Nuciferine Protects Cochlear Hair Cells from Ferroptosis through Inhibiting NCOA4-Mediated Ferritinophagy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Quantitative Real-Time PCR (qPCR)
2.3. HEI-OC1 Cells Culture and Cisplatin Treatments
2.4. The Preparation Protocol of Nuciferine Solution
2.5. Cochlear Explant Culture
2.6. RSL3 Experiments
2.7. Detection of Iron in Hair Cells
2.8. Immunofluorescence
2.9. Small Interfering RNA (siRNA) and Transfection
2.10. In Vivo Acute Cisplatin Challenge and Drug Treatment
2.11. Auditory Brainstem Response (ABR)
2.12. Image Processing
2.13. Cell Counting
2.14. Statistical Analysis
3. Results
3.1. Nuciferine Inhibited RSL3-Induced Hair Cell Ferroptosis
3.2. Nuciferine Protected Cochlear HCs against Cisplatin-Induced Ototoxicity In Vitro
3.3. Nuciferine Inhibited Cisplatin-Induced Ferritinophagy in Cochlear Hair Cells
3.4. Knocking Down of Ncoa4 Alleviated Cisplatin-Induced Ototoxicity In Vitro
3.5. Nuciferine Protected against Cisplatin-Induced Hearing Loss
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deafness and Hearing Loss. Available online: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed on 12 March 2024).
- Fernandez, K.A.; Allen, P.; Campbell, M.; Page, B.; Townes, T.; Li, C.-M.; Cheng, H.; Garrett, J.; Mulquin, M.; Clements, A.; et al. Atorvastatin Is Associated with Reduced Cisplatin-Induced Hearing Loss. J. Clin. Investig. 2021, 131, e142616. [Google Scholar] [CrossRef] [PubMed]
- Frisina, R.D.; Wheeler, H.E.; Fossa, S.D.; Kerns, S.L.; Fung, C.; Sesso, H.D.; Monahan, P.O.; Feldman, D.R.; Hamilton, R.; Vaughn, D.J.; et al. Comprehensive Audiometric Analysis of Hearing Impairment and Tinnitus after Cisplatin-Based Chemotherapy in Survivors of Adult-Onset Cancer. J. Clin. Oncol. 2016, 34, 2712–2720. [Google Scholar] [CrossRef] [PubMed]
- Knight, K.R.; Chen, L.; Freyer, D.; Aplenc, R.; Bancroft, M.; Bliss, B.; Dang, H.; Gillmeister, B.; Hendershot, E.; Kraemer, D.F.; et al. Group-Wide, Prospective Study of Ototoxicity Assessment in Children Receiving Cisplatin Chemotherapy (ACCL05C1): A Report from the Children’s Oncology Group. J. Clin. Oncol. 2017, 35, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Moke, D.J.; Luo, C.; Millstein, J.; Knight, K.R.; Rassekh, S.R.; Brooks, B.; Ross, C.J.D.; Wright, M.; Mena, V.; Rushing, T.; et al. Prevalence and Risk Factors for Cisplatin-Induced Hearing Loss in Children, Adolescents, and Young Adults: A Multi-Institutional North American Cohort Study. Lancet Child Adolesc. Health 2021, 5, 274–283. [Google Scholar] [CrossRef]
- van Ruijven, M.W.M.; de Groot, J.C.M.J.; Smoorenburg, G.F. Time Sequence of Degeneration Pattern in the Guinea Pig Cochlea during Cisplatin Administration. A Quantitative Histological Study. Hear. Res. 2004, 197, 44–54. [Google Scholar] [CrossRef] [PubMed]
- van Ruijven, M.W.M.; de Groot, J.C.M.J.; Klis, S.F.L.; Smoorenburg, G.F. The Cochlear Targets of Cisplatin: An Electrophysiological and Morphological Time-Sequence Study. Hear. Res. 2005, 205, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Lanvers-Kaminsky, C.; Zehnhoff-Dinnesen, A.A.; Parfitt, R.; Ciarimboli, G. Drug-Induced Ototoxicity: Mechanisms, Pharmacogenetics, and Protective Strategies. Clin. Pharmacol. Ther. 2017, 101, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gonzalez, M.A.; Guerrero, J.M.; Rojas, F.; Delgado, F. Ototoxicity Caused by Cisplatin Is Ameliorated by Melatonin and Other Antioxidants. J. Pineal Res. 2000, 28, 73–80. [Google Scholar] [CrossRef]
- Borse, V.; Al Aameri, R.F.H.; Sheehan, K.; Sheth, S.; Kaur, T.; Mukherjea, D.; Tupal, S.; Lowy, M.; Ghosh, S.; Dhukhwa, A.; et al. Epigallocatechin-3-Gallate, a Prototypic Chemopreventative Agent for Protection against Cisplatin-Based Ototoxicity. Cell Death Dis. 2017, 8, e2921. [Google Scholar] [CrossRef]
- Gentilin, E.; Simoni, E.; Candito, M.; Cazzador, D.; Astolfi, L. Cisplatin-Induced Ototoxicity: Updates on Molecular Targets. Trends Mol. Med. 2019, 25, 1123–1132. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Zheng, Z.; Zhao, L.; Li, W.; Wang, Y.; Li, H. Inhibition of Protein Arginine Methyltransferase 6 Reduces Reactive Oxygen Species Production and Attenuates Aminoglycoside- and Cisplatin-Induced Hair Cell Death. Theranostics 2020, 10, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, X.; Chen, Y.; Xu, K.; Yu, D.; Wu, H. An Enhanced Antioxidant Strategy of Astaxanthin Encapsulated in ROS-Responsive Nanoparticles for Combating Cisplatin-Induced Ototoxicity. J. Nanobiotechnol. 2022, 20, 268. [Google Scholar] [CrossRef] [PubMed]
- Nan, B.; Zhao, Z.; Jiang, K.; Gu, X.; Li, H.; Huang, X. Astaxanthine Attenuates Cisplatin Ototoxicity in Vitro and Protects against Cisplatin-Induced Hearing Loss In Vivo. Acta Pharm. Sin. B 2022, 12, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Benkafadar, N.; Menardo, J.; Bourien, J.; Nouvian, R.; François, F.; Decaudin, D.; Maiorano, D.; Puel, J.-L.; Wang, J. Reversible P53 Inhibition Prevents Cisplatin Ototoxicity without Blocking Chemotherapeutic Efficacy. EMBO Mol. Med. 2017, 9, 7–26. [Google Scholar] [CrossRef]
- Kim, H.-J.; Oh, G.-S.; Lee, J.-H.; Lyu, A.-R.; Ji, H.-M.; Lee, S.-H.; Song, J.; Park, S.-J.; You, Y.-O.; Sul, J.-D.; et al. Cisplatin Ototoxicity Involves Cytokines and STAT6 Signaling Network. Cell Res. 2011, 21, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Mukherjea, D.; Sheehan, K.; Jajoo, S.; Rybak, L.P.; Ramkumar, V. Short Interfering RNA against STAT1 Attenuates Cisplatin-Induced Ototoxicity in the Rat by Suppressing Inflammation. Cell Death Dis. 2011, 2, e180. [Google Scholar] [CrossRef]
- Kaur, T.; Borse, V.; Sheth, S.; Sheehan, K.; Ghosh, S.; Tupal, S.; Jajoo, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea. J. Neurosci. 2016, 36, 3962–3977. [Google Scholar] [CrossRef]
- Meijer, A.J.M.; Diepstraten, F.A.; Ansari, M.; Bouffet, E.; Bleyer, A.; Fresneau, B.; Geller, J.I.; Huitema, A.D.R.; Kogner, P.; Maibach, R.; et al. Use of Sodium Thiosulfate as an Otoprotectant in Patients with Cancer Treated with Platinum Compounds: A Review of the Literature. J. Clin. Oncol. 2024; ahead of print. [Google Scholar] [CrossRef]
- Moreno, I.; Belinchon, A. Evaluating the Efficacy of Intratympanic Dexamethasone in Protecting Against Irreversible Hearing Loss in Patients on Cisplatin-Based Cancer Treatment: A Randomized Controlled Phase IIIB Clinical Trial. Ear Hear. 2022, 43, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Orgel, E.; Knight, K.R.; Chi, Y.-Y.; Malvar, J.; Rushing, T.; Mena, V.; Eisenberg, L.S.; Rassekh, S.R.; Ross, C.J.D.; Scott, E.N.; et al. Intravenous N-Acetylcysteine to Prevent Cisplatin-Induced Hearing Loss in Children: A Nonrandomized Controlled Phase I Trial. Clin. Cancer Res. 2023, 29, 2410–2418. [Google Scholar] [CrossRef]
- Gurney, J.G.; Bass, J.K.; Onar-Thomas, A.; Huang, J.; Chintagumpala, M.; Bouffet, E.; Hassall, T.; Gururangan, S.; Heath, J.A.; Kellie, S.; et al. Evaluation of Amifostine for Protection against Cisplatin-Induced Serious Hearing Loss in Children Treated for Average-Risk or High-Risk Medulloblastoma. Neuro Oncol. 2014, 16, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Weijl, N.I.; Elsendoorn, T.J.; Lentjes, E.G.W.M.; Hopman, G.D.; Wipkink-Bakker, A.; Zwinderman, A.H.; Cleton, F.J.; Osanto, S. Supplementation with Antioxidant Micronutrients and Chemotherapy-Induced Toxicity in Cancer Patients Treated with Cisplatin-Based Chemotherapy: A Randomised, Double-Blind, Placebo-Controlled Study. Eur. J. Cancer 2004, 40, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.C.; Rehemtulla, A.; Sunkara, P.; Hamstra, D.; Buhnerkempe, M.; Ross, B. Oral D-Methionine Protects against Cisplatin-Induced Hearing Loss in Humans: Phase 2 Randomized Clinical Trial in India. Int. J. Audiol. 2022, 61, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Brock, P.R.; Maibach, R.; Childs, M.; Rajput, K.; Roebuck, D.; Sullivan, M.J.; Laithier, V.; Ronghe, M.; Dall’Igna, P.; Hiyama, E.; et al. Sodium Thiosulfate for Protection from Cisplatin-Induced Hearing Loss. N. Engl. J. Med. 2018, 378, 2376–2385. [Google Scholar] [CrossRef]
- Freyer, D.R.; Chen, L.; Krailo, M.D.; Knight, K.; Villaluna, D.; Bliss, B.; Pollock, B.H.; Ramdas, J.; Lange, B.; Van Hoff, D.; et al. Effects of Sodium Thiosulfate versus Observation on Development of Cisplatin-Induced Hearing Loss in Children with Cancer (ACCL0431): A Multicentre, Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncol. 2017, 18, 63–74. [Google Scholar] [CrossRef]
- Cao, J.Y.; Dixon, S.J. Mechanisms of Ferroptosis. Cell. Mol. Life Sci. 2016, 73, 2195–2209. [Google Scholar] [CrossRef]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, Biology and Role in Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef]
- Alim, I.; Caulfield, J.T.; Chen, Y.; Swarup, V.; Geschwind, D.H.; Ivanova, E.; Seravalli, J.; Ai, Y.; Sansing, L.H.; Ste Marie, E.J.; et al. Selenium Drives a Transcriptional Adaptive Program to Block Ferroptosis and Treat Stroke. Cell 2019, 177, 1262–1279.e25. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Y.; Zhao, X.; Shao, L.; Liu, G.; Sun, C.; Xu, R.; Zhang, Z. ACSL4 Exacerbates Ischemic Stroke by Promoting Ferroptosis-Induced Brain Injury and Neuroinflammation. Brain Behav. Immun. 2021, 93, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Shen, D.; Lan, T.; Wei, C.; Wu, W.; Sun, Q.; Luo, Z.; Chen, W.; Zhang, Y.; Hu, L.; et al. Reduction of Lactoferrin Aggravates Neuronal Ferroptosis after Intracerebral Hemorrhagic Stroke in Hyperglycemic Mice. Redox Biol. 2022, 50, 102256. [Google Scholar] [CrossRef] [PubMed]
- Tonnus, W.; Meyer, C.; Steinebach, C.; Belavgeni, A.; von Mässenhausen, A.; Gonzalez, N.Z.; Maremonti, F.; Gembardt, F.; Himmerkus, N.; Latk, M.; et al. Dysfunction of the Key Ferroptosis-Surveilling Systems Hypersensitizes Mice to Tubular Necrosis during Acute Kidney Injury. Nat. Commun. 2021, 12, 4402. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Bi, R.; Su, Y.; Quan, F.; Lin, Y.; Yue, C.; Cui, X.; Zhao, Q.; Liu, S.; et al. ACSL4 Deficiency Confers Protection against Ferroptosis-Mediated Acute Kidney Injury. Redox Biol. 2022, 51, 102262. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Yu, B.; Wang, H.; Shi, L.; Yang, J.; Wu, L.; Gao, C.; Pan, H.; Han, F.; Lin, W.; et al. STING Promotes Ferroptosis through NCOA4-Dependent Ferritinophagy in Acute Kidney Injury. Free Radic. Biol. Med. 2023, 208, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Park, M.W.; Cha, H.W.; Kim, J.; Kim, J.H.; Yang, H.; Yoon, S.; Boonpraman, N.; Yi, S.S.; Yoo, I.D.; Moon, J.-S. NOX4 Promotes Ferroptosis of Astrocytes by Oxidative Stress-Induced Lipid Peroxidation via the Impairment of Mitochondrial Metabolism in Alzheimer’s Diseases. Redox Biol. 2021, 41, 101947. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lin, X.-M.; Lu, D.-H.; Wang, M.; Li, K.; Li, S.-R.; Li, Z.-Q.; Zhu, C.-J.; Zhang, Z.-M.; Yan, C.-Y.; et al. Midbrain Dopamine Oxidation Links Ubiquitination of Glutathione Peroxidase 4 to Ferroptosis of Dopaminergic Neurons. J. Clin. Investig. 2023, 133, e165228. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.K.; Zelic, M.; Han, Y.; Teeple, E.; Chen, L.; Sadeghi, M.; Shankara, S.; Guo, L.; Li, C.; Pontarelli, F.; et al. Microglia Ferroptosis Is Regulated by SEC24B and Contributes to Neurodegeneration. Nat. Neurosci. 2023, 26, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Ajoolabady, A.; Aslkhodapasandhokmabad, H.; Libby, P.; Tuomilehto, J.; Lip, G.Y.H.; Penninger, J.M.; Richardson, D.R.; Tang, D.; Zhou, H.; Wang, S.; et al. Ferritinophagy and Ferroptosis in the Management of Metabolic Diseases. Trends Endocrinol. Metab. 2021, 32, 444–462. [Google Scholar] [CrossRef]
- Fang, X.; Ardehali, H.; Min, J.; Wang, F. The Molecular and Metabolic Landscape of Iron and Ferroptosis in Cardiovascular Disease. Nat. Rev. Cardiol. 2023, 20, 7–23. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Inhibiting Ferroptosis through Disrupting the NCOA4–FTH1 Interaction: A New Mechanism of Action. ACS Cent. Sci. 2021, 7, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular Mechanisms and Health Implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Galy, B.; Conrad, M.; Muckenthaler, M. Mechanisms Controlling Cellular and Systemic Iron Homeostasis. Nat. Rev. Mol. Cell Biol. 2023, 25, 133–155. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Mei, H.; Zhao, L.; Li, W.; Zheng, Z.; Tang, D.; Lu, X.; He, Y. Inhibition of Ferroptosis Protects House Ear Institute-Organ of Corti 1 Cells and Cochlear Hair Cells from Cisplatin-Induced Ototoxicity. J. Cell Mol. Med. 2020, 24, 12065–12081. [Google Scholar] [CrossRef]
- Jian, B.; Pang, J.; Xiong, H.; Zhang, W.; Zhan, T.; Su, Z.; Lin, H.; Zhang, H.; He, W.; Zheng, Y. Autophagy-Dependent Ferroptosis Contributes to Cisplatin-Induced Hearing Loss. Toxicol. Lett. 2021, 350, 249–260. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, J.; Liu, D.; Tuo, X.; Xiao, L.; Lai, B.; Yao, Q.; Liu, J.; Yang, H.; Wang, N. Nuciferine Ameliorates Hepatic Steatosis in High-Fat Diet/Streptozocin-Induced Diabetic Mice through a PPARα/PPARγ Coactivator-1α Pathway. Br. J. Pharmacol. 2018, 175, 4218–4228. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yao, W.; Li, B.; Qian, S.; Wei, B.; Gong, S.; Wang, J.; Liu, M.; Wei, M. Nuciferine Modulates the Gut Microbiota and Prevents Obesity in High-Fat Diet-Fed Rats. Exp. Mol. Med. 2020, 52, 1959–1975. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-M.; Park, E.-J.; Lee, H.-J. Nuciferine Attenuates Lipopolysaccharide-Stimulated Inflammatory Responses by Inhibiting P38 MAPK/ATF2 Signaling Pathways. Inflammopharmacology 2022, 30, 2373–2383. [Google Scholar] [CrossRef]
- Wan, Y. Nuciferine, an Active Ingredient Derived from Lotus Leaf, Lights up the Way for the Potential Treatment of Obesity and Obesity-Related Diseases. Pharmacol. Res. 2022, 175, 106002. [Google Scholar] [CrossRef]
- Li, D.; Liu, B.; Fan, Y.; Liu, M.; Han, B.; Meng, Y.; Xu, X.; Song, Z.; Liu, X.; Hao, Q.; et al. Nuciferine Protects against Folic Acid-induced Acute Kidney Injury by Inhibiting Ferroptosis. Br. J. Pharmacol. 2021, 178, 1182–1199. [Google Scholar] [CrossRef]
- Tateya, T.; Sakamoto, S.; Ishidate, F.; Hirashima, T.; Imayoshi, I.; Kageyama, R. Three-Dimensional Live Imaging of Atoh1 Reveals the Dynamics of Hair Cell Induction and Organization in the Developing Cochlea. Development 2019, 146, dev177881. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Liao, Y.; Mao, H.; Gao, X.; Lin, H.; Li, W.; Chen, Y.; Li, H. Drug Screening Identifies Aldose Reductase as a Novel Target for Treating Cisplatin-Induced Hearing Loss. Free Radic. Biol. Med. 2023, 210, 430–447. [Google Scholar] [CrossRef]
- Jiang, P.; Zhao, L.; Hu, R.; Zhai, Z.; Guo, J.; Zhang, K. Nuciferine Protects against Lipopolysaccharide-Induced Endometritis via Inhibiting Ferroptosis and Modulating AMPKα/mTOR/HIF-1α Signaling Axis. Int. Immunopharmacol. 2023, 124, 110914. [Google Scholar] [CrossRef] [PubMed]
- Cornelison, T.L.; Reed, E. Nephrotoxicity and Hydration Management for Cisplatin, Carboplatin, and Ormaplatin. Gynecol. Oncol. 1993, 50, 147–158. [Google Scholar] [CrossRef] [PubMed]
- DeBacker, J.R.; Harrison, R.T.; Bielefeld, E.C. Cisplatin-Induced Threshold Shift in the CBA/CaJ, C57BL/6J, BALB/cJ Mouse Models of Hearing Loss. Hear. Res. 2020, 387, 107878. [Google Scholar] [CrossRef]
- Chen, D.; Jia, G.; Zhang, Y.; Mao, H.; Zhao, L.; Li, W.; Chen, Y.; Ni, Y. Sox2 Overexpression Alleviates Noise-Induced Hearing Loss by Inhibiting Inflammation-Related Hair Cell Apoptosis. J. Neuroinflamm. 2022, 19, 59. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, G.; Wang, Y.; Xue, N.; Lin, X.; Du, T.; Xiong, W.; Song, L. Prestin Derived OHC Surface Area Reduction Underlies Age-Related Rescaling of Frequency Place Coding. Hear. Res. 2022, 423, 108406. [Google Scholar] [CrossRef]
- Tan, W.J.T.; Santos-Sacchi, J.; Tonello, J.; Shanker, A.; Ivanova, A.V. Pharmacological Modulation of Energy and Metabolic Pathways Protects Hearing in the Fus1/Tusc2 Knockout Model of Mitochondrial Dysfunction and Oxidative Stress. Antioxidants 2023, 12, 1225. [Google Scholar] [CrossRef] [PubMed]
- Kalinec, G.M.; Webster, P.; Lim, D.J.; Kalinec, F. A Cochlear Cell Line as an in Vitro System for Drug Ototoxicity Screening. Audiol. Neurotol. 2003, 8, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-J.; Hong, S.-H.; Park, R.-K.; Shin, T.; An, N.-H.; Kim, H.-M. Hypoxia-Induced IL-6 Production Is Associated with Activation of MAP Kinase, HIF-1, and NF-κB on HEI-OC1 Cells. Hear. Res. 2005, 207, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, Y.; He, Z.; Chen, X.; Wu, X.; Li, X.; Bai, X.; Liu, W.; Li, B.; Wang, S.; et al. Meclofenamic Acid Reduces Reactive Oxygen Species Accumulation and Apoptosis, Inhibits Excessive Autophagy, and Protects Hair Cell-Like HEI-OC1 Cells From Cisplatin-Induced Damage. Front. Cell. Neurosci. 2018, 12, 139. [Google Scholar] [CrossRef] [PubMed]
- Pantopoulos, K.; Porwal, S.K.; Tartakoff, A.; Devireddy, L. Mechanisms of Mammalian Iron Homeostasis. Biochemistry 2012, 51, 5705–5724. [Google Scholar] [CrossRef] [PubMed]
- Mancias, J.D.; Wang, X.; Gygi, S.P.; Harper, J.W.; Kimmelman, A.C. Quantitative Proteomics Identifies NCOA4 as the Cargo Receptor Mediating Ferritinophagy. Nature 2014, 509, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Mancias, J.D.; Pontano Vaites, L.; Nissim, S.; Biancur, D.E.; Kim, A.J.; Wang, X.; Liu, Y.; Goessling, W.; Kimmelman, A.C.; Harper, J.W. Ferritinophagy via NCOA4 Is Required for Erythropoiesis and Is Regulated by Iron Dependent HERC2-Mediated Proteolysis. eLife 2015, 4, e10308. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Wu, R.; Zheng, J.; Li, P.; Yu, L. Polyubiquitin Chain-Induced P62 Phase Separation Drives Autophagic Cargo Segregation. Cell Res. 2018, 28, 405–415. [Google Scholar] [CrossRef]
- Kurz, T.; Gustafsson, B.; Brunk, U.T. Intralysosomal Iron Chelation Protects against Oxidative Stress-Induced Cellular Damage. FEBS J. 2006, 273, 3106–3117. [Google Scholar] [CrossRef]
- Dixon, S.J.; Stockwell, B.R. The Role of Iron and Reactive Oxygen Species in Cell Death. Nat. Chem. Biol. 2014, 10, 9–17. [Google Scholar] [CrossRef]
- Li, C.; Sun, G.; Chen, B.; Xu, L.; Ye, Y.; He, J.; Bao, Z.; Zhao, P.; Miao, Z.; Zhao, L.; et al. Nuclear Receptor Coactivator 4-Mediated Ferritinophagy Contributes to Cerebral Ischemia-Induced Ferroptosis in Ischemic Stroke. Pharmacol. Res. 2021, 174, 105933. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Lu, J.; Hao, X.; Li, H.; Zhang, G.; Liu, X.; Li, X.; Zhao, C.; Kuang, W.; Chen, D.; et al. FTH1 Inhibits Ferroptosis Through Ferritinophagy in the 6-OHDA Model of Parkinson’s Disease. Neurotherapeutics 2020, 17, 1796–1812. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhou, Y.-L.; Mao, J.-A.; Tang, L.-F.; Xu, J.; Wang, Z.-X.; He, Y.; Li, M. NCOA4-Mediated Ferritinophagy Is Involved in Ionizing Radiation-Induced Ferroptosis of Intestinal Epithelial Cells. Redox Biol. 2022, 55, 102413. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhang, J.; Wang, B.; Xu, G.; Yang, X.; Zou, Z.; Yu, C. Ferritinophagy Is Involved in the Zinc Oxide Nanoparticles-Induced Ferroptosis of Vascular Endothelial Cells. Autophagy 2021, 17, 4266–4285. [Google Scholar] [CrossRef]
- Kamimura, T.; Whitworth, C.A.; Rybak, L.P. Effect of 4-Methylthiobenzoic Acid on Cisplatin-Induced Ototoxicity in the Rat. Hear. Res. 1999, 131, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Sha, S.H.; Taylor, R.; Forge, A.; Schacht, J. Differential Vulnerability of Basal and Apical Hair Cells Is Based on Intrinsic Susceptibility to Free Radicals. Hear. Res. 2001, 155, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Angeli, J.P.F.; Shah, R.; Pratt, D.A.; Conrad, M. Ferroptosis Inhibition: Mechanisms and Opportunities. Trends Pharmacol. Sci. 2017, 38, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Bai, X.; Li, L.; Li, J.; Wang, H. Forskolin Protects against Cisplatin-Induced Ototoxicity by Inhibiting Apoptosis and ROS Production. Biomed. Pharmacother. 2018, 99, 530–536. [Google Scholar] [CrossRef]
- Yu, X.; Man, R.; Li, Y.; Yang, Q.; Li, H.; Yang, H.; Bai, X.; Yin, H.; Li, J.; Wang, H. Paeoniflorin Protects Spiral Ganglion Neurons from Cisplatin-Induced Ototoxicity: Possible Relation to PINK1/BAD Pathway. J. Cell Mol. Med. 2019, 23, 5098–5107. [Google Scholar] [CrossRef]
- Sun, J.; Fan, J.; Li, T.; Yan, X.; Jiang, Y. Nuciferine Protects Against High-Fat Diet-Induced Hepatic Steatosis via Modulation of Gut Microbiota and Bile Acid Metabolism in Rats. J. Agric. Food Chem. 2022, 70, 12014–12028. [Google Scholar] [CrossRef]
- Du, X.; Di Malta, C.; Fang, Z.; Shen, T.; Niu, X.; Chen, M.; Jin, B.; Yu, H.; Lei, L.; Gao, W.; et al. Nuciferine Protects against High-Fat Diet-Induced Hepatic Steatosis and Insulin Resistance via Activating TFEB-Mediated Autophagy-Lysosomal Pathway. Acta Pharm. Sin. B 2022, 12, 2869–2886. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Liu, X.; Li, S.; An, H.; Kang, X.; Guo, S. Nuciferine Inhibits TMEM16A in Dietary Adjuvant Therapy for Lung Cancer. J. Agric. Food Chem. 2022, 70, 3687–3696. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.-H.; He, X.-X.; You, C.; Tao, X.; Wang, L.-S.; Zhang, M.-D.; Zhou, Y.-F.; Chang, Q. Pharmacokinetics of Nuciferine and N-Nornuciferine, Two Major Alkaloids From Nelumbo Nucifera Leaves, in Rat Plasma and the Brain. Front. Pharmacol. 2018, 9, 902. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhu, Y.; Zhao, R.; Xiong, S.; Sun, J.; Zhang, J.; Fan, D.; Deng, J.; Yang, H. Structure-Activity Relationship, Bioactivities, Molecular Mechanisms, and Clinical Application of Nuciferine on Inflammation-Related Diseases. Pharmacol. Res. 2023, 193, 106820. [Google Scholar] [CrossRef]
Assay | Target Gene | Sequence | Primer | Accession Number | Product Length |
---|---|---|---|---|---|
1 | Ptgs2 | GCTTCAGGAGTCAGTCAGGA | Forward | NM_011198.5 | 188 |
ACGGTTTTGACATGGATTGGA | Reverse | ||||
2 | Aifm2 | GGAGTACATCAAGGTGGAGAC | Forward | NM_001039194.3 | 109 |
CTCAAATGCACTGCGGTAGG | Reverse | ||||
3 | Gpx4 | AACAGCTCCGAGTTCCTGG | Forward | NM_001037741.4 | 131 |
CACACGAAACCCCTGTACTT | Reverse | ||||
4 | Nrf2 | GCAGGACATGGATTTGATTGAC | Forward | NM_010902.5 | 223 |
CGGCTGAATTGGGAGGAATT | Reverse | ||||
5 | Slc7a11 | ATCATCACAGTGGGCTACGT | Forward | NM_011990.2 | 122 |
GAGAATTTTCCCAGCAGCCG | Reverse | ||||
6 | Acsl4 | AGCGTTCCTCCAAGTAGACC | Forward | NM_001033600.1 | 159 |
GTCCTTCGGTCCTAGTCCAG | Reverse | ||||
7 | Lpcat3 | TTGACTACTACGATGGAGGCA | Forward | NM_145130.3 | 150 |
GGTTCATTGAAAATTGGGGCC | Reverse | ||||
8 | Alox15 | CCTGGATCTTCTCAAGCAAGC | Forward | NM_009660.3 | 159 |
ATTCCCACCACGTACCGATT | Reverse | ||||
9 | Irp1 | TTGGAGCCAAGCAAGGATTT | Forward | NM_007386.3 | 156 |
CGGATGGATTGCTGGTGTTT | Reverse | ||||
10 | Ireb2 | GCATCCCAGCCTATTGAGAATG | Forward | NM_022655.4 | 105 |
AGCAGCACTACTCCTAGCAATA | Reverse | ||||
11 | Dmt1 | TACAGTGAAGCCCAGCCAGA | Forward | NM_001146161.1 | 114 |
ATGATCACAGCTCCCACGAT | Reverse | ||||
12 | Slc40a1 | CCAGATTATGACATTTGGCTCC | Forward | NM_016917.2 | 199 |
AACCTTCCAGAGCAGAACGT | Reverse | ||||
13 | Trf | CGCAGTCCTCTTGAGAAAGC | Forward | NM_133977 | 172 |
CACCGCCATCTTTCAGACAC | Reverse | ||||
14 | Tfrc | TGATTGGATTCATGAGTGGCT | Forward | NM_001357298.1 | 153 |
GGTCTGCCCAATATAAGCGAG | Reverse | ||||
15 | Fth1 | GACCGTGATGACTGGGAGAG | Forward | NM_010239.2 | 100 |
TAGCCAGTTTGTGCAGTTCC | Reverse | ||||
16 | Ftl | CAGCCTGGTCAATTTGTACCT | Forward | NM_010240.2 | 114 |
GCCAATTCGCGGAAGAAGTG | Reverse | ||||
17 | Ncoa4 | AGCAGAAGTCAGCATCCAGT | Forward | NM_001033988.3 | 112 |
AGTCCTGTGGGTTGGTACTG | Reverse | ||||
18 | Sqstm1 | ACCCACTACCCCAGAAAGTT | Forward | NM_011018.3 | 157 |
CACCGACTCCAAGGCTATCT | Reverse | ||||
19 | Gapdh | TCATCATCTCCGCCCCTTC | Forward | NM_001411843.1 | 170 |
CATGAGCCCTTCCACAATGC | Reverse |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Mao, H.; Zhao, L.; Li, X.; Liao, Y.; Li, W.; Li, H.; Chen, Y. Nuciferine Protects Cochlear Hair Cells from Ferroptosis through Inhibiting NCOA4-Mediated Ferritinophagy. Antioxidants 2024, 13, 714. https://doi.org/10.3390/antiox13060714
Gao X, Mao H, Zhao L, Li X, Liao Y, Li W, Li H, Chen Y. Nuciferine Protects Cochlear Hair Cells from Ferroptosis through Inhibiting NCOA4-Mediated Ferritinophagy. Antioxidants. 2024; 13(6):714. https://doi.org/10.3390/antiox13060714
Chicago/Turabian StyleGao, Xian, Huanyu Mao, Liping Zhao, Xiang Li, Yaqi Liao, Wenyan Li, Huawei Li, and Yan Chen. 2024. "Nuciferine Protects Cochlear Hair Cells from Ferroptosis through Inhibiting NCOA4-Mediated Ferritinophagy" Antioxidants 13, no. 6: 714. https://doi.org/10.3390/antiox13060714
APA StyleGao, X., Mao, H., Zhao, L., Li, X., Liao, Y., Li, W., Li, H., & Chen, Y. (2024). Nuciferine Protects Cochlear Hair Cells from Ferroptosis through Inhibiting NCOA4-Mediated Ferritinophagy. Antioxidants, 13(6), 714. https://doi.org/10.3390/antiox13060714