Antioxidant and Stress Resistance Properties of Flavonoids from Chinese Sea Buckthorn Leaves from the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Preparation of Leaf Flavonoids
2.3. Identification of FCL Flavonoids
2.4. Quantification of the Major Flavonoid Components of FCL
2.5. Determination of Antioxidant Activity In Vitro
2.6. Determination of FCL Stress Resistance
2.6.1. Heat and Oxidative Stress Assays
2.6.2. Determination of Reactive Oxygen Species (ROS) Levels
2.6.3. Determination of Malondialdehyde (MDA) Content and Superoxide Dismutase (SOD) and Catalase (CAT) Activities
2.6.4. RNA Extraction and Determination of Gene Expression
2.6.5. Detection of Nuclear Translocation of DAF-16::GFP and SKN-1::GFP
2.6.6. Determination of GFP Fluorescence Intensity in Transgenic Strains
2.7. Data Statistics
3. Results
3.1. Identification of Flavonoids in FCL
3.2. Quantification of Major Flavonoids
3.3. Antioxidant Activity of FCL In Vitro
3.4. The Effect of FCL on the Stress Resistance in C. elegans
3.4.1. Effects of FCL Treatment on the Ability of C. elegans to Resist Oxidative and Heat Stress
3.4.2. Effects of FCL Treatment on ROS, MDA Levels, and SOD and CAT Activities
3.5. The Molecular Mechanism of FCL Regulation of Stress Resistance in C. elegans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, T.T.; Wei, J.; Zhao, J.M.; Jiang, Y.M.; Bi, Y.; George, G. Comparative assessment of functional components and antioxidant activities between Hippophae rhamnoides ssp. sinensis and H. tibetana Berries in Qinghai-Tibet Plateau. Foods 2023, 12, 341. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.X.; Zhang, Y.; Qi, M.D.; Zang, Q.; Liu, S.; Li, M.H.; Liu, Y.G.; Liu, Y. Rapid analysis of compounds in leaves of Chinese seabuckthorn and Tibetan seabuckthorn by UPLC/Q-TOF-MS. Chin. J. Chin. Mater. Med. 2016, 41, 1461–1467. [Google Scholar] [CrossRef]
- Zheng, J.; Kallio, H.; Yang, B. Sea buckthorn (Hippophaë rhamnoides ssp. rhamnoides) berries in Nordic environment: Compositional response to latitude and weather conditions. J. Agric. Food Chem. 2016, 64, 5031–5044. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xiao, P.; Kuang, Y.; Hao, J.; Huang, T.; Liu, E. Flavonoids from sea buckthorn: A review on phytochemistry, pharmacokinetics and role in metabolic diseases. J. Food Biochem. 2021, 45, e13724. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Su, T.T.; Su, H.L.; Jiang, Y.M.; Li, J.X.; Bi, Y. Comparative assessment of phenolics, antioxidant and antiproliferative activities between Hippophae rhamnoides ssp. sinensis and H. tibetana leaf in Qinghai-Tibet Plateau. Food Biosci. 2022, 46, 101507. [Google Scholar] [CrossRef]
- Kang, Y.; Mao, Y.N.; Wang, F.F.; Wu, W.Q.; Liu, Y. Analysis of chemical components in leaves of Hippophae rhamnoides by UPLC-LTQ Orbitrap MS. Mod. Chin. Med. 2018, 20, 1340–1346, 1366. [Google Scholar] [CrossRef]
- Zheng, W.; Bai, H.; Han, S.; Bao, F.; Zhang, K.; Sun, L.; Du, H.; Yang, Z. Analysis on the constituents of branches, berries, and leaves of Hippophae rhamnoides L. by UHPLC-ESI-QTOF-MS and their anti-inflammatory activities. Nat. Prod. Commun. 2019, 14, 1934578X19871404. [Google Scholar] [CrossRef]
- Ma, X.; Laaksonen, O.; Zheng, J.; Yang, W.; Trépanier, M.; Kallio, H.; Yang, B. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Food Chem. 2016, 200, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.F.; Su, J.; Nian, H.; Shen, H.; Zhai, X.; Xin, H.L.; Qin, L.P.; Han, T. Chemical fingerprint and quantitative analysis of flavonoids for quality control of Sea buckthorn leaves by HPLC and UHPLC-ESI-QTOF-MS. J. Funct. Foods 2017, 37, 513–522. [Google Scholar] [CrossRef]
- Yogendra Kumar, M.S.; Tirpude, R.J.; Maheshwari, D.T.; Bansal, A.; Misra, K. Antioxidant and antimicrobial properties of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves in vitro. Food Chem. 2013, 141, 3443–3450. [Google Scholar] [CrossRef]
- Sytařová, I.; Orsavová, J.; Snopek, L.; Mlček, J.; Byczyński, Ł.; Mišurcová, L. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chem. 2020, 310, 125784. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.J.; Lee, H.; Yoo, G.; Kim, D.; Kim, Y.; Choi, I.; Cha, Y.; Ha, S.K. Hippophae rhamnoides L. leaf extracts alleviate diabetic nephropathy via attenuation of advanced glycation end product-induced oxidative stress in db/db mice. Food Funct. 2023, 14, 8396–8408. [Google Scholar] [CrossRef] [PubMed]
- Yogendra Kumar, M.S.; Dutta, R.; Prasad, D.; Misra, K. Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chem. 2011, 127, 1309–1316. [Google Scholar] [CrossRef]
- Vayndorf, E.M.; Lee, S.S.; Liu, R.H. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J. Funct. Foods 2013, 5, 1235–1243. [Google Scholar] [CrossRef]
- Zhang, M.W.; Zhng, R.F.; Zhang, F.X.; Liu, R.H. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J. Agric. Food Chem. 2010, 58, 7580–7587. [Google Scholar] [CrossRef] [PubMed]
- Adom, K.K.; Liu, R.H. Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both hydrophilic and lipophilic antioxidants. J. Agric. Food Chem. 2005, 53, 6572–6580. [Google Scholar] [CrossRef]
- Hansen, M.; Hsu, A.L.; Dillin, A.; Kenyon, C. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLOS Genet. 2005, 1, 119–128. [Google Scholar] [CrossRef]
- Chen, Y.; Onken, B.; Chen, H.; Xiao, S.; Liu, X.; Driscoll, M.; Cao, Y.; Huang, Q. Mechanism of longevity extension of Caenorhabditis elegans induced by pentagalloyl glucose isolated from eucalyptus leaves. J. Agric. Food Chem. 2014, 62, 3422–3431. [Google Scholar] [CrossRef]
- Liu, M.; Li, N.; Lu, X.; Shan, S.; Gao, X.; Cao, Y.; Lu, W. Sweet tea (Rubus suavissmus S. Lee) polysaccharides promote the longevity of Caenorhabditis elegans through autophagy-dependent insulin and mitochondrial pathways. J. Food Biochem. 2022, 207, 883–892. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, X.; Wu, Y.; Wang, Z.; Zhou, N.; Li, J.; Shang, X.; Lin, P. Chemical characterization of the antioxidant and α-glucosidase inhibitory active fraction of Malus transitoria leaves. Food Chem. 2022, 386, 132863. [Google Scholar] [CrossRef]
- Zhao, M.; Linghu, K.; Xiao, L.; Hua, Y.; Zhao, G.; Chen, Q.; Xiong, S.; Shen, L.; Yu, J.; Hou, X.; et al. Anti-inflammatory/anti-oxidant properties and the UPLC-QTOF/MS-based metabolomics discrimination of three yellow camellia species. Food Res. Int. 2022, 160, 111628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, W.; Cao, M.; Kong, D. Three new flavonoids from the seeds of Hippophae rhamnoides subsp. Sinensis. J. Asian Nat. Prod. Res. 2012, 12, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.S.; Li, C.; Chen, Q.; Xie, X.; Fu, X.; Chen, C.; Huang, Q.; Huang, Z.B.; Dong, H. Identification of polyphenols from Rosa roxburghii Tratt pomace and evaluation of in vitro and in vivo antioxidant activity. Food Chem. 2022, 377, 131922. [Google Scholar] [CrossRef]
- Zhang, C.; Xin, X.; Zhang, J.; Zhu, S.; Niu, E.; Zhou, Z.; Liu, D. Comparative evaluation of the phytochemical profiles and antioxidant potentials of olive leaves from 32 cultivars grown in China. Molecules 2022, 27, 1292. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Tan, W.; Feng, X.; Feng, K.; Zhong, W.; Liao, C.; Liu, Y.; Li, S.; Hu, W. Protective effect of flavonoids from mulberry Leaf on AAPH-Induced oxidative damage in sheep erythrocytes. Molecules 2022, 27, 7625. [Google Scholar] [CrossRef]
- Shumoy, H.; Gabaza, M.; Vandevelde, J.; Raes, K. Soluble and bound phenolic contents and antioxidant capacity of tef injera as affected by traditional fermentation. J. Food Compos. Anal. 2017, 58, 52–59. [Google Scholar] [CrossRef]
- Jiang, S.; Deng, N.; Zheng, B.; Li, T.; Liu, R.H. Rhodiola extract promotes longevity and stress resistance of Caenorhabditis elegans via DAF-16 and SKN-1. Food Funct. 2021, 12, 4471–4483. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y.; Gu, Z.; Li, L.; Liu, Y.; Wang, L.; Su, L. p38 MAPK-MK2 pathway regulates the heat-stress-induced accumulation of reactive oxygen species that mediates apoptotic cell death in glial cells. Oncol. Lett. 2018, 15, 775–782. [Google Scholar] [CrossRef]
- Kampkötter, A.; Nkwonkam, C.G.; Zurawski, R.F.; Timpel, C.; Chovolou, Y.; Wätjen, W.; Kahl, R. Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology 2007, 234, 113–123. [Google Scholar] [CrossRef]
- Wang, J.; Gong, H.; Zou, H.; Liang, L.; Wu, X. Isorhamnetin prevents H2O2-induced oxidative stress in human retinal pigment epithelial cells. Mol. Med. Rep. 2017, 17, 648–652. [Google Scholar] [CrossRef]
- Maheshwari, D.T.; Yogendra Kumar, M.S.; Verma, S.K.; Singh, V.K.; Singh, S.N. Antioxidant and hepatoprotective activities of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Toxicol. 2011, 49, 2422–2428. [Google Scholar] [CrossRef]
- Jin, S.; Li, D.; Shan, L.; Han, L.; Liu, D.; Huang, Z.; Huang, B.; Yan, C. Ethanol extracts of Panax notoginseng increase lifespan and protect against oxidative stress in Caenorhabditis elegans via the insulin/IGF-1 signaling pathway. J. Funct. Foods 2019, 58, 218–226. [Google Scholar] [CrossRef]
- Tullet, J.M.; Hertweck, M.; An, J.H.; Baker, J.; Hwang, J.Y.; Liu, S.; Oliveira, R.P.; Baumeister, R.; Blackwell, T. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 2008, 132, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Zheng, Z.; Huang, L.; Jin, Z.; Li, S.; Wu, G.; Luo, H. Flavonol glycoside complanatoside A requires FOXO/DAF-16, NRF2/SKN-1, and HSF-1 to improve stress resistances and extend the life span of Caenorhabditis elegans. Front. Pharmacol. 2022, 13, 931886. [Google Scholar] [CrossRef]
- Dhondt, I.; Petyuk, V.A.; Cai, H.; Vandemeulebroucke, L.; Vierstraete, A.; Smith, R.D.; Depuydt, G.; Braeckman, B.P. FOXO/DAF-16 activation slows down turnover of the majority of proteins in C. elegans. Cell Rep. 2016, 16, 3028–3040. [Google Scholar] [CrossRef]
- Wan, Q.; Fu, X.; Meng, X.; Luo, Z.; Dai, W.; Yang, J.; Wang, C.; Wang, H.; Zhou, Q. Hypotaurine promotes longevity and stress tolerance via the stress response factors DAF-16/FOXO and SKN-1/NRF2 in Caenorhabditis elegans. Food Funct. 2020, 11, 347–357. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Chen, H.; Zhou, A.; Song, M.; Zhong, Q.; Chen, H.; Cao, Y. Identification of flavoanoids from finger citron and evaluation on their antioxidative and antiaging activities. Front. Nutr. 2020, 7, 584900. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, X.; Deng, J.; Ouyang, D.; Wang, D.; Liang, Y.; Chen, Y.; Sun, Y. Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chem. 2020, 332, 127429. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Muniyappa, H. Age-dependent mitochondrial energy dynamics in the mice heart: Role of superoxide dismutase-2. Exp. Gerontol. 2013, 48, 947–959. [Google Scholar] [CrossRef]
- Rizvi, S.I.; Maurya, P.K. Alterations in antioxidant enzymes during aging in humans. Mol. Biotechnol. 2007, 37, 58–61. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Qin, Z.C.; Sun, Y.Y.; Chen, Y.S.; Chen, W.B.; Wang, H.G.; An, D.; Sun, D.; Liu, Y.Q. Genistein promotes anti-heat stress and antioxidant effects via the coordinated regulation of IIS, HSP, MAPK, DR, and mitochondrial pathways in Caenorhabditis elegans. Antioxidants 2023, 12, 125. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, B.; Li, T.; Liu, R.H. Hypsizygus marmoreus extract exhibited antioxidant effects to promote longevity and stress resistance in Caenorhabditis elegans. Food Funct. 2023, 14, 9743–9754. [Google Scholar] [CrossRef]
Compounds | Rt/min | Formula | [M-H]− m/z | Fragment Ion m/z | Identification |
---|---|---|---|---|---|
Flavonols | |||||
3 | 2.806 | C33H40O21 | 771.1972 | 609.1447, 463.0854, 301.0349, 178.9999, 151.0043 | Quercetin-3-O-rutinoside-7-O-glucoside |
4 | 2.865 | C27H30O17 | 625.1401 | 463.0851, 301.0346, 299.0196, 178.9962, 151.0035 | Quercetin-3,7-O-diglucoside |
5 | 3.221 | C33H40O21 | 771.1958 | 625.1390, 447.0879, 301.0337, 300.0259, 271.0252, 151.0034 | Quercetin-3-O-sophoroside-7-O-rhamnoside |
6 | 4.118 | C33H40O20 | 755.2014 | 609.1433, 285.0393, 431.0911, 255.0302 | Kaempferol-3-O-sophoroside-7-O-rhamnoside |
8 | 4.473 | C28H32O17 | 639.1553 | 477.1011, 315.0500, 301.0300, 300.0262, 271.0249 | Isorhamnetin-3,7-O-diglucoside |
9 | 4.499 | C34H42O21 | 785.2126 | 623.1602, 477.0988, 315.0507, 300.0267, 151.0052 | Isorhamnetin-3-O-rutinoside-7-O-glucoside |
10 | 4.845 | C34H42O21 | 785.2111 | 639.1535, 461.1051, 315.0500, 300.0283, 151.0039 | Isorhamnetin-3-O-sophoroside-7-O-rhamnoside |
11 | 7.443 | C27H30O16 | 609.1443 | 447.0865, 301.0344, 300.0233, 299.0186 | Quercetin-3-O-glucoside-7-O-rhamnoside |
12 | 7.597 | C33H40O20 | 755.2022 | 447.0865, 301.0344, 300.0233, 271.0248, 151.0039 | Quercetin-3-O-rutinoside-7-O-rhamnoside |
13 | 7.604 | C27H30O17 | 625.1401 | 301.0302, 300.0271, 271.0239, 255.0305, 151.0032 | Quercetin-3-O-sophoroside |
14 | 8.069 | C27H30O17 | 625.1401 | 317.0271, 287.0191, 271.0237, 151.0034, 125.0231 | Myricetin-3-O-rutinoside |
15 | 8.230 | C33H40O20 | 755.2022 | 593.1499, 447.0921, 285.0376, 271.0198 | Kaempferol-3-O-rutinoside-7-O-glucoside |
16 | 8.493 | C44H50O25 | 977.2535 | 832.2069, 771.1926, 625.1458, 545.0402, 447.0858, 301.0302, 299.0186 | Quercetin-3-O-(-6-O-sinapoyl)-sophoroside-7-O-rhamnoside |
17 | 8.603 | C21H20O13 | 479.0819 | 317.0246, 316.0197, 287.0184, 271.0246, 214.0274 | Myricetin-3-O-galactoside |
18 | 8.802 | C43H48O24 | 947.2414 | 801.1856, 771.2014, 625.1439, 447.0885, 301.0365, 271.0212 | Quercetin-3-O-sophoroside-O-glucuronide-7-O-rhamnoside |
19 | 9.017 | C33H40O19 | 739.2073 | 593.1483, 285.0378, 284.0321, 125.0245 | Kaempferol-3-O-rutinoside-7-O-rhamnoside |
20 | 9.068 | C28H32O16 | 623.1603 | 477.0993, 461.1008, 315.0495, 285.0375, 275.0158 | Isorhamnetin-glucoside-rhamnoside |
21 | 9.136 | C27H30O15 | 593.1511 | 447.0914, 431.0927, 285.0400, 255.0299 | Kaempferol-3-O-glucoside-7-O-rhamnoside |
22 | 9.212 | C34H42O20 | 769.2179 | 623.1594, 315.0474, 299.011, 285.0354 | Isorhamnetin-3-O-rutinoside-7-O-rhamnoside |
23 | 9.254 | C27H30O16 | 609.1443 | 429.0860, 285.0367, 255.0325, 227.0374, 151.0038 | Kaempferol-3-O-sophoroside |
24 | 9.423 | C34H42O20 | 769.2179 | 315.0490, 299.0187 | 7-Methylquercetin-3-galactoside-6″-rhamnoside-3‴-rhamnoside |
25 | 9.559 | C45H52O25 | 991.2686 | 845.2133, 639.1541, 477.1049, 315.0484, 300.0202, 275.0174 | Isorhamnetin-3-O-(-6-O-sinapoyl)-sophoroside-7-O-rhamnoside |
26 | 9.601 | C28H32O16 | 623.1598 | 477.1057, 461.1088, 315.0502, 271.0226, 183.0470 | Isorhamnetin 3-O-glucoside-7-O-rhamnoside |
27 | 10.016 | C43H48O23 | 931.2484 | 785.1874, 609.1463, 465.0655, 285.0388, 125.0253 | Kaempferol-3-O-sophoroside-O-glucuronide-7-O-rhamnoside |
28 | 10.024 | C44H50O24 | 961.2598 | 815.2039, 639.1500, 461.1050, 485.01212, 315.0480, 300.0268, 135.0301 | Isorhamnetin-3-O-sophoroside-O-glucuronide-7-O-rhamnoside |
29 | 10.253 | C27H30O15 | 593.1500 | 461.1059, 447.0907, 315.0506, 300.0260, 285.0360, 270.0138 | Isorhamnetin-3-O-arabinoside-7-O-rhamnoside |
30 | 10.295 | C27H30O16 | 609.1441 | 301.034, 300.0274, 271.0250, 178.9991, 151.0035 | Quercetin-3-O-rutinoside |
31 | 10.870 | C27H30O15 | 593.1512 | 447.0885, 315.0537, 300.0289, 285.0412, 227.0363 | Kaempferol-3-O-galactoside-7-O-rhamnoside |
32 | 10.956 | C28H32O17 | 639.1553 | 331.0440, 330.0378, 317.0239, 315.0140, 287.0204, 271.0237, 215.0364, 178.9997, 151.0032 | Myricetin-3′-methyl-3-O-rutinoside |
33 | 11.051 | C21H20O12 | 463.0876 | 301.0299, 272.0293, 255.0310, 217.0233, 151.0035 | Quercetin-3-O-galactoside |
34 | 11.522 | C21H20O12 | 463.0876 | 301.0324, 271.0248, 255.0299, 227.0355, 151.0042 | Quercetin-3-O-glucoside |
35 | 13.519 | C27H30O15 | 593.1495 | 285.0394, 255.0296, 227.0355 | Kaempferol-3-O-rutinoside |
36 | 14.314 | C28H32O16 | 623.1598 | 315.0502, 301.0308, 285.0406, 271.0252, 255.0290 | Isorhamnetin-3-O-rutinoside |
38 | 14.957 | C21H20O11 | 447.0918 | 285.0380, 255.0290, 227.0347 | Kaempferol-3-O-glucoside |
39 | 15.550 | C23H24O13 | 507.1131 | 344.0537, 301.0355, 287.0582, 273.0399, 258.0168 | Syringetin-3-O-galactoside |
40 | 15.609 | C22H22O12 | 477.1024 | 315.0502, 300.0266, 285.0392, 271.0251, 151.0042 | Isorhamnetin-3-O-glucoside |
41 | 16.278 | C22H22O12 | 477.1028 | 315.0503, 300.0208, 285.0241, 299.0242 | Isorhamnetin-3-O-galactoside |
42 | 17.466 | C15H10O8 | 317.0296 | 178.09979, 151.0038, 137.0243, 107.0138, 83.0145 | Myricetin |
44 | 18.63 | C21H20O11 | 447.0921 | 301.034, 300.0262, 151.0029, 121.0295, 107.0133 | Quercetin-7-O-rhamnoside |
48 | 20.672 | C43H54O22 | 921.2998 | 759.2463, 722.0562, 447.0300, 286.0375, 285.0362 | 3-O-β-D-sophorosyl-kaempferol-7-O-{3-O-[2(E)-2,6-dimethyl-6-hydroxy-2,7-octadienoyl]}-α-L-rhamnoside |
50 | 22.049 | C21H20O10 | 431.0980 | 344.0179, 285.0403, 284.0321, 257.0436, 254.9958 | Kaempferol-rhamnoside |
51 | 22.442 | C27H30O15 | 593.1291 | 487.0871, 447.0906, 285.0390, 284.0328, 255.0297, 151.0014 | Kaempferol-3-O-glucoside-7-O-rhamnoside |
52 | 22.624 | C22H22O11 | 461.1089 | 431.0113, 315.0536, 299.0167, 287.0528, 271.0239, 107.0142 | Isorhamnetin-rhamnoside |
53 | 22.692 | C15H10O7 | 301.0350 | 178.9981, 163.0049, 151.0039, 107.0139, 65.0032 | Quercetin |
55 | 25.436 | C37H44O17 | 759.2483 | 597.2049, 596.1804, 447.0926, 358.8980, 285.0427 | 3-O-β-D-glucosyl-kaempferol-7-O-{2-O-[2(E)-2,6-dimethyl-6-hydroxy-2,7-octadienoyl]}-α-L-rhamnoside |
59 | 28.803 | C15H10O6 | 285.0399 | 241.0512, 229.0497, 154.0426, 107.0141, 93.0356, 63.0365 | Kaempferol |
60 | 28.201 | C16H12O7 | 315.0503 | 301.0300, 300.0272, 271.0249, 227.0398, 151.0044, 107.0134 | Isorhamnetin |
New Flavonoids | |||||
43 | 17.64 | C43H54O23 | 937.2957 | 773.8043, 629.1837, 609.1457, 457.7284, 447.1069, 301.0346, | Quercetin-3-O-rutinoside-7-O-[2(E)-2,6-dimethyl-6-hydroxy-2,7-octadienoyl(1→6)]-glucoside |
45 | 19.129 | C44H56O23 | 951.3107 | 767.2035, 623.1589, 459.0922, 315.0515, 313.0312 | Isorhamnetin-3-O-rutinoside-7-O-[2(E)-2,6-dimethyl-6-hydroxy-2,7-octadienoyl(1→6)]-glucoside |
46 | 19.519 | C38H46O19 | 805.2537 | 643.1941, 477.1037, 458.5028, 315.0494, 313.0336, 299.0067, | Isorhamnetin-3-O-glucoside-7-O-[2(E)-2,6-dimethyl-6-hydroxy-2,7-octadienoyl(1→6)]-glucoside |
47 | 19.578 | C43H54O23 | 937.2957 | 775.2385, 668.9043, 609.1446, 463.0873, 447.0838, 301.0346, | Quercetin-3-O-sophoroside-7-O-[2(E)-2,6-dimethyl-6-hydroxy-2,7-octadienoyl(1→2)]-rhamnoside |
49 | 20.911 | C44H56O23 | 951.3107 | 789.2574, 623.1507, 477.1026, 315.0499, 299.0190 | Isorhamnetin-3-O-sophoroside-7-O-[2(E)-2,6-dimethyl-6-hydroxy-2,7-octadienoyl(1→2)]-rhamnoside |
56 | 25.552 | C38H46O18 | 789.2582 | 627.2021, 477.0975, 315.0502, 300.0324, 299.0218, 286.0425 | Isorhamnetin-3-O-glucoside-7-O-[2(E)-2,6-dimethyl-6-hydroxy-2,7-octadienoyl(1→2)]-rhamnoside |
Flavanols | |||||
1 | 2.595 | C15H14O7 | 305.0667 | 219.0669, 164.0113, 139.0417, 125.0251 | Gallocatechin |
2 | 2.647 | C15H14O7 | 305.0667 | 219.0658, 164.0116, 139.0404, 125.0250 | Epigallocatechin |
7 | 4.348 | C15H14O6 | 289.0715 | 245.0813, 219.0279, 203.0713, 125.0239, 109.0298 | Epicatechin |
Flavane | |||||
58 | 25.863 | C15H12O5 | 271.0606 | 151.0035, 119.0497, 107.0144, 83.0138, 63.0246 | Naringenin |
Unknown | |||||
37 | 14.907 | C43H48O24 | 947.2414 | 783.6926, 639.1375, 609.1426, 486.9109, 301.0346, 285.3524, | Unidentified |
54 | 23.800 | C37H44O18 | 775.244 | 612.1838, 510.0540, 463.0849, 301.0333, 299.0196 | Unidentified |
57 | 25.713 | C38H46O18 | 789.2582 | 627.1983, 477.1037, 315.0500, 299.0164 | Unidentified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Jiang, Y.; Bi, Y.; Wei, J. Antioxidant and Stress Resistance Properties of Flavonoids from Chinese Sea Buckthorn Leaves from the Qinghai–Tibet Plateau. Antioxidants 2024, 13, 763. https://doi.org/10.3390/antiox13070763
Zhao J, Jiang Y, Bi Y, Wei J. Antioxidant and Stress Resistance Properties of Flavonoids from Chinese Sea Buckthorn Leaves from the Qinghai–Tibet Plateau. Antioxidants. 2024; 13(7):763. https://doi.org/10.3390/antiox13070763
Chicago/Turabian StyleZhao, Jinmei, Yumei Jiang, Yang Bi, and Juan Wei. 2024. "Antioxidant and Stress Resistance Properties of Flavonoids from Chinese Sea Buckthorn Leaves from the Qinghai–Tibet Plateau" Antioxidants 13, no. 7: 763. https://doi.org/10.3390/antiox13070763
APA StyleZhao, J., Jiang, Y., Bi, Y., & Wei, J. (2024). Antioxidant and Stress Resistance Properties of Flavonoids from Chinese Sea Buckthorn Leaves from the Qinghai–Tibet Plateau. Antioxidants, 13(7), 763. https://doi.org/10.3390/antiox13070763