Chemical Compositions and In Vitro Antioxidant Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection and Essential Oil Isolation
2.3. Essential Oil Composition Analysis
2.4. In Vitro Antioxidant Activity
2.4.1. DPPH Free Radical-Scavenging Activity (FRSA) Assay
2.4.2. ABTS Free Radical-Scavenging Activity (FRSA)
2.4.3. β-Carotene-Linoleic Acid Bleaching Activity (BCBA) Assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Essential Old Yield and Chemical Composition
3.2. Essential Oils’ Antioxidant Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef] [PubMed]
- Olszowy, M.; Dawidowicz, A.L. Essential oils as antioxidants: Their evaluation by DPPH, ABTS, FRAP, CUPRAC, and β-carotene bleaching methods. Monatsh. Chem. 2016, 147, 2083–2091. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Tit, D.M.; Bungau, S.G. Antioxidant activity of essential oils. Antioxidants 2023, 12, 383. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Ancuceanu, R.; Anghel, A.I.; Hovaneț, M.V.; Ciobanu, A.M.; Lascu, B.E.; Dinu, M. Antioxidant activity of essential oils from Pinaceae species. Antioxidants 2024, 13, 286. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.S.; Lim, Y.; Lee, K.; Lee, J.; Lee, J.H.; Lee, I.-S. Terpenes from forests and human health. Toxicol. Res. 2017, 33, 97–106. [Google Scholar] [CrossRef]
- Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of terpenes and recent advances in plant protection. Int. J. Mol. Sci. 2021, 22, 5710. [Google Scholar] [CrossRef]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef]
- Khodaei, N.; Nguyen, M.M.; Mdimagh, A.; Bayen, S.; Karboune, S. Compositional diversity and antioxidant properties of essential oils: Predictive models. LWT—Food Sci. Technol. 2021, 138, 110684. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in food. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Morales, G.; Paredes, A. Antioxidant activities of Lampaya medicinalis extracts and their main chemical constituents. BMC Complement. Altern. Med. 2014, 14, 259. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Arruda, F.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Variations in essential oil chemical composition and biological activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from different geographical origins—A critical review. Appl. Sci. 2021, 11, 11097. [Google Scholar] [CrossRef]
- Dias, E.; Araújo, C.; Mendes, J.; Elias, R.; Mendes, C.; Melo, C. Espécies Florestais das Ilhas—Açores. In Árvores e Florestas de Portugal; Silva, J.S., Ed.; Público, Comunicação Social, SA/Fundação Luso-Americana/Liga para a Protecção da Natureza: Lisboa, Portugal, 2007; Volume 6, pp. 199–254. [Google Scholar]
- Takashima, A.; Kume, A.; Yoshida, S.; Mizoue, N.; Murakami, T. Historical logging and current successional status of old-growth Cryptomeria japonica forest on Yakushima Island. J. For. Res. 2017, 22, 108–117. [Google Scholar] [CrossRef]
- Shibutani, S.; Takata, K.; Doi, S. Quantitative comparisons of antitermite extractives in heartwood from the same clones of Cryptomeria japonica planted at two different sites. J. Wood Sci. 2007, 53, 285–290. [Google Scholar] [CrossRef]
- Yatagai, M.; Makihara, H.; Oba, K. Volatile components of Japanese cedar cultivars as repellents related to resistance to Cryptomeria bark borer. J. Wood Sci. 2002, 48, 51–55. [Google Scholar] [CrossRef]
- Janeiro, A.; Lima, A.; Arruda, F.; Wortham, T.; Rodrigues, T.; Baptista, J.; Lima, E. Variations in essential oil biological activities of female cones at different developmental stages from Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae). Separations 2024, 11, 102. [Google Scholar] [CrossRef]
- Simas, F.P.C. Assessment of the Potential as Fuel of the Main Forest Species in São Miguel Island, Azores. Master’s Thesis, Instituto Superior Técnico, Lisboa, Portugal, 2016. [Google Scholar]
- Arruda, F.; Lima, A.; Oliveira, L.; Rodrigues, T.; Janeiro, A.; Rosa, J.S.; Lima, E. Essential oil variability of Azorean Cryptomeria japonica leaves under different distillation methods, Part 2: Molluscicidal activity and brine shrimp lethality. Separations 2023, 10, 241. [Google Scholar] [CrossRef]
- Cheng, S.S.; Chang, H.T.; Chang, S.T.; Tsai, K.H.; Chen, W.J. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour. Technol. 2003, 89, 99–102. [Google Scholar] [CrossRef]
- Cheng, S.S.; Lin, H.Y.; Chang, S.T. Chemical composition and antifungal activity of essential oils from different tissues of Japanese Cedar (Cryptomeria japonica). J. Agric. Food Chem. 2005, 53, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.J.; Cheng, S.S.; Lin, C.Y.; Huang, C.G.; Chen, W.J.; Chang, S.T. Repellency of essential oils of Cryptomeria japonica (Pinaceae) against adults of the mosquitoes Aedes aegypti and Aedes albopictus (Diptera:Culicidae). J. Agric. Food Chem. 2009, 57, 11127–11133. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.S.; Chang, H.T.; Wu, C.L.; Chang, S.T. Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresour. Technol. 2007, 98, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.W.; Lin, C.T.; Chu, F.H.; Chang, S.T.; Wang, S.Y. Neuropharmacological activities of phytoncide released from Cryptomeria japonica. J. Wood Sci. 2009, 55, 27–31. [Google Scholar] [CrossRef]
- Cha, J.D.; Jeong, M.R.; Jeong, S.I.; Moon, S.E.; Kil, B.S.; Yun, S.I.; Lee, K.Y.; Song, Y.H. Chemical composition and antimicrobial activity of the essential oil of Cryptomeria japonica. Phytother. Res. 2007, 21, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Ohira, T.; Park, B.J.; Kurosumi, Y.; Miyazaki, Y. Evaluation of dried-wood odors: Comparison between analytical and sensory data on odors from dried sugi (Cryptomeria japonica) wood. J. Wood Sci. 2009, 55, 144–148. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Figueiredo, A.C.; Lima, E. Essential oils from different parts of Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae): Comparison of the yields, chemical compositions, and biological properties. Appl. Sci. 2023, 13, 8375. [Google Scholar] [CrossRef]
- Forjaz, V.H.; Tavares, J.M.; Azevedo, E.M.V.B.; Nunes, J.C. Atlas Básico Dos Açores; Observatório Vulcanológico e Geotérmico dos Açores: Lagoa, Portugal, 2004. [Google Scholar]
- Council of Europe. European directorate for the quality of medicines. In European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2010; p. 241. [Google Scholar]
- ISO 7609; Essential Oils—Analysis by Gas Chromatography on Capillary Columns—General Method. ISO: Geneva, Switzerland, 1985.
- Chen, X.; Shang, S.; Yan, F.; Jiang, H.; Zhao, G.; Tian, S.; Chen, R.; Chen, D.; Dang, Y. Antioxidant activities of essential oils and their major components in scavenging free radicals, inhibiting lipid oxidation and reducing cellular oxidative stress. Molecules 2023, 28, 4559. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Miller, H.E. A simplified method for the evaluation of antioxidants. J. Am. Oil Chem. Soc. 1971, 48, 91–97. [Google Scholar] [CrossRef]
- Moiteiro, C.; Esteves, T.; Ramalho, L.; Rojas, R.; Alvarez, S.; Zacchino, S.; Bragança, H. Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations. Nat. Prod. Commun. 2013, 8, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oils by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Narita, H.; Yatagai, M.; Ohira, T. Chemical composition of the essential oils from bogwood of Cryptomeria japonica D. Don. J. Essent. Oil Res. 2006, 18, 68–70. [Google Scholar] [CrossRef]
- Ho, C.L.; Wang, E.I.; Yu, H.T.; Yu, H.M.; Su, Y.C. Compositions and antioxidant activities of essential oils of different tissues from Cryptomeria japonica D. Don. Quart. J. Chin. For. 2010, 32, 63–76. [Google Scholar]
- Kim, S.H.; Lee, S.Y.; Hong, C.Y.; Gwak, K.S.; Park, M.J.; Smith, D.; Choi, I.G. Whitening and antioxidant activities of bornyl acetate and nezukol fractionated from Cryptomeria japonica essential oil. Int. J. Cosmet. Sci. 2013, 35, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Olszowy, M. Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components. Nat. Prod. Res. 2014, 28, 1952–1963. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Comp. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Saad, H.M.; Rahman, S.N.S.A.; Navanesan, S.; Tan, C.H.; Manickam, S.; Malek, S.N.A.M.; Sim, K.S. Evaluation of antioxidant activity and phytochemical composition of Baeckea frutescens and Leptospermum javanicum essential oils. S. Afr. J. Bot. 2021, 141, 474–479. [Google Scholar] [CrossRef]
- Takao, Y.; Kuriyama, I.; Yamada, T.; Mizoguchi, H.; Yoshida, H.; Mizushina, Y. Antifungal properties of Japanese cedar essential oil from waste wood chips made from used sake barrels. Mol. Med. Rep. 2012, 5, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.J.; Cheng, S.S.; Lin, C.Y.; Chang, S.T. Profiling of volatile compounds from five interior decoration timbers in Taiwan using TD/GC–MS/FID. J. Wood Sci. 2018, 64, 823–835. [Google Scholar] [CrossRef]
- Cheng, S.S.; Chua, M.T.; Chang, E.H.; Huang, C.G.; Chen, W.J.; Chang, S.T. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour. Technol. 2009, 100, 465–470. [Google Scholar] [CrossRef]
No. | Class and Component | RT | RIL | RIC | Relative Content (%) | |
---|---|---|---|---|---|---|
CJS EO | CJRRB EO | |||||
Monoterpene hydrocarbons | ||||||
1 | Tricyclene | 11.92 | 921 | 916 | 0.14 | |
2 | α-Thujene | 12.07 | 924 | 919 | 0.02 | |
3 | α-Pinene | 12.54 | 932 | 927 | 42.74 | |
4 | α-Fenchene | 13.29 | 945 | 941 | 0.40 | |
5 | Camphene | 13.38 | 946 | 942 | 0.49 | |
6 | Thuja-2,4(10)-diene | 13.58 | 953 | 946 | 0.05 | |
7 | m-Cymene | 14.57 | 963 | 0.09 | ||
8 | β-Pinene | 14.96 | 974 | 970 | 1.80 | |
9 | Myrcene | 15.59 | 988 | 981 | 2.52 | |
10 | δ-3-Carene | 16.82 | 1008 | 1003 | 6.02 | |
11 | α-Terpinene | 17.32 | 1014 | 1010 | 0.03 | |
12 | o-Cymene | 17.48 | 1022 | 1013 | 0.02 | |
13 | p-Cymene | 17.80 | 1020 | 1018 | 0.17 | |
14 | Limonene | 18.11 | 1024 | 1022 | 8.93 | |
15 | β-Phellandrene | 18.21 | 1025 | 1024 | 0.21 | |
16 | γ-Terpinene | 19.97 | 1054 | 1050 | 0.03 | |
17 | Isoterpinolene | 21.52 | 1085 | 1074 | 0.02 | |
18 | Terpinolene | 21.79 | 1086 | 1078 | 0.17 | |
19 | p-Cymenene | 22.10 | 1089 | 1082 | 0.12 | |
Oxygenated monoterpenes | ||||||
20 | Fenchone | 22.00 | 1083 | 1081 | 0.03 | |
21 | Linalool | 22.73 | 1095 | 1092 | 0.10 | |
22 | endo-Fenchol | 24.06 | 1114 | 1111 | 0.03 | |
23 | α-Campholenal | 24.59 | 1122 | 1119 | 0.17 | |
24 | cis-Limonene oxide | 24.99 | 1132 | 1125 | 0.12 | |
25 | trans-Pinocarveol | 25.55 | 1135 | 1133 | 0.15 | |
26 | Camphor | 25.98 | 1141 | 1139 | 0.21 | |
27 | Camphene hydrate | 26.53 | 1145 | 1147 | 0.04 | |
28 | Pinocamphone | 26.91 | 1158 | 1152 | 0.05 | |
29 | Borneol | 27.68 | 1165 | 1163 | 0.29 | |
30 | Isopinocamphone | 27.98 | 1172 | 1168 | 0.12 | |
31 | Terpinen-4-ol | 28.30 | 1174 | 1172 | 0.35 | |
32 | p-Cymen-8-ol | 28.72 | 1179 | 1178 | 0.05 | |
33 | α-Terpineol | 29.30 | 1186 | 1187 | 0.87 | |
34 | Verbenone | 30.10 | 1204 | 1198 | 0.02 | |
35 | trans-Carveol | 30.93 | 1215 | 1210 | 0.06 | |
36 | Thymol methyl ether | 32.28 | 1232 | 1230 | 0.07 | |
37 | Carvone | 32.64 | 1239 | 1235 | 0.03 | |
38 | Linalyl acetate | 33.03 | 1254 | 1241 | 0.10 | |
39 | Piperitone | 33.30 | 1249 | 1245 | 0.02 | |
40 | Bornyl acetate | 35.38 | 1287 | 1275 | 0.67 | |
41 | Isobornyl acetate | 35.54 | 1277 | 0.03 | ||
42 | Methyl myrtenate | 36.11 | 1293 | 1286 | 0.52 | |
43 | Thujyl acetate | 36.73 | 1295 | 1295 | 0.03 | |
44 | α-Terpinyl acetate | 39.52 | 1346 | 1337 | 1.29 | |
Sesquiterpene hydrocarbons | ||||||
45 | α-Cubebene | 39.75 | 1345 | 1340 | 0.19 | 0.04 |
46 | α-Copaene | 41.44 | 1374 | 1366 | 0.31 | |
47 | β-Cubebene | 42.23 | 1387 | 1378 | 0.19 | |
48 | (Z)-β-Caryophyllene | 43.04 | 1408 | 1390 | 0.04 | |
49 | Longifolene | 43.60 | 1407 | 1399 | 0.69 | |
50 | cis-Muurola-4(14),5-diene | 44.15 | 1465 | 1408 | 0.08 | |
51 | (E)-β-Caryophyllene | 44.24 | 1417 | 1409 | 0.03 | 0.14 |
52 | β-Copaene | 44.89 | 1430 | 1419 | 0.09 | 0.19 |
53 | α-Guaiene | 45.23 | 1437 | 1425 | 0.02 | |
54 | trans-Murrola-3,5-diene | 46.15 | 1451 | 1438 | 0.59 | 0.87 |
55 | α-Humulene | 46.55 | 1452 | 1445 | 0.04 | 0.16 |
56 | 10-beta-H-Cadina-1(6),4-diene | 47.59 | 1461 | 1.33 | 1.52 | |
57 | trans-Cadina-1(6),4-diene | 47.77 | 1475 | 1464 | 0.09 | 0.24 |
58 | trans-Muurola-4(14),5-diene | 48.81 | 1493 | 1481 | 1.14 | 1.22 |
59 | α-Muurolene | 49.23 | 1500 | 1488 | 0.54 | 2.58 |
60 | β-Bisabolene | 49.81 | 1505 | 1497 | 0.02 | 0.08 |
61 | γ-Cadinene | 50.04 | 1513 | 1502 | 0.18 | |
62 | δ-Cadinene | 50.44 | 1522 | 1507 | 6.42 | 7.23 |
63 | trans-Calamenene | 50.55 | 1521 | 1510 | 1.16 | |
64 | cis-Calamenene | 50.63 | 1528 | 1511 | 0.48 | |
65 | Zonarene | 50.71 | 1528 | 1511 | 1.24 | 1.06 |
66 | trans-Cadina-1,4-diene | 51.27 | 1533 | 1521 | 0.71 | 0.75 |
67 | α-Calacorene | 51.77 | 1544 | 1523 | 0.21 | 0.10 |
68 | α-Calacorene isomer | 51.38 | 1524 | 0.06 | ||
69 | β-Calacorene | 53.00 | 1564 | 1529 | 0.09 | 0.20 |
70 | Cadalene | 59.35 | 1675 | 1660 | 0.11 | 0.04 |
Oxygenated sesquiterpenes | ||||||
71 | epi-Cubebol | 49.06 | 1493 | 1486 | 4.73 | 0.79 |
72 | Cubebol | 50.26 | 1514 | 1504 | 6.76 | 1.28 |
73 | Elemol | 52.19 | 1548 | 1536 | 2.59 | 0.03 |
74 | (E)-Nerolidol | 52.87 | 1561 | 1549 | 0.62 | |
75 | Spathulenol | 53.87 | 1577 | 1566 | 0.05 | |
76 | Caryophyllene oxide | 54.18 | 1582 | 1570 | 0.08 | 0.27 |
77 | Gleenol | 54.48 | 1586 | 1575 | 1.52 | 0.34 |
78 | cis-Muurol-5-en-4-α-ol | 54.56 | 1559 | 1578 | 0.31 | |
79 | trans-Muurol-5-en-4-α-ol | 54.67 | 1579 | 0.54 | ||
80 | Humulene epoxide II | 55.80 | 1608 | 1597 | 0.10 | 0.19 |
81 | Eudesm-5-en-11-ol | 55.99 | 1602 | 0.02 | ||
82 | 1,10-di-Epicubenol | 56.12 | 1618 | 1604 | 0.07 | |
83 | 10-epi-γ-Eudesmol | 56.52 | 1622 | 1611 | 0.05 | |
84 | 1-Epicubenol | 56.87 | 1627 | 1615 | 10.74 | 1.93 |
85 | Agarospirol | 57.02 | 1646 | 1620 | 0.66 | |
86 | γ-Eudesmol | 57.08 | 1630 | 1621 | 2.22 | |
87 | Hinesol | 57.52 | 1640 | 1629 | 0.10 | |
88 | τ-Cadinol | 57.71 | 1632 | 5.90 | ||
89 | epi-α-Cadinol | 57.75 | 1638 | 1633 | 2.28 | |
90 | δ-Cadinol | 57.93 | 1636 | 4.32 | 0.40 | |
91 | β+α-Eudesmol | 58.40 | 1649/1652 | 1643 | 13.54 | 0.54 |
92 | Selin-11-en-4-α-ol | 58.58 | 1658 | 1647 | 2.74 | |
93 | 7-epi-α-Eudesmol | 58.73 | 1662 | 1650 | 0.03 | |
94 | Campherenone | 59.58 | 1665 | 0.10 | ||
95 | Amorpha-4,9-dien-2-ol | 60.69 | 1685 | 0.39 | ||
96 | Juniper camphor | 60.74 | 1686 | 0.35 | ||
97 | 5-Hydroxy-cis-Calamenene | 61.70 | 1713 | 1703 | 0.05 | |
98 | β-Bisabolenal | 62.29 | 1768 | 1714 | 4.03 | |
99 | (6S)-2,10-Bisaboladien-1-one | 63.16 | 1730 | 0.05 | ||
100 | Aristol-9-en-8-one | 65.04 | 1765 | 0.04 | ||
101 | α-Eudesmol acetate | 65.32 | 1794 | 1770 | 0.07 | |
102 | 2,7(14),10-Bisabolatrien-1-ol-4-one | 68.57 | 1844 | 1832 | 0.08 | |
103 | 11-acetoxy-Eudesman-4-α-ol isomer | 71.40 | 1888 | 0.03 | ||
104 | 2,7(14),10-Bisabolatrien-1-ol-4-one isomer | 71.92 | 1898 | 1.95 | ||
105 | 11-acetoxy-Eudesman-4-α-ol | 73.11 | 1922 | 0.15 | ||
Diterpene hydrocarbons | ||||||
106 | Sandaracopimara-8(14),15-diene | 74.48 | 1968 | 1950 | 0.17 | |
107 | Phyllocladene | 77.20 | 2016 | 2005 | 0.04 | 0.03 |
108 | Kaur-16-ene | 78.30 | 2042 | 2030 | 0.03 | |
109 | Abitatriene | 78.65 | 2055 | 2036 | 0.13 | 0.13 |
110 | Abitadiene | 80.16 | 2087 | 2070 | 0.49 | |
Oxygenated diterpenes | ||||||
111 | Manool oxide | 75.78 | 1987 | 1977 | 0.02 | |
112 | Sandaracopimarinal | 84.53 | 2184 | 2164 | 3.03 | 0.09 |
113 | Phyllocladanol | 85.82 | 2209 | 2193 | 1.68 | 0.26 |
114 | Sandaracopimarinol isomer | 87.46 | 2233 | 0.05 | ||
115 | Sandaracopimarinol | 88.30 | 2269 | 2253 | 5.48 | |
116 | 6,7-Dehydroferruginol | 90.21 | 2315 | 2298 | 0.93 | 0.62 |
117 | trans-Ferruginol | 90.37 | 2331 | 2301 | 3.64 | 0.90 |
118 | trans-Ferruginol acetate | 91.26 | 2363 | 2323 | 0.02 | |
Identified components (%) | 95.71 | 96.92 |
Samples | EC50, µg/mL | ||
---|---|---|---|
DPPH | ABTS | BCBA | |
Sawdust EO | 1107 ± 94 b | 261 ± 6 b | 1764 ± 388 c |
Resin-rich bark EO | 1275 ± 347 b | 498 ± 20 c | 662 ± 37 b |
Gallic acid | 1.93 ± 0.09 a | 1.13 ± 0.01 a | 38 ± 5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.; Arruda, F.; Wortham, T.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Lima, E. Chemical Compositions and In Vitro Antioxidant Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae). Antioxidants 2024, 13, 728. https://doi.org/10.3390/antiox13060728
Lima A, Arruda F, Wortham T, Janeiro A, Rodrigues T, Baptista J, Lima E. Chemical Compositions and In Vitro Antioxidant Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae). Antioxidants. 2024; 13(6):728. https://doi.org/10.3390/antiox13060728
Chicago/Turabian StyleLima, Ana, Filipe Arruda, Tanner Wortham, Alexandre Janeiro, Tânia Rodrigues, José Baptista, and Elisabete Lima. 2024. "Chemical Compositions and In Vitro Antioxidant Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae)" Antioxidants 13, no. 6: 728. https://doi.org/10.3390/antiox13060728
APA StyleLima, A., Arruda, F., Wortham, T., Janeiro, A., Rodrigues, T., Baptista, J., & Lima, E. (2024). Chemical Compositions and In Vitro Antioxidant Activities of the Essential Oils of Sawdust and Resin-Rich Bark from Azorean Cryptomeria japonica (Cupressaceae). Antioxidants, 13(6), 728. https://doi.org/10.3390/antiox13060728