Antioxidant Profile, Amino Acids Composition, and Physicochemical Characteristics of Cherry Tomatoes Are Associated with Their Color
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Physicochemical Parameters
2.4. Amino Acids
2.5. Secondary Metabolites
2.6. Antioxidant Activities
2.7. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Amino Acids
3.3. Secondary Metabolites
3.4. Antioxidant Activities
3.5. Principal Component and Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ercolano, M.R.; Di Donato, A.; Sanseverino, W.; Barbella, M.; De Natale, A.; Frusciante, L. Complex migration history is revealed by genetic diversity of tomato samples collected in Italy during the eighteenth and nineteenth centuries. Hortic. Res. 2020, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Pinela, J.; Petropoulos, S.A.; Barros, L. Editorial: Advances in tomato and tomato compounds research and technology. Front. Nutr. 2022, 9, 1018498. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Food and Agriculture Organization of the United Nations Cropping Database. 2021. Available online: http://faostat3.fao.org/home/index.html (accessed on 20 November 2023).
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An extensive review of the associated health impacts of tomatoes and factors that can affect their cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, S.; Choi, H.R.; Baek, M.W.; Cheol, L.H.; Kwak, K.W.; Park, D.S.; Solomon, T.; Jeong, C.S. Antioxidant properties, γ-aminobutyric acid (GABA) content, and physicochemical characteristics of tomato cultivars. Agronomy 2021, 11, 1204. [Google Scholar] [CrossRef]
- Chichili, G.R.; Nohr, D.; Frank, J.; Flaccus, A.; Fraser, P.D.; Enfissi, E.M.A.; Biesalski, H.K. Protective effects of tomato extract with elevated beta-carotene levels on oxidative stress in ARPE-19 cells. Br. J. Nutr. 2006, 96, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, I.; Gan, S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A Review. Foods 2021, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- de Bie, T.H.; Balvers, M.G.J.; de Vos, R.C.H.; Witkamp, R.F.; Jongsma, M.A. The influence of a tomato food matrix on the bioavailability and plasma kinetics of oral gamma-aminobutyric acid (GABA) and its precursor glutamate in healthy men. Food Funct. 2022, 13, 8399–8410. [Google Scholar] [CrossRef] [PubMed]
- de Bie, T.H.; de Vos, R.C.H.; van Eekelen, H.D.L.M.; Millenaar, F.F.; van de Wiel, C.K.M.; Allefs, J.J.H.M.; Balvers, M.G.J.; Witkamp, R.F.; Jongsma, M.A. Screening for GABA and glutamic acid in tomato and potato genotypes and effects of domestic cooking. J. Food Compos. Anal. 2023, 122, 105416. [Google Scholar] [CrossRef]
- Akihiro, T.; Koike, S.; Tani, R.; Tominaga, T.; Watanabe, S.; Iijima, Y.; Aoki, K.; Shibata, D.; Ashihara, H.; Matsukura, C.; et al. Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol. 2008, 49, 1378–1389. [Google Scholar] [CrossRef] [PubMed]
- Rambla, J.L.; Tikunov, Y.M.; Monforte, A.J.; Bovy, A.G.; Granell, A. The expanded tomato fruit volatile landscape. J. Exp. Bot. 2013, 65, 4613–4623. [Google Scholar] [CrossRef]
- Morelli, C.F.; Cutignano, A.; Speranza, G.; Abbamondi, G.R.; Rabuffetti, M.; Iodice, C.; De Prisco, R.; Tommonaro, G. Taste compounds and polyphenolic profile of tomato varieties cultivated with beneficial microorganisms: A chemical investigation on nutritional properties and sensory qualities. Biomolecules 2023, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, S.; Park, D.S.; Solomon, T.; Choi, H.R.; Jeong, C.S. Maturity stages affect nutritional quality and storability of tomato cultivars. CyTA J. Food 2019, 17, 87–95. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Seo, M.H.; Hwang, I.G.; Kim, S.H.; Choi, H.R.; Jeong, C.S. Prediction of lycopene and β-carotene in tomatoes by portable chroma-meter and VIS/NIR spectra. Postharvest Biol. Technol. 2018, 136, 50–56. [Google Scholar] [CrossRef]
- Lenucci, M.S.; Cadinu, D.; Taurino, M.; Piro, G.; Dalessandro, G. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 2006, 54, 2606–2613. [Google Scholar] [CrossRef]
- Baek, M.W.; Choi, H.R.; Lee, H.C.; Lee, J.H.; Lee, O.H.; Hong, J.S.; Jeong, C.S.; Tilahun, S. Preharvest methyl jasmonate and salicylic acid treatments improve the nutritional qualities and postharvest storability of tomato. Sci. Hortic. 2023, 321, 112332. [Google Scholar] [CrossRef]
- Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids. Amino Acids 2000, 1100, 1–10. [Google Scholar]
- Baek, M.W.; Choi, H.R.; Jae, L.Y.; Kang, H.M.; Lee, O.H.; Jeong, C.S.; Tilahun, S. Preharvest treatment of methyl jasmonate and salicylic acid increase the yield, antioxidant activity and GABA content of tomato. Agronomy 2021, 11, 2293. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, S.; Baek, M.W.; An, K.-S.; Choi, H.R.; Lee, J.H.; Hong, J.S.; Jeong, C.S. Radish microgreens produced without substrate in a vertical multi-layered growing unit are rich in nutritional metabolites. Front. Plant Sci. 2023, 14, 1236055. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, X.; Zhang, Y.; Zhou, F.; Zhu, P. Simultaneous changes in anthocyanin, chlorophyll, and carotenoid contents produce green variegation in pink–leaved ornamental kale. BMC Genom. 2021, 22, 455. [Google Scholar] [CrossRef]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef]
- Baek, M.W.; Choi, H.R.; Solomon, T.; Jeong, C.S.; Lee, O.-H.; Tilahun, S. Preharvest methyl jasmonate treatment increased the antioxidant activity and glucosinolate contents of hydroponically grown pak choi. Antioxidants 2021, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.E.; Choi, S.I.; Han, X.; Men, X.; Jang, G.W.; Kwon, H.Y.; Kang, S.R.; Han, J.S.; Lee, O.H. Radical scavenging-linked anti-adipogenic activity of aster scaber ethanolic extract and its bioactive compound. Antioxidants 2020, 9, 1290. [Google Scholar] [CrossRef] [PubMed]
- Saladié, M.; Matas, A.J.; Isaacson, T.; Jenks, M.A.; Goodwin, S.M.; Niklas, K.J.; Xiaolin, R.; Labavitch, J.M.; Shackel, K.A.; Fernie, A.R.; et al. A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol. 2007, 144, 1012–1028. [Google Scholar] [CrossRef] [PubMed]
- Rached, M.; Pierre, B.; Yves, G.; Matsukura, C.; Ariizumi, T.; Ezura, H.; Fukuda, N. Differences in blossom-end rot resistance in tomato cultivars is associated with total ascorbate rather than calcium concentration in the distal end part of fruits per se. Hortic. J. 2018, 87, 372–381. [Google Scholar] [CrossRef]
- Thor, K. Calcium—Nutrient and messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.; Barrett, D.M. Evaluation of processing tomatoes from two consecutive growing seasons: Quality attributes, peelability and yield. J. Food Process. Preserv. 2006, 30, 20–36. [Google Scholar] [CrossRef]
- Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef]
- Oltman, A.E.; Jervis, S.M.; Drake, M.A. Consumer attitudes and preferences for fresh market tomatoes. J. Food Sci. 2014, 79, S2091–S2097. [Google Scholar] [CrossRef]
- Choi, H.R.; Baek, M.W.; Cheol, L.H.; Jeong, C.S.; Tilahun, S. Changes in metabolites and antioxidant activities of green ‘Hayward’ and gold ‘Haegeum’ kiwifruits during ripening with ethylene treatment. Food Chem. 2022, 384, 132490. [Google Scholar] [CrossRef]
- Santulli, G.; Kansakar, U.; Varzideh, F.; Mone, P.; Jankauskas, S.S.; Lombardi, A. Functional role of taurine in aging and cardiovascular health: An updated overview. Nutrients 2023, 15, 4236. [Google Scholar] [CrossRef] [PubMed]
- Leitzmann, C. Characteristics and health benefits of phytochemicals. Forsch. Komplementarmedizin 2016, 23, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-López, A.; Yahia, E.M. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry. J. Food Sci. Technol. 2014, 51, 2720–2726. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Blesso, C.N. Antioxidant properties of anthocyanins and their mechanism of action in atherosclerosis. Free Radic. Biol. Med. 2021, 172, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Chae, Y.; Lee, J.G. Assessment of phytochemicals, quality attributes, and antioxidant activities in commercial tomato cultivars. Hortic. Sci. Technol. 2016, 34, 677–691. [Google Scholar] [CrossRef]
- Blando, F.; Berland, H.; Maiorano, G.; Durante, M.; Mazzucato, A.; Picarella, M.E.; Nicoletti, I.; Gerardi, C.; Mita, G.; Andersen, Ø.M. Nutraceutical characterization of anthocyanin-rich fruits produced by “Sun Black” tomato line. Front. Nutr. 2019, 6, 133. [Google Scholar] [CrossRef]
- Gonzali, S.; Perata, P. Anthocyanins from purple tomatoes as novel antioxidants to promote human health. Antioxidants 2020, 9, 1017. [Google Scholar] [CrossRef]
- Wickens, A.P. Ageing and the free radical theory. Respir. Physiol. 2001, 128, 379–391. [Google Scholar] [CrossRef]
- Bianchi, A.R.; Vitale, E.; Guerretti, V.; Palumbo, G.; De Clemente, I.M.; Vitale, L.; Arena, C.; De Maio, A. Antioxidant characterization of six tomato cultivars and derived products destined for human consumption. Antioxidants 2023, 12, 761. [Google Scholar] [CrossRef]
- Giovannucci, E.; Rimm, E.B.; Liu, Y.; Stampfer, M.J.; Willett, W.C. A prospective study of tomato products, lycopene, and prostate cancer risk. J. Natl. Cancer Inst. 2002, 94, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Balestrieri, M.L.; De Prisco, R.; Nicolaus, B.; Pari, P.; Moriello, V.S.; Strazzullo, G.; Iorio, E.L.; Servillo, L.; Balestrieri, C. Lycopene in association with α-tocopherol or tomato lipophilic extracts enhances acyl-platelet-activating factor biosynthesis in endothelial cells during oxidative stress. Free Radic. Biol. Med. 2004, 36, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
Cultivars | Firmness (N) | TSSs (°Brix) | TA (mg 100 g−1) | BAR (TSS/TA) |
---|---|---|---|---|
Jocheong | 13.38 ± 0.97 b | 7.84 ± 0.11 cd | 1.14 ± 0.03 a | 6.84 ± 0.69 c |
BN Satnolang | 10.44 ± 0.39 c | 10.75 ± 0.20 a | 0.96 ± 0.03 b | 11.33 ± 1.26 a |
Gold chance | 10.88 ± 0.52 c | 8.66 ± 0.27 b | 1.00 ± 0.04 b | 8.76 ± 1.34 b |
Black Q | 17.09 ± 0.60 a | 7.43 ± 0.45 d | 0.92 ± 0.02 b | 8.15 ± 0.64 b |
Snacktom | 10.82 ± 0.42 c | 8.26 ± 0.16 bc | 1.01 ± 0.03 b | 8.28 ± 0.99 b |
Amino Acids | Jocheong | BN Satnolang | Gold Chance | Black Q | Snacktom | |||||
---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 | % | mg kg−1 | % | mg kg−1 | % | mg kg−1 | % | mg kg−1 | % | |
Aspartic acid | 4971.14 b | 7.97 | 3403.79 c | 10.62 | 3254.97 c | 9.22 | 5274.66 a | 9.98 | 3052.74 d | 8.83 |
Glutamic acid | 26,883.30 a | 43.11 | 12,054.79 c | 37.62 | 16,446.00 b | 46.56 | 27,544.36 a | 52.09 | 17,118.92 b | 49.54 |
Asparagine | 4535.81 a | 7.27 | 2928.94 b | 9.14 | 2108.42 c | 5.97 | 1438.23 e | 2.72 | 2017.01 d | 5.84 |
Serine | 1296.15 a | 2.08 | 546.86 d | 1.71 | 729.03 c | 2.06 | 914.87 b | 1.73 | 726.80 c | 2.10 |
Glutamine | 9953.29 a | 15.96 | 5992.00 b | 18.70 | 5225.22 c | 14.79 | 3492.97 d | 6.61 | 5069.68 c | 14.67 |
Histidine (EAA) | 820.70 a | 1.32 | 347.11 c | 1.08 | 371.14 c | 1.05 | 516.37 b | 0.98 | 364.92 c | 1.06 |
Glycine | 108.47 a | 0.17 | 56.25 d | 0.18 | 65.91 b | 0.19 | 68.65 b | 0.13 | 60.04 c | 0.17 |
Threonine (EAA) | 1080.68 a | 1.73 | 378.28 cd | 1.18 | 369.27 d | 1.05 | 487.64 b | 0.92 | 401.14 c | 1.16 |
Citrulline | 106.72 a | 0.17 | 53.04 b | 0.17 | 50.87 b | 0.14 | 32.31 c | 0.06 | 48.20 b | 0.14 |
Arginine | 925.54 a | 1.48 | 483.77 c | 1.51 | 396.16 d | 1.12 | 630.74 b | 1.19 | 385.01 d | 1.11 |
Alanine | 607.64 c | 0.97 | 370.36 d | 1.16 | 834.15 b | 2.36 | 1132.56 a | 2.14 | 622.79 c | 1.80 |
Taurine | 14.65 c | 0.02 | 13.66 c | 0.04 | 25.90 b | 0.07 | 31.97 a | 0.06 | 23.00 b | 0.07 |
GABA | 6220.85 a | 9.98 | 1906.47 d | 5.95 | 2176.56 c | 6.16 | 4960.61 b | 9.38 | 1449.25 e | 4.19 |
Tyrosine | 212.93 a | 0.34 | 159.53 b | 0.50 | 77.79 d | 0.22 | 95.15 c | 0.18 | 75.50 d | 0.22 |
Valine (EAA) | 342.26 a | 0.55 | 116.12 d | 0.36 | 125.43 c | 0.36 | 263.64 b | 0.50 | 120.33 cd | 0.35 |
Methionine (EAA) | 5.74 b | 0.01 | 10.60 a | 0.03 | 10.17 a | 0.03 | 10.29 a | 0.02 | 10.05 a | 0.03 |
Tryptophane (EAA) | 366.11 a | 0.59 | 285.02 b | 0.89 | 225.84 c | 0.64 | 282.80 b | 0.53 | 205.82 c | 0.60 |
Phenylalanine (EAA) | 1420.66 a | 2.28 | 909.42 b | 2.84 | 621.45 e | 1.76 | 876.84 c | 1.66 | 779.57 d | 2.26 |
Isoleucine (EAA) | 677.53 a | 1.09 | 207.36 c | 0.65 | 174.30 d | 0.49 | 384.94 b | 0.73 | 201.38 c | 0.58 |
Leucine (EAA) | 640.01 a | 1.03 | 256.19 d | 0.80 | 268.70 c | 0.76 | 385.72 b | 0.73 | 226.90 e | 0.66 |
Lysine (EAA) | 609.34 a | 0.98 | 437.21 c | 1.36 | 354.76 d | 1.00 | 532.44 b | 1.01 | 366.47 d | 1.06 |
Proline | 558.91 a | 0.90 | 1130.84 b | 3.53 | 1409.95 b | 3.99 | 3519.51 a | 6.66 | 1233.16 b | 3.57 |
Total EAA | 5963.04 a | 1.29 | 2947.31 c | 2.60 | 2521.05 d | 3.25 | 3740.67 b | 8.11 | 2676.59 d | 2.84 |
Total | 62,358.44 a | 32,047.62 d | 35,321.97 c | 52,877.27 b | 34,558.69 c |
Cultivars | DPPH (%) | ABTS (%) | FRAP (Absorbance) | RP (Absorbance) |
---|---|---|---|---|
Jocheong | 63.69 ± 0.04 c | 14.16 ± 0.68 c | 0.231 ± 0.002 b | 0.222 ± 0.002 c |
BN Satnolang | 58.55 ± 0.31 d | 13.67 ± 0.67 c | 0.212 ± 0.003 c | 0.221 ± 0.004 c |
Gold chance | 69.72 ± 0.33 a | 16.32 ± 0.09 a | 0.250 ± 0.000 a | 0.249 ± 0.002 a |
Black Q | 56.63 ± 0.33 e | 13.27 ± 0.71 c | 0.202 ± 0.002 d | 0.221 ± 0.002 c |
Snacktom | 69.02 ± 0.31 b | 15.22 ± 0.36 b | 0.253 ± 0.003 a | 0.243 ± 0.001 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, M.W.; Lee, J.H.; Yeo, C.E.; Tae, S.H.; Chang, S.M.; Choi, H.R.; Park, D.S.; Tilahun, S.; Jeong, C.S. Antioxidant Profile, Amino Acids Composition, and Physicochemical Characteristics of Cherry Tomatoes Are Associated with Their Color. Antioxidants 2024, 13, 785. https://doi.org/10.3390/antiox13070785
Baek MW, Lee JH, Yeo CE, Tae SH, Chang SM, Choi HR, Park DS, Tilahun S, Jeong CS. Antioxidant Profile, Amino Acids Composition, and Physicochemical Characteristics of Cherry Tomatoes Are Associated with Their Color. Antioxidants. 2024; 13(7):785. https://doi.org/10.3390/antiox13070785
Chicago/Turabian StyleBaek, Min Woo, Jong Hwan Lee, Chang Eun Yeo, Su Ho Tae, Se Min Chang, Han Ryul Choi, Do Su Park, Shimeles Tilahun, and Cheon Soon Jeong. 2024. "Antioxidant Profile, Amino Acids Composition, and Physicochemical Characteristics of Cherry Tomatoes Are Associated with Their Color" Antioxidants 13, no. 7: 785. https://doi.org/10.3390/antiox13070785
APA StyleBaek, M. W., Lee, J. H., Yeo, C. E., Tae, S. H., Chang, S. M., Choi, H. R., Park, D. S., Tilahun, S., & Jeong, C. S. (2024). Antioxidant Profile, Amino Acids Composition, and Physicochemical Characteristics of Cherry Tomatoes Are Associated with Their Color. Antioxidants, 13(7), 785. https://doi.org/10.3390/antiox13070785