ± 0.06 |
100~500 | 15.4 ± 0.97 |
500~1000 | 46.7 ± 1.76 |
1000~3000 | 36.08 ± 2.01 |
Amino | Total Amino Acids (mg/g) | Free Amino Acids (mg/g) |
---|---|---|
Asp | 41 ± 0.37 | 0.9 ± 0.00 |
Thr | 13.4 ± 0.11 | 1.5 ± 0.00 |
Ser | 22.5 ± 0.21 | 1.7 ± 0.01 |
Glu | 79.7 ± 0.41 | 2.2 ± 0.02 |
Gly | 160 ± 0.86 | 2.9 ± 0.01 |
Ala | 63.0 ± 0.47 | 3.1 ± 0.10 |
Val | 17.7 ± 0.16 | 1.1 ± 0.00 |
Met | 7.7 ± 0.09 | - |
Ile | 10.9 ± 0.1 | 1.1 ± 0.01 |
Leu | 22.9 ± 0.22 | 4.3 ± 0.02 |
Tyr | 3.6 ± 0.07 | - |
Phe | 14.0 ± 0.18 | 5.6 ± 0.06 |
His | 4.3 ± 0.09 | 2.6 ± 0.05 |
Arg | 53.9 ± 0.44 | 5.3 ± 0.01 |
Pro | 79.3 ± 0.38 | - |
Lys | 23.4 ± 0.05 | 2.6 ± 0.12 |
Essential amino acid content | 110 ± 1.02 | 16.2 ± 0.16 |
Umami amino acids | 198 ± 1.23 | 9.1 ± 0.13 |
Sweet amino acids | 338.2 ± 1.37 | 9.2 ± 0.12 |
Bitter amino acids | 92.5 ± 1.21 | 14.7 ± 0.27 |
Total amount of amino acids | 617.3 ± 1.87 | 34.9 ± 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, W.; Ma, C.; Yu, Y.; Chen, F.; Yang, C.; Zhang, N. Studies on the Increasing Saltiness and Antioxidant Effects of Peanut Protein Maillard Reaction Products. Antioxidants 2024, 13, 665. https://doi.org/10.3390/antiox13060665
Xing W, Ma C, Yu Y, Chen F, Yang C, Zhang N. Studies on the Increasing Saltiness and Antioxidant Effects of Peanut Protein Maillard Reaction Products. Antioxidants. 2024; 13(6):665. https://doi.org/10.3390/antiox13060665
Chicago/Turabian StyleXing, Wenjing, Chunmin Ma, Yang Yu, Fenglian Chen, Chunhua Yang, and Na Zhang. 2024. "Studies on the Increasing Saltiness and Antioxidant Effects of Peanut Protein Maillard Reaction Products" Antioxidants 13, no. 6: 665. https://doi.org/10.3390/antiox13060665
APA StyleXing, W., Ma, C., Yu, Y., Chen, F., Yang, C., & Zhang, N. (2024). Studies on the Increasing Saltiness and Antioxidant Effects of Peanut Protein Maillard Reaction Products. Antioxidants, 13(6), 665. https://doi.org/10.3390/antiox13060665