Essential Oil Emulsion from Caper (Capparis spinosa L.) Leaves: Exploration of Its Antibacterial and Antioxidant Properties for Possible Application as a Natural Food Preservative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Essential Oil Extraction
2.3. Emulsion Preparation
2.4. SPME-GC-MS Analysis
2.5. Antibacterial Activity
2.6. Antioxidant Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Volatile Fraction Composition
3.2. Antibacterial Activity
3.3. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falleh, H.; Jemaa, M.B.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Filali, F.R.; Lo Presti, V.; Zekkori, B.; Nalbone, L.; Elsharkawy, E.R.; Bentayeb, A.; Giarratana, F. Effectiveness of essential oil from the Artemisia herba-alba aerial parts against multidrug-resistant bacteria isolated from food and hospitalized patients. Biodiversitas 2021, 22, 2295–3005. [Google Scholar] [CrossRef]
- Nefzi, N.; Pagliari, S.; Campone, L.; Megdiche-Ksouri, W.; Giarratana, F.; Cicero, N.; Ziino, G.; Nalbone, L. Chemical composition and comprehensive antimicrobial activity of an ethanolic extract of propolis from Tunisia. Antibiotics 2023, 23, 802. [Google Scholar] [CrossRef] [PubMed]
- Rodilla, J.M.; Rosado, T.; Gallardo, E. Essential oils: Chemistry and food Applications. Foods 2024, 13, 1074. [Google Scholar] [CrossRef]
- Saeed, K.; Pasha, I.; Jahangir Chughtai, M.F.; Ali, Z.; Bukhari, H.; Zuhair, M. Application of essential oils in food industry: Challenges and innovation. J. Essent. Oil Res. 2022, 4, 97–110. [Google Scholar] [CrossRef]
- Frederico, C.; Silva dos Santos Franciscato, L.M.; Pereira Ruiz, S. Essential oils as natural food additives: Stability and safety. Arq. Ciênc. Saúde UNIPAR 2023, 27, 5739. [Google Scholar] [CrossRef]
- Maurya, S.; Cornejo, X.; Lee, C.; Kim, S.Y.; Choudhary, R.K. Molecular phylogenetic tools reveal the phytogeographic history of the genus Capparis L. and suggest its reclassification. Evol. Syst. 2023, 58, 125720. [Google Scholar] [CrossRef]
- Chedraoui, S.; Abi-Rizk, A.; El-Beyrouthy, M.; Chalak, L.; Ouaini, N.; Rajjou, L. Capparis spinosa L. in a systematic review: A xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. Front. Plant Sci. 2017, 8, 1845. [Google Scholar] [CrossRef]
- Sakcali, M.S.; Bahadir, H.; Ozturk, M. Eco-physiology of Capparis spinosa L.: A plant suitable for combating desertification. Pak. J. Bot. 2008, 40, 1481–1486. [Google Scholar]
- Condurso, C.; Mazzaglia, A.; Tripodi, G.; Cincotta, F.; Dima, G.; Lanza, M.C.; Verzera, A. Sensory analysis and head-space aroma volatiles for the characterization of capers from different geographic origin. J. Essent. Oil Res. 2016, 28, 185–192. [Google Scholar] [CrossRef]
- Cincotta, F.; Merlino, M.; Verzera, A.; Gugliandolo, E.; Condurso, C. Innovative process for dried caper (Capparis spinosa L.) powder production. Foods 2022, 11, 3765. [Google Scholar] [CrossRef] [PubMed]
- Moghaddasi, M.S. Caper (Capparis spp.) importance and medicinal usage. Adv. Environ. Biol. 2011, 872–880. [Google Scholar]
- Nabavi, S.F.; Maggi, F.; Daglia, M.; Habtemariam, S.; Rastrelli, L.; Nabavi, S.M. Pharmacological effects of Capparis spinosa L. Phytother Res. 2016, 30, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- El-Naser, Z. Analysis of essential oil of Capparis spinosa L. leaves and interaction between Pieris brassicae L. (Lepidopteran) which attack caper and natural enemy Cotesia glomerata (L). Int. J. Chemtech Res. 2016, 9, 477–485. [Google Scholar]
- Afsharypuor, S.; Jeiran, K.; Jazy, A.A. First investigation of the flavour profiles of the leaf, ripe fruit and root of Capparis spinosa var. mucronifolia from Iran. Pharm. Acta Helv. 1998, 72, 307–309. [Google Scholar] [CrossRef]
- Kulisic-Bilusic, T.; Blažević, I.; Dejanović, B.; Miloš, M.; Pifat, G. Evaluation of the antioxidant activity of essential oils from caper (Capparis spinosa) and sea fennel (Crithmum maritimum) by different methods. J. Food Biochem. 2010, 34, 286–302. [Google Scholar] [CrossRef]
- Shafaghi Rad, M.; Nouri, M. Inspection of Capparis spinosa essential oils for quality assurance of fish burgers during refrigerated storage. Food Sci. Nutr. 2023, 11, 7229–7241. [Google Scholar] [CrossRef] [PubMed]
- Benachour, H.; Ramdani, M.; Lograda, T.; Chalard, P.; Figueredo, G. Chemical composition and antibacterial activities of Capparis spinosa essential oils from Algeria. Biodiversitas J. Biodiver. 2020, 21, 161–169. [Google Scholar] [CrossRef]
- Muhaidat, R.; Al-Qudah, M.A.; Al-Shayeb, A.; Jacob, J.H.; Al-Jaber, H.I.; Hussein, E.; Al-Tarawneh, I.N.; Abu Orabi, S.T. Chemical profile and antibacterial activity of crude fractions and essential oils of Capparis ovata Desf. and Capparis spinosa L. (Capparaceae). Int. J. Integr. Biol. 2013, 14, 39–47. [Google Scholar]
- Cincotta, F.; Verzera, A.; Tripodi, G.; Condurso, C. Non-intentionally added substances in PET bottled mineral water during the shelf-life. Eur. Food Res. Technol. 2018, 244, 433–439. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll. 2015, 43, 547–556. [Google Scholar] [CrossRef]
- Clavijo-Romero, A.; Quintanilla-Carvajal, M.X.; Ruiz, Y. Stability and antimicrobial activity of eucalyptus essential oil emulsions. Food Sci. Technol. Int. 2019, 25, 24–37. [Google Scholar] [CrossRef]
- Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; McClements, D.J. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem. 2016, 194, 410–415. [Google Scholar] [CrossRef]
- Brevard, H.; Brambilla, M.; Chaintreau, A.; Marion, J.P.; Diserens, H. Occurrence of elemental sulphur in capers (Capparis spinosa L.) and first investigation of the flavour profile. Flavour Frag. J. 1992, 7, 313–321. [Google Scholar] [CrossRef]
- Mithen, R.; Bennett, R.; Marquez, J. Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 2010, 71, 2074–2086. [Google Scholar] [CrossRef]
- Bianco, G.; Lelario, F.; Battista, F.G.; Bufo, S.A.; Cataldi, T.R. Identification of glucosinolates in capers by LC-ESI-hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry (LC-ESI-LTQ-FTICR MS) and infrared multiphoton dissociation. J. Mass Spectrom. 2012, 47, 1160–1169. [Google Scholar] [CrossRef]
- Brindisi, L.J.; Lyu, W.; Juliani, H.R.; Wu, Q.; Tepper, B.J.; Simon, J.E. Determination of glucosinolates and breakdown products in Brassicaceae baby leafy greens using UHPLC-QTOF/MS and GC/MS. Food Chem. Adv. 2023, 3, 100389. [Google Scholar] [CrossRef]
- Friedrich, K.; Wermter, N.S.; Andernach, L.; Witzel, K.; Hanschen, F.S. Formation of volatile sulfur compounds and S-methyl-l-cysteine sulfoxide in Brassica oleracea vegetables. Food Chem. 2022, 383, 132544. [Google Scholar] [CrossRef]
- Marks, H.S.; Hilson, J.A.; Leichtweis, H.C.; Stoewsand, G.S. S-Methylcysteine sulfoxide in Brassica vegetables and formation of methyl methanethiosulfinate from Brussels sprouts. J. Agric. Food Chem. 1992, 40, 2098–2101. [Google Scholar] [CrossRef]
- Romeo, V.; Ziino, M.; Giuffrida, D.; Condurso, C.; Verzera, A. Flavour profile of capers (Capparis spinosa L.) from the Eolian Archipelago by HS-SPME/GC–MS. Food Chem. 2007, 101, 1272–1278. [Google Scholar] [CrossRef]
- Zhou, Q.; Zheng, C.; Wei, F.; Yang, Y. Flavor precursors identification and thermal degradation mechanisms of glucoerucin in fragrant rapeseed oil. Food Chem. 2024, 435, 137484. [Google Scholar] [CrossRef]
- Tufariello, M.; Fragasso, M.; Pico, J.; Panighel, A.; Castellarin, S.D.; Flamini, R.; Grieco, F. Influence of non-Saccharomyces on wine chemistry: A focus on aroma-related compounds. Molecules 2021, 26, 644. [Google Scholar] [CrossRef]
- Jensen, K.; Christensen, L.P.; Hansen, M.; Jørgensen, U.; Kaack, K. Olfactory and quantitative analysis of volatiles in elderberry (Sambucus nigra L) juice processed from seven cultivars. J. Sci. Food Agric. 2001, 81, 237–244. [Google Scholar] [CrossRef]
- Casimir, D.J.; Kefford, J.F.; Whitfield, F.B. Technology and flavor chemistry of passion fruit juices and concentrates. In Advances in Food Research; Chichester, C.O., Mrak, E.M., Stewart, G.F., Eds.; Academic Press: New York, NY, USA, 1981; Volume 27, pp. 243–295. [Google Scholar] [CrossRef]
- Mendes-Pinto, M.M. Carotenoid breakdown products the—Norisoprenoids—In wine aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef]
- Paparella, A.; Shaltiel-Harpaza, L.; Ibdah, M. β-Ionone: Its occurrence and biological function and metabolic engineering. Plants 2021, 10, 754. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- Kumar, H.; Franzetti, L.; Kaushal, A.; Kumar, D. Pseudomonas fluorescens: A potential food spoiler and challenges and advances in its detection. Ann. Microbiol. 2019, 69, 873–883. [Google Scholar] [CrossRef]
- Kim, J.W.; Huh, J.E.; Kyung, S.H.; Kyung, K.H. Antimicrobial activity of alk(en)yl sulfides found in essential oils of garlic and onion. Food Sci. Biotechnol. 2004, 13, 235–239. [Google Scholar]
- Wilson, A.E.; Bergaentzlé, M.; Bindler, F.; Marchioni, E.; Lintz, A.; Ennahar, S. In vitro efficacies of various isothiocyanates from cruciferous vegetables as antimicrobial agents against foodborne pathogens and spoilage bacteria. Food Control. 2013, 30, 318–324. [Google Scholar] [CrossRef]
- Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Für Naturforschung C 2007, 62, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Trivedi, N.A.; Hotchandani, S.C. A study of the antimicrobial activity of oil of eucalyptus. Indian J Pharmacol. 2004, 36, 93. [Google Scholar]
- El-Ghorab, A.; Shibamoto, T.; Ozcan, M. Chemical composition and antioxidant activities of buds and leaves of capers (Capparis ovata Desf. var. canescens) cultivated in Turkey. J. Essent. Oil. Res. 2007, 19, 72–77. [Google Scholar] [CrossRef]
- Anthony, K.P.; Deolu-Sobogun, S.A.; Saleh, M.A. Comprehensive assessment of antioxidant activity of essential oils. J. Food Sci. 2012, 77, C839–C843. [Google Scholar] [CrossRef]
- Amaral, A.B.; Silva, M.V.D.; Lannes, S.C.D.S. Lipid oxidation in meat: Mechanisms and protective factors–a review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Gonzalez-Burgos, E.; Gomez-Serranillos, M.P. Terpene compounds in nature: A review of their potential antioxidant activity. Curr. Med. Chem. 2012, 19, 5319–5341. [Google Scholar] [CrossRef]
- Cedrowski, J.; Grebowski, J.; Litwinienko, G. Antioxidant activity of edible isothiocyanates. In Lipid Oxidation in Food and Biological Systems: A Physical Chemistry Perspective; Bravo-Diaz, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 277–303. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Li, K.; Ma, J.K.; Huang, Q.; Tian, X.; Li, Z.J. Antioxidant activity of organic sulfides from fresh Allium macrostemon Bunge and their protective effects against oxidative stress in Caenorhabditis elegans. J. Food Biochem. 2020, 44, e13447. [Google Scholar] [CrossRef]
Compounds | LRI 1 on DB-5 | LRI 1 on VF-WAX | Amount 2 (% ± SD) |
---|---|---|---|
Sulphur-containing compounds | |||
Methyl isothiocyanate | 722 | 1243 | 7.97 ± 0.30 |
Dimethyl disulfide | 725 | 1080 | 1.25 ± 0.08 |
Ethyl isothiocyanate | 801 | - | 0.05 ± 0.00 |
Isopropyl isothiocyanate | 827 | 1179 | 0.09 ± 0.00 |
Butyl isothiocyanate | 928 | 1312 | 0.09 ± 0.00 |
Isobutyl isothiocyanate | 951 | 1336 | 0.05 ± 0.00 |
Dimethyl trisulfide | 969 | 1380 | 12.58 ± 0.93 |
Dimethyl tetrasulfide | 1218 | 1750 | 18.41 ± 1.01 |
Dimethyl pentasulfide | 1454 | 2185 | 4.28 ± 0.39 |
Cyclic octatonic sulphur | 2014 | - | 0.57 ± 0.01 |
All | 45.33 ± 2.09 | ||
Terpenenoids | |||
Eucalyptol | 1032 | 1209 | 3.10 ± 0.10 |
Linalool | 1102 | 1541 | 4.77 ± 0.18 |
Grandlure III | 1111 | 1799 | 0.04 ± 0.00 |
Sabinol | 1143 | - | 0.36 ± 0.02 |
(E)-p-Mentha-2,8-dien-1-ol | 1123 | 1641 | 0.11 ± 0.01 |
Limona ketone | 1132 | - | 0.05 ± 0.00 |
Dihydrolinalool | 1137 | 1449 | 0.07 ± 0.00 |
(Z)-p-Mentha-2,8-dien-1-ol | 1139 | 1656 | 0.07 ± 0.00 |
Camphor | 1147 | 1498 | 0.27 ± 0.02 |
1,4-Dimethyl-4-acetylcyclohexene | 1150 | 1504 | 0.13 ± 0.01 |
Karahanaenone | 1153 | - | 0.06 ± 0.00 |
Menthone | 1156 | 1472 | 1.63 ± 0.09 |
Pinocarvone | 1163 | 1566 | 0.06 ± 0.00 |
Isomenthone | 1166 | 1476 | 0.57 ± 0.02 |
Neomenthol | 1171 | 1574 | 0.80 ± 0.03 |
Terpinen-4-ol | 1182 | 1591 | 6.76 ± 0.32 |
p-Cymen-8-ol | 1190 | 1850 | 0.55 ± 0.02 |
Methyl salicylate | 1191 | 1745 | 0.12 ± 0.01 |
α-Terpineol | 1198 | 1695 | 1.82 ± 0.05 |
Nerol | 1225 | 1770 | 0.12 ± 0.01 |
(Z)-Carveol | 1232 | 1846 | 0.09 ± 0.00 |
Pulegone | 1237 | 1637 | 0.14 ± 0.01 |
Carvone | 1243 | 1739 | 0.26 ± 0.01 |
Geraniol | 1251 | 1860 | 0.49 ± 0.02 |
β-Cyclohomocitral | 1253 | 1598 | 0.15 ± 0.01 |
Perilla alcohol | 1301 | 2021 | 0.62 ± 0.03 |
Thymol | 1307 | 2154 | 2.03 ± 0.08 |
4-Vinyl-guaiacol | 1310 | 2203 | 0.90 ± 0.03 |
1,5,9,9-Tetramethyl-2-methylene-spiro[3.5]non-5-ene | 1329 | - | 1.64 ± 0.08 |
Eugenol | 1350 | 2172 | 0.49 ± 0.02 |
Methyl-eugenol | 1400 | 2011 | 0.12 ± 0.00 |
Caryophyllene oxide | 1576 | 1990 | 0.14 ± 0.01 |
α-Bisabolol oxide B | 1650 | - | 0.23 ± 0.02 |
Phytone | 1840 | 2118 | 0.06 ± 0.00 |
All | 28.82 ± 0.72 | ||
C13-Norisoprenoids | |||
2(1H)-Naphthalenone, 3,4,4a,5,6,7-hexahydro-1,1,4a-trimethyl | 1277 | - | 0.25 ± 0.01 |
Dihydroedulan I | 1287 | 1542 | 2.06 ± 0.09 |
(Z)-Theaspirane | 1297 | 1561 | 0.24 ± 0.02 |
(E)-Theaspirane | 1313 | - | 0.91 ± 0.04 |
Dihydroedulan II | 1325 | 1513 | 0.60 ± 0.02 |
6-Methyl-5-(1-methylethylidene)-6,8-nonadien-2-one isomer I | 1355 | - | 1.57 ± 0.01 |
(E)-β-Damascenone | 1377 | - | 0.58 ± 0.01 |
6-Methyl-5-(1-methylethylidene)-6,8-nonadien-2-one isomer II | 1389 | - | 1.02 ± 0.02 |
(E)-β-Damascone | 1407 | 1782 | 0.10 ± 0.00 |
3,4-Didehydro-7,8-dihydro-β-ionone | 1413 | - | 0.41 ± 0.00 |
(E)-α-Ionone | 1421 | 1550 | 0.31 ± 0.00 |
7,8-Epoxy-α-ionone | 1433 | - | 1.74 ± 0.00 |
(E)-β-Ionone | 1478 | 1928 | 2.33 ± 0.12 |
All | 12.12 ± 0.15 | ||
Nitrogen-containing compounds | |||
1H-Indole | 1292 | 2435 | 0.96 ± 0.00 |
1H-Indole-3-methanol | 1383 | - | 3.03 ± 0.18 |
All | 3.99 ± 0.10 | ||
Alcohols | |||
(Z)-3-Hexen-1-ol | 860 | 1384 | 0.04 ± 0.00 |
1-Hexanol | 876 | 1357 | 0.03 ± 0.00 |
2,4-Dimethyl-3-heptanol | 946 | - | 0.01 ± 0.00 |
1-Heptanol | 979 | 1457 | 0.09 ± 0.00 |
1-Octen-3-ol | 984 | 1448 | 0.22 ± 0.02 |
6-Methyl-5-hepten-2-ol | 998 | 1468 | 0.06 ± 0.00 |
3-Ethyl-hexanol | 1043 | 1483 | 0.13 ± 0.01 |
2-Octen-1-ol | 1062 | 1637 | 0.30 ± 0.02 |
1-Nonen-4-ol | 1109 | - | 0.76 ± 0.03 |
1-Octanol | 1076 | 1557 | 1.05 ± 0.09 |
1-Nonanol | 1176 | 1657 | 0.67 ± 0.03 |
1-Decanol | 1273 | 1758 | 0.67 ± 0.03 |
1-Dodecanol | 1475 | 1958 | 0.65 ± 0.03 |
1-Tetradecanol | 1677 | 2159 | 0.17 ± 0.01 |
1-Hexadecanol | 1880 | 2359 | 0.08 ± 0.00 |
All | 4.91 ± 0.18 | ||
Aldehydes | |||
(E)-2-Hexenal | 856 | 1222 | 0.02 ± 0.00 |
Octanal | 1005 | 1284 | 0.08 ± 0.00 |
Nonanal | 1105 | 1384 | 0.40 ± 0.02 |
Decanal | 1208 | 1486 | 0.34 ± 0.02 |
2-Phenyl-2-butenal | 1266 | 1922 | 0.18 ± 0.01 |
4-Methyl-2-phenyl-2-pentenal | 1364 | 1932 | 0.11 ± 0.00 |
5-Methyl-2-phenyl-2-hexenal | 1482 | 2083 | 0.26 ± 0.01 |
All | 1.40 ± 0.02 | ||
Esters | |||
2-Propenyl hexanoate | 1088 | 1370 | 0.10 ± 0.00 |
Methyl 2,6-cresoate | 1311 | 1970 | 0.70 ± 0.03 |
Massoia lactone | 1471 | 2241 | 0.11 ± 0.00 |
(Z)-3-Hexenyl benzoate | 1567 | 2093 | 0.50 ± 0.02 |
Isopropyl tetradecanoate | 1824 | 2041 | 0.11 ± 0.01 |
2-Phenylethyl benzoate | 1845 | 2658 | 0.04 ± 0.00 |
All | 1.56 ± 0.03 | ||
Ketones | |||
3-Heptanone | 888 | 1156 | 0.01 ± 0.00 |
2-Heptanone | 893 | 1187 | 0.04 ± 0.00 |
3-Methyl-2-cyclohexen-1-one | 1059 | 1592 | 0.06 ± 0.00 |
1-Octen-3-one | 979 | 1307 | 0.27 ± 0.02 |
6-Methyl-5-hepten-2-one | 988 | 1342 | 0.11 ± 0.01 |
2-Octanone | 993 | 1289 | 0.01 ± 0.00 |
Acetophenone | 1066 | 1656 | 0.02 ± 0.00 |
2-Nonanone | 1093 | 1389 | 0.03 ± 0.00 |
(E,E)-3,5-Octadien-2-one, | 1097 | 1521 | 0.04 ± 0.00 |
6-Methyl-3,5-heptadien-2-one | 1108 | 1582 | 0.04 ± 0.00 |
2-Nonen-4-one | 1127 | 1470 | 0.43 ± 0.02 |
3-Nonen-2-one | 1142 | 1518 | 0.10 ± 0.00 |
Benzophenone | 1621 | 2427 | 0.17 ± 0.01 |
All | 1.34 ± 0.03 | ||
Furanoic compounds | |||
Furfural | 831 | 1467 | 0.01 ± 0.00 |
2,5-Diethyl-tetrahydrofuran isomer I | 889 | - | 0.13 ± 0.01 |
2,5-Diethyl-tetrahydrofuran isomer II | 898 | - | 0.16 ± 0.01 |
6-Methyl-6-(5-methylfuran-2-yl) heptan-2-one | 1480 | - | 0.24 ± 0.01 |
All | 0.54± 0.01 |
ATCC Strain | MIC (mg/mL) | MBC (mg/mL) | ||||||
---|---|---|---|---|---|---|---|---|
0.06 | 0.04 | 0.02 | 0.01 | 0.06 | 0.04 | 0.02 | 0.01 | |
L. monocytogenes 7644 | NG 1 | NG | NG | G | NG | G 2 | G | G |
S. aureus 25923 | NG | NG | G | G | NG | G | G | G |
E. coli 25922 | NG | G | G | G | NG | G | G | G |
S. Enteritidis 13076 | NG | NG | G | G | NG | G | G | G |
P. fluorescens 13525 | NG | NG | G | G | NG | G | G | G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merlino, M.; Condurso, C.; Cincotta, F.; Nalbone, L.; Ziino, G.; Verzera, A. Essential Oil Emulsion from Caper (Capparis spinosa L.) Leaves: Exploration of Its Antibacterial and Antioxidant Properties for Possible Application as a Natural Food Preservative. Antioxidants 2024, 13, 718. https://doi.org/10.3390/antiox13060718
Merlino M, Condurso C, Cincotta F, Nalbone L, Ziino G, Verzera A. Essential Oil Emulsion from Caper (Capparis spinosa L.) Leaves: Exploration of Its Antibacterial and Antioxidant Properties for Possible Application as a Natural Food Preservative. Antioxidants. 2024; 13(6):718. https://doi.org/10.3390/antiox13060718
Chicago/Turabian StyleMerlino, Maria, Concetta Condurso, Fabrizio Cincotta, Luca Nalbone, Graziella Ziino, and Antonella Verzera. 2024. "Essential Oil Emulsion from Caper (Capparis spinosa L.) Leaves: Exploration of Its Antibacterial and Antioxidant Properties for Possible Application as a Natural Food Preservative" Antioxidants 13, no. 6: 718. https://doi.org/10.3390/antiox13060718
APA StyleMerlino, M., Condurso, C., Cincotta, F., Nalbone, L., Ziino, G., & Verzera, A. (2024). Essential Oil Emulsion from Caper (Capparis spinosa L.) Leaves: Exploration of Its Antibacterial and Antioxidant Properties for Possible Application as a Natural Food Preservative. Antioxidants, 13(6), 718. https://doi.org/10.3390/antiox13060718