Occupational Exposure to Metal-Based Nanomaterials: A Possible Relationship between Chemical Composition and Oxidative Stress Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample and Exposure to ENMs
2.2. Biological Sampling and Biomarkers
2.3. Statistical Analysis
3. Results
3.1. Exposure
3.2. Oxidative Stress
3.3. Mediation Analysis
3.3.1. Silica Mediation Analysis of Particle Metrics towards TAP
3.3.2. Titanium Mediation Analysis towards PCN–TAP Relationship
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maynard, A.D.; Wilson, W.; Hamilton, L.H.; Billington, J.H.; Cartwright, C.; Cook, R.; Garcia, D.E.; Gelb, B.S.; Glazer, C.L.; Longaberger, T.; et al. Nanotechnology: A Research Strategy for Addressing Risk; International Center for Scholars: Washington, DC, USA, 2006. [Google Scholar]
- Baig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- OECD. Environment Directorate Chemicals and Biotechnology Committee Important Issues on Risk Assessment of Manufactured Nanomaterials Series on the Safety of Manufactured Nanomaterials; OECD: Paris, France, 2022. [Google Scholar]
- Marques, A.C.; Vale, M.; Vicente, D.; Schreck, M.; Tervoort, E.; Niederberger C Marques, M.A.; Vale, M.; Vicente, D.; Schreck, M.; Tervoort, E.; et al. Porous Silica Microspheres with Immobilized Titania Nanoparticles for In-Flow Solar-Driven Purification of Wastewater. Glob. Chall. 2021, 5, 2000116. [Google Scholar] [CrossRef]
- Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroevee, P.; Mahmoudi, M. Toxicity of Nanomaterials. Chem. Soc. Rev. 2012, 41, 2323–2343. [Google Scholar] [CrossRef]
- Audignon-Durand, S.; Gramond, C.; Ducamp, S.; Manangama, G.; Garrigou, A.; Delva, F.; Brochard, P.; Lacourt, A. Development of a Job-Exposure Matrix for Ultrafine Particle Exposure: The MatPUF JEM. Ann. Work Expo Health 2021, 65, 516–527. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghelli, F.; Panizzolo, M.; Garzaro, G.; Squillacioti, G.; Bellisario, V.; Colombi, N.; Bergamaschi, E.; Guseva Canu, I.; Bono, R. Inflammatory Biomarkers in Exhaled Breath Condensate: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 9820. [Google Scholar] [CrossRef]
- Bergamaschi, E.; Bellisario, V.; Macrì, M.; Buglisi, M.; Garzaro, G.; Squillacioti, G.; Ghelli, F.; Bono, R.; Fenoglio, I.; Barbero, F.; et al. A Biomonitoring Pilot Study in Workers from a Paints Production Plant Exposed to Pigment-Grade Titanium Dioxide (TiO2). Toxics 2022, 10, 171. [Google Scholar] [CrossRef]
- Luo, X.; Xie, D.; Hu, J.; Su, J.; Xue, Z. Oxidative Stress and Inflammatory Biomarkers for Populations with Occupational Exposure to Nanomaterials: A Systematic Review and Meta-Analysis. Antioxidants 2022, 11, 2182. [Google Scholar] [CrossRef]
- Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of Nanopartides. Small 2008, 4, 26–49. [Google Scholar] [CrossRef]
- Kim, J.; Yu, I.J. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets. Biomed. Res. Int. 2016, 2016, 8389129. [Google Scholar] [CrossRef]
- Jusko, T.A.; Henderson, C.R.; Lanphear, B.P.; Cory-Slechta, D.A.; Parsons, P.J.; Canfield, R.L. Blood Lead Concentrations < 10 Microg/DL and Child Intelligence at 6 Years of Age. Environ. Health Perspect. 2008, 116, 243–248. [Google Scholar] [CrossRef]
- Khan, K.; Wasserman, G.A.; Liu, X.; Ahmed, E.; Parvez, F.; Slavkovich, V.; Levy, D.; Mey, J.; van Geen, A.; Graziano, J.H.; et al. Manganese Exposure from Drinking Water and Children’s Academic Achievement. Neurotoxicology 2012, 33, 91–97. [Google Scholar] [CrossRef]
- Valko, M.; Jomova, K.; Rhodes, C.J.; Kuča, K.; Musílek, K. Redox- and Non-Redox-Metal-Induced Formation of Free Radicals and Their Role in Human Disease. Arch. Toxicol. 2016, 90, 1–37. [Google Scholar] [CrossRef]
- Farina, M.; Avila, D.S.; Da Rocha, J.B.T.; Aschner, M. Metals, Oxidative Stress and Neurodegeneration: A Focus on Iron, Manganese and Mercury. Neurochem. Int. 2013, 62, 575–594. [Google Scholar] [CrossRef]
- Donaldson, K.; Brown, D.; Clouter, A.; Duffin, R.; MacNee, W.; Renwick, L.; Tran, L.; Stone, V. The Pulmonary Toxicology of Ultrafine Particles. J. Aerosol. Med. 2002, 15, 213–220. [Google Scholar] [CrossRef]
- Garza-Lombó, C.; Posadas, Y.; Quintanar, L.; Gonsebatt, M.E.; Franco, R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxid. Redox Signal. 2018, 28, 1669–1703. [Google Scholar] [CrossRef]
- McCormick, S.; Niang, M.; Dahm, M.M. Occupational Exposures to Engineered Nanomaterials: A Review of Workplace Exposure Assessment Methods. Curr. Environ. Health Rep. 2021, 8, 223–234. [Google Scholar] [CrossRef]
- Samir, A.M.; Rashed, L.A. Effects of Occupational Exposure to Aluminium on Some Oxidative Stress and DNA Damage Parameters. Hum. Exp. Toxicol. 2018, 37, 901–908. [Google Scholar] [CrossRef]
- Marie, C.; Ravanat, J.L.; Badouard, C.; Marques, M.; Balducci, F.; Maître, A. Urinary Levels of Oxidative DNA and RNA Damage among Workers Exposed to Polycyclic Aromatic Hydrocarbons in Silicon Production: Comparison with 1-Hydroxypyrene. Environ. Mol. Mutagen. 2009, 50, 88–95. [Google Scholar] [CrossRef]
- Wu, W.T.; Jung, W.T.; Lee, H.L. Lipid Peroxidation Metabolites Associated with Biomarkers of Inflammation and Oxidation Stress in Workers Handling Carbon Nanotubes and Metal Oxide Nanoparticles. Nanotoxicology 2021, 15, 577–587. [Google Scholar] [CrossRef]
- Anlar, H.G.; Bacanli, M.; İritaş, S.; Bal, C.; Kurt, T.; Tutkun, E.; Hinc Yilmaz, O.; Basaran, N. Effects of Occupational Silica Exposure on OXIDATIVE Stress and Immune System Parameters in Ceramic Workers in TURKEY. J. Toxicol. Environ. Health A 2017, 80, 688–696. [Google Scholar] [CrossRef]
- Junaid, M.; Hashmi, M.Z.; Malik, R.N.; Pei, D.S. Toxicity and Oxidative Stress Induced by Chromium in Workers Exposed from Different Occupational Settings around the Globe: A Review. Environ Sci. Pollut. Res. Int. 2016, 23, 20151–20167. [Google Scholar] [CrossRef]
- Schulte, P.A.; Leso, V.; Niang, M.; Iavicoli, I. Current State of Knowledge on the Health Effects of Engineered Nanomaterials in Workers: A Systematic Review of Human Studies and Epidemiological Investigations. Scand. J. Work Environ. Health 2019, 45, 217–238. [Google Scholar] [CrossRef]
- Hemmendinger, M.; Squillacioti, G.; Charreau, T.; Garzaro, G.; Ghelli, F.; Bono, R.; Sauvain, J.J.; Suarez, G.; Hopf, N.B.; Wild, P.; et al. Occupational Exposure to Nanomaterials and Biomarkers in Exhaled Air and Urine: Insights from the NanoExplore International Cohort. Environ. Int. 2023, 179, 108157. [Google Scholar] [CrossRef]
- Guseva Canu, I.; Plys, E.; Velarde Crézé, C.; Fito, C.; Hopf, N.B.; Progiou, A.; Riganti, C.; Sauvain, J.J.; Squillacioti, G.; Suarez, G.; et al. A Harmonized Protocol for an International Multicenter Prospective Study of Nanotechnology Workers: The NanoExplore Cohort. Nanotoxicology 2023, 17, 1–19. [Google Scholar] [CrossRef]
- Panizzolo, M.; Barbero, F.; Ghelli, F.; Garzaro, G.; Bellisario, V.; Guseva Canu, I.; Fenoglio, I.; Bergamaschi, E.; Bono, R. Assessing the Inhaled Dose of Nanomaterials by Nanoparticle Tracking Analysis (NTA) of Exhaled Breath Condensate (EBC) and Its Relationship with Lung Inflammatory Biomarkers. Chemosphere 2024, 358, 142139. [Google Scholar] [CrossRef]
- Iavicoli, I.; Fontana, L.; Pingue, P.; Todea, A.M.; Asbach, C. Assessment of Occupational Exposure to Engineered Nanomaterials in Research Laboratories Using Personal Monitors. Sci. Total Environ. 2018, 627, 689–702. [Google Scholar] [CrossRef]
- Broday, D.M.; Agnon, Y. Asymmetric Human Lung Morphology Induce Particle Deposition Variation. J. Aerosol. Sci. 2007, 38, 701–718. [Google Scholar] [CrossRef]
- Kreyling, W.G.; Semmler, M.; Erbe, F.; Mayer, P.; Takenaka, S.; Schulz, H.; Oberdörster, G.; Ziesenis, A. Translocation of Ultrafine Insoluble Iridium Particles from Lung Epithelium to Extrapulmonary Organs Is Size Dependent but Very Low. J. Toxicol. Environ. Health A 2002, 65, 1513–1530. [Google Scholar] [CrossRef]
- Kreyling, W.G.; Semmler-Behnke, M.; Seitz, J.; Scymczak, W.; Wenk, A.; Mayer, P.; Takenaka, S.; Oberdrster, G. Size Dependence of the Translocation of Inhaled Iridium and Carbon Nanoparticle Aggregates from the Lung of Rats to the Blood and Secondary Target Organs. Inhal. Toxicol. 2009, 21 (Suppl. 1), 55–60. [Google Scholar] [CrossRef]
- Papp, A.; Horváth, T.; Igaz, N.; Gopisetty, M.K.; Kiricsi, M.; Berkesi, D.S.; Kozma, G.; Kónya, Z.; Wilhelm, I.; Patai, R.; et al. Presence of Titanium and Toxic Effects Observed in Rat Lungs, Kidneys, and Central Nervous System in Vivo and in Cultured Astrocytes in Vitro on Exposure by Titanium Dioxide Nanorods. Int. J. Nanomed. 2020, 15, 9939–9960. [Google Scholar] [CrossRef]
- Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef]
- Iavicoli, I.; Leso, V.; Manno, M.; Schulte, P.A. Biomarkers of Nanomaterial Exposure and Effect: Current Status. J. Nanoparticle Res. 2014, 16, 2302. [Google Scholar] [CrossRef]
SAMPLE | |||||||
Not Exposed (n = 43) | Exposed (n = 40) | Total (n = 83) | |||||
Subjects | Male | 21 | Male | 32 | Male | 53 | |
Female | 22 | Female | 8 | Female | 30 | ||
BMI | Male | 24.7 ± 3.4 | Male | 26.9 ± 4.1 | Male | 25.8 ± 5.8 | |
Female | 22.2 ± 3.2 | Female | 22 ± 2.3 | Female | 22.1 ± 2.6 | ||
Tobacco smoke | No | 39 | No | 28 | No | 67 | |
Yes | 4 | Yes | 12 | Yes | 16 | ||
Alcohol | No | 24 | No | 18 | No | 42 | |
Yes | 19 | Yes | 22 | Yes | 41 | ||
Health score | 76.6 ± 17.7 | 66.9 ± 21.1 | 70.5 ± 20 | ||||
Employment duration (years) | <5 years | 30 | <5 years | 20 | <5 years | 50 | |
>5 years | 13 | >5 years | 20 | >5 years | 33 | ||
PPE use | No | 43 | No | 5 | No | 48 | |
Yes | - | Yes | 35 | Yes | 35 | ||
BIOLOGICAL BIOMARKERS | |||||||
Not Exposed | Exposed | Total | Non-Parametric Test | ||||
PCN [#/cm3] | 3.7 ± 0.3 | 4.8 ± 0.3 | 4.4 ± 0.6 | 0.002 | |||
LDSA [µm2/cm3] | 1.1 ± 0.3 | 1.9 ± 0.2 | 1.6 ± 0.5 | 0.003 | |||
Aluminum [µg/L] | 44.7 ± 45.7 | 37 ± 37.9 | 44 ± 48.9 | 0.7 | |||
Silica [mg/L] | 12.3 ± 5.1 | 19.6 ± 8.3 | 15.7 ± 8 | 0.02 | |||
Titanium [µg/L] | 25.8 ± 10.1 | 33 ± 11.5 | 29.6 ± 11.4 | 0.03 | |||
Chromium [µg/L] | 0.6 ± 0.04 | 0.3 ± 0.2 | 0.4 ± 0.5 | 0.3 | |||
MDA [µg/mgCREA] | 243 ± 196 | 235 ± 252 | 240 ± 218 | 0.5 | |||
Isop [µg/mgCREA] | 4.3 ± 2.8 | 4.1 ± 2.5 | 76.6 ± 17.7 | 0.16 | |||
TAP [µg/mgCREA] | 1.3 ± 0.4 | 0.9 ± 0.3 | 1.01 ± 0.9 | 0.001 |
PCN | |||||
Part A | Multilevel Mixed-Effects Model (Whole Sample) | ||||
Coeff. | Std.Err. | p | [95% CI] | ||
Al | −5.6 | 6.2 | 0.08 | −5.6/5.7 | |
Si | 4.7 | 4.8 | 0.05 | 0.08/4.5 | |
Ti | 15.5 | 7.2 | 0.02 | 2.2/23.2 | |
Cr | −0.7 | 0.4 | 0.9 | −1.5/0.11 | |
Part B | Multilevel Mixed-Effects Model (Exposure Stratified) | ||||
Coeff. | Std.Err. | p | [95% CI] | ||
Al | Exposed | −1.4 | 2.2 | 0.9 | −4.1/1.3 |
Not exposed | −6.3 | 4.8 | 0.3 | −14.2/4.1 | |
Si | Exposed | 14.5 | 7.4 | 0.03 | 1.1/29.03 |
Not exposed | 3.7 | 10.9 | 0.7 | −5.1/7.9 | |
Ti | Exposed | 9.3 | 11.7 | 0.04 | 3.6/12.2 |
Not exposed | 7.8 | 7.7 | 0.3 | −6.8/12.6 | |
Cr | Exposed | 0.2 | 0.3 | 0.5 | −0.3/0.7 |
Not exposed | −1.9 | 0.9 | 0.4 | −3.7/0.08 | |
LDSA | |||||
Part C | Multilevel Mixed-Effects Model (Whole Sample) | ||||
Coeff. | Std.Err. | p | [95% CI] | ||
Al | −7.3 | 9.3 | 0.8 | −8.4/0.11 | |
Si | 4.5 | 6.2 | 0.04 | 0.6/16.7 | |
Ti | 11.4 | 10.1 | 0.03 | 1.1/16.2 | |
Cr | 0.05 | 0.5 | 0.9 | −0.8/0.9 | |
Part D | Multilevel Mixed-Effects Model (Exposure Stratified) | ||||
Coeff. | Std.Err. | p | [95% CI] | ||
Al | Exposed | −7.8 | 6.7 | 0.2 | −8.2/4.4 |
Not exposed | −2.9 | 4.3 | 0.9 | −4.3/6.1 | |
Si | Exposed | 5 | 3.6 | 0.04 | 0.8/8.8 |
Not exposed | 3.5 | 4.4 | 0.4 | −4.7/7.1 | |
Ti | Exposed | 2.5 | 1.05 | 0.02 | 0.5/4.2 |
Not exposed | −2.3 | 3.3 | 0.3 | −5.6/2.6 | |
Cr | Exposed | −0.6 | 0.4 | 0.1 | −1.3/0.1 |
Not exposed | 0.7 | 0.8 | 0.4 | −0.9/2.3 |
Mediation Models: SILICA | ||||||||
Part A | PCN/Si/TAP Mediation estimates | |||||||
Effect | Label | Estimate | SE | Lower | Upper | Z | p | % Mediation |
Indirect | a × b | −0.26 | 0.169 | −0.714 | −0.059 | −1.54 | 0.042 | 1.12 |
Direct | c | −4.826 | 0.691 | −6.1798 | −3.471 | −6.98 | <0.001 | 94.88 |
Total | c + a × b | −4.565 | 0.702 | −5.9416 | −3.189 | −6.5 | <0.001 | 100 |
Part B | LDSA/Si/TAP Mediation estimates | |||||||
Effect | Label | Estimate | SE | Lower | Upper | Z | p | % Mediation |
Indirect | a × b | 0.14 | 0.262 | 0.045 | 1.03 | −1.96 | 0.05 | 2.78 |
Direct | c | −7.063 | 0.917 | −8.86 | −5.27 | −7.7 | <0.001 | 93.22 |
Total | c + a × b | −6.549 | 0.933 | −8.38 | −4.72 | −7.02 | <0.001 | 100 |
Mediation Models: TITANIUM | ||||||||
Part C | PCN/Ti/TAP Mediation estimates | |||||||
Effect | Label | Estimate | SE | Lower | Upper | Z | p | % Mediation |
Indirect | a × b | −0.101 | 0.0974 | −0.292 | 0.0897 | −1.04 | 0.298 | 2.22 |
Direct | c | −4.464 | 0.7019 | −5.84 | −3.088 | −6.36 | <0.001 | 97.78 |
Total | c + a × b | −4.565 | 0.7023 | −5.942 | −3.1887 | −6.5 | <0.001 | 100 |
Part D | LDSA/Ti/TAP Mediation estimates | |||||||
Effect | Label | Estimate | SE | Lower | Upper | Z | p | % Mediation |
Indirect | a × b | −0.14 | 0.133 | −0.4 | 0.12 | −1.06 | 0.29 | 2.14 |
Direct | c | −6.409 | 0.934 | −8.239 | −4.579 | −6.86 | <0.001 | 97.86 |
Total | c + a × b | −6.549 | 0.933 | −8.377 | −4.722 | −7.02 | <0.001 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellisario, V.; Garzaro, G.; Squillacioti, G.; Panizzolo, M.; Ghelli, F.; Mariella, G.; Bono, R.; Guseva Canu, I.; Bergamaschi, E. Occupational Exposure to Metal-Based Nanomaterials: A Possible Relationship between Chemical Composition and Oxidative Stress Biomarkers. Antioxidants 2024, 13, 676. https://doi.org/10.3390/antiox13060676
Bellisario V, Garzaro G, Squillacioti G, Panizzolo M, Ghelli F, Mariella G, Bono R, Guseva Canu I, Bergamaschi E. Occupational Exposure to Metal-Based Nanomaterials: A Possible Relationship between Chemical Composition and Oxidative Stress Biomarkers. Antioxidants. 2024; 13(6):676. https://doi.org/10.3390/antiox13060676
Chicago/Turabian StyleBellisario, Valeria, Giacomo Garzaro, Giulia Squillacioti, Marco Panizzolo, Federica Ghelli, Giuseppe Mariella, Roberto Bono, Irina Guseva Canu, and Enrico Bergamaschi. 2024. "Occupational Exposure to Metal-Based Nanomaterials: A Possible Relationship between Chemical Composition and Oxidative Stress Biomarkers" Antioxidants 13, no. 6: 676. https://doi.org/10.3390/antiox13060676
APA StyleBellisario, V., Garzaro, G., Squillacioti, G., Panizzolo, M., Ghelli, F., Mariella, G., Bono, R., Guseva Canu, I., & Bergamaschi, E. (2024). Occupational Exposure to Metal-Based Nanomaterials: A Possible Relationship between Chemical Composition and Oxidative Stress Biomarkers. Antioxidants, 13(6), 676. https://doi.org/10.3390/antiox13060676