Antioxidant Activities of Ethanolic Extracts Obtained from α-Pinene-Containing Plants and Their Use in Cosmetic Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Ultrasound-Assisted Extraction of Plant Materials
2.3. Extraction of Plant Materials Using Soxhlet Apparatus
2.4. Analysis of Ethanol Extracts by GC-MS
2.5. Antioxidant Characterizations of Ethanolic Plant Extracts via Spectrophotometric Methods
Evaluation of the Antioxidant Activities of Ethanol Extracts Obtained from Plants Containing α-Pinene
- DPPH method
- ABTS method
2.6. Preparation of Emulsions with Ethanolic Plant Extracts
Evaluation of the Stabilities and pH of the Emulsions
2.7. Testing the Antioxidant Activities of Emulsions
2.8. Testing the Antimicrobial Stabilities of Emulsions
2.9. Statistical Analysis
3. Results and Discussion
3.1. Ultrasound-Assisted Extraction of Plant Materials
3.2. Extraction of Plant Materials Using Soxhlet Apparatus
3.3. Analysis of Ethanol Extracts by GC-MS
3.4. Evaluation of the Antioxidant Activities of Ethanolic Extracts Obtained from Plants Containing α-Pinene
3.4.1. Extracts Prepared with Ultrasound-Assisted Extraction
- DPPH method
- ABTS method
3.4.2. Soxhlet Extraction
3.5. Comparison with Other Studies
3.6. Statistical Analysis
3.7. Preparation of Emulsions with Ethanolic Extracts from Plants Containing α-Pinene
The Stability and pH of the Emulsions
3.8. Testing the Antioxidant Activities of Emulsions
3.9. Antimicrobial Stabilities of the Emulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esteban, L.S.; Mediavilla, I.; Xavier, V.; Amaral, J.S.; Pires, T.C.S.P.; Calhelha, R.C.; López, C.; Barros, L. Yield, Chemical Composition and Bioactivity of Essential Oils from Common Juniper (Juniperus communis L.) from Different Spanish Origins. Molecules 2023, 28, 4448. [Google Scholar] [CrossRef] [PubMed]
- Maeda, N.; Horochi, S.; Hasegawa, Y.; Iwasaki, T.; Nakatani, N.; Miyasho, T.; Hagiwara, K.; Yokota, H.; Funatsu, Y. Decreased Immunoreactivity of Hepatitis E Virus Antigen Following Treatment with Sakhalin Spruce (Picea glehnii) Essential Oil. Chem. Biodivers. 2023, 20, e202200924. [Google Scholar] [CrossRef]
- Kim, C.; Lee, G.; Song, C. The Effect of Short-Term Inhalation of Fir Essential Oil on Autonomic Nervous Activity in Middle-Aged Women. Explore 2023, 19, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.R. Coleopteran Predators of Bark and Woodboring Beetles Attracted to Traps Baited with Ethanol and α-Pinene in Pine (Pinaceae) Forests of the Southern United States of America. Can. Entomol. 2023, 155, e5. [Google Scholar] [CrossRef]
- Maurya, A.K.; Vashisath, S.; Aggarwal, G.; Yadav, V.; Agnihotri, V.K. Chemical Diversity and A-Glucosidase Inhibitory Activity in Needles Essential Oils of Four Pinus Species from Northwestern Himalaya, India. Chem. Biodivers. 2022, 19, e202200428. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Ghosh, P.; Arora, K.; Sharma, S.; Kumar, S. Valorization Potential of Pine Needle Waste Biomass: Recent Trends and Future Perspectives. Environ. Sci. Pollut. Res. 2023, 31, 36136–36151. [Google Scholar] [CrossRef]
- Gamli, Ö.F. Physicochemical Properties of Pine Cone Molasses (Pekmez) from Pinus nigra and Pinus brutia in Osmaniye. J. Food Process Preserv. 2022, 46, 17264. [Google Scholar] [CrossRef]
- Maghsoudi, E.; Abbaspour, H.; Ghasemi Pirbalouti, A.; Saeidi-Sar, S. Influence of the Foliar Applications of Paclobutrazol and 24-Epibrassinolide on the Quantitative and Qualitative Traits of Sage (Salvia officinalis L.) Volatile Oil Under Different Soil Moisture Conditions. J. Plant Growth Regul. 2023, 42, 5495–5506. [Google Scholar] [CrossRef]
- Atteya, A.K.G.; Albalawi, A.N.; Bayomy, H.M.; El-Naggar, E.M.B.A.; Ghozlan, M.H.; Genaidy, E.A.E. Impact of Planting Density and Soaking Seeds in Melatonin Solution on Yield, Secondary Products Content and Antimicrobial Activity of Lovage Plant. Saudi J. Biol. Sci. 2022, 29, 2656–2673. [Google Scholar] [CrossRef]
- Belali, M.; Seidavi, A.; Bouyeh, M.; Gorlov, I.F.; Slozhenkina, M.I.; Mosolov, A.A.; Ramírez, L.S.; Tirado-González, D.N.; Cuevas-Barragán, C.E.; Cipriano-Salazar, M. Substantiable Bioconversion of the Aromatic Plant Extracts Biomass as Feed Additives in Broiler Performance: Effects and Prefeasibility Comparison of Thyme (Thymus vulgaris). Biomass Convers. Biorefin 2022, 14, 6097–6109. [Google Scholar] [CrossRef]
- Wang, Y.-H. Traditional Uses, Chemical Constituents, Pharmacological Activities, and Toxicological Effects of Dendrobium Leaves: A Review. J. Ethnopharmacol. 2021, 270, 113851. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Khan, M.; Al-hamoud, K.; Adil, S.F.; Shaik, M.R.; Alkhathlan, H.Z. Diversity of Citrullus colocynthis (L.) Schrad Seeds Extracts: Detailed Chemical Profiling and Evaluation of Their Medicinal Properties. Plants 2023, 12, 567. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, H.; Ghanbariasad, A.; Meshkibaf, M.H.; Molazade, A.; Heiran, R.; Safari, M.; Osanloo, M. Chitosan Nanoparticles Containing α-Pinene and Rosmarinus officinalis L. Essential Oil: Effects on Human Melanoma Cells’ Viability and Expression of Apoptosis-Involved Genes. Polym. Bull. 2023, 81, 2505–2523. [Google Scholar] [CrossRef]
- Cheng, Y.; Han, L.; Huang, L.; Tan, X.; Wu, H.; Li, G. Association between Flavor Composition and Sensory Profile in Thermally Processed Mandarin Juices by Multidimensional Gas Chromatography and Multivariate Statistical Analysis. Food Chem. 2023, 419, 136026. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, D.; Bosco, L.; Moschetti, M.; Tinnirello, V.; Pucci, M.; Corleone, V.; Raimondo, S.; Alessandro, R.; Fontana, S. Anti-inflammatory Properties of an Aldehydes-enriched Fraction of Grapefruit Essential Oil. J. Food Sci. 2023, 88, 1172–1187. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cai, Q.; Wu, X.; Tan, Z.; Huang, S.; Wei, C.; Zhang, W.; Chen, Z.; Zhang, L.; Xiang, H. Variation in Compositions and Biological Activities of Essential Oils from Four Citrus Species: Citrus Limon, Citrus sinensis, Citrus paradisi, and Citrus reticulata. Chem. Biodivers. 2022, 19, e202100910. [Google Scholar] [CrossRef]
- Sharma, S.; Loach, N.; Gupta, S.; Mohan, L. Evaluation of Larval Toxicity, Mode of Action and Chemical Composition of Citrus Essential Oils against Anopheles Stephensi and Culex Quinquefasciatus. Biocatal. Agric. Biotechnol. 2022, 39, 102284. [Google Scholar] [CrossRef]
- Bhat, A.A.; Shakeel, A.; Rafiq, S.; Farooq, I.; Malik, A.Q.; Alghuthami, M.E.; Alharthi, S.; Qanash, H.; Alharthy, S.A. Juglans Regia Linn.: A Natural Repository of Vital Phytochemical and Pharmacological Compounds. Life 2023, 13, 380. [Google Scholar] [CrossRef]
- da Cruz, M.A.; Plotto, A.; Ferrarezi, R.S.; Leite Junior, R.P.; Bai, J. Effect of Huanglongbing on the Volatile Organic Compound Profile of Fruit Juice and Peel Oil in ‘Ray Ruby’ Grapefruit. Foods 2023, 12, 713. [Google Scholar] [CrossRef]
- George, K.W.; Alonso-Gutierrez, J.; Keasling, J.D.; Lee, T.S. Isoprenoid Drugs, Biofuels, and Chemicals—Artemisinin, Farnesene, and Beyond. Adv. Biochem. Eng. Biotechnol. 2015, 148, 355–389. [Google Scholar]
- Allenspach, M.; Steuer, C. α-Pinene: A Never-Ending Story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.S.; de Sousa Machado, S.T.; Rodrigues, F.B.; da Silva, Y.A.; Matias, L.C.X.; Lopes, M.J.P.; Gomes, A.D.S.; Ribeiro, T.F.; de Oliveira Garcia, F.A.; Coutinho, H.D.M.; et al. Potential Anti-Inflammatory, Hypoglycemic, and Hypolipidemic Activities of Alpha-Pinene in Diabetic Rats. Process Biochem. 2023, 126, 80–86. [Google Scholar] [CrossRef]
- Bomfim de Barros, D.; de Oliveira e Lima, L.; Alves da Silva, L.; Cavalcante Fonseca, M.; Ferreira, R.C.; Diniz Neto, H.; da Nóbrega Alves, D.; da Silva Rocha, W.P.; Scotti, L.; de Oliveira Lima, E.; et al. α-Pinene: Docking Study, Cytotoxicity, Mechanism of Action, and Anti-Biofilm Effect against Candida Albicans. Antibiotics 2023, 12, 480. [Google Scholar] [CrossRef] [PubMed]
- Him, A.; Ozbek, H.; Turel, I.; Oner, A.C. Antinociceptive Activity of Alpha-Pinene and Fenchone. Pharmacologyonline 2008, 3, 363–369. [Google Scholar]
- Christopoulou, S.D.; Androutsopoulou, C.; Hahalis, P.; Kotsalou, C.; Vantarakis, A.; Lamari, F.N. Rosemary Extract and Essential Oil as Drink Ingredients: An Evaluation of Their Chemical Composition, Genotoxicity, Antimicrobial, Antiviral, and Antioxidant Properties. Foods 2021, 10, 3143. [Google Scholar] [CrossRef] [PubMed]
- Kamli, M.R.; Sharaf, A.A.M.; Sabir, J.S.M.; Rather, I.A. Phytochemical Screening of Rosmarinus officinalis L. as a Potential Anticholinesterase and Antioxidant–Medicinal Plant for Cognitive Decline Disorders. Plants 2022, 11, 514. [Google Scholar] [CrossRef]
- Lucia, A.; Guzmán, E. Emulsions Containing Essential Oils, Their Components or Volatile Semiochemicals as Promising Tools for Insect Pest and Pathogen Management. Adv. Colloid. Interface Sci. 2021, 287, 102330. [Google Scholar] [CrossRef]
- Wróblewska, M.; Winnicka, K. Composition Development and in Vitro Evaluation of O/W Emulsions Based on Natural Emulsifier Olivem 1000 as Tea Tree Oil Carriers. Acta Pol. Pharm. Drug Res. 2022, 79, 687–705. [Google Scholar] [CrossRef]
- Couteau, C.; Dupont, C.; Paparis, E.; Coiffard, L.J.M. Demonstration of the Dangerous Nature of ‘Homemade’ Sunscreen Recipes. J. Cosmet. Dermatol. 2021, 20, 1788–1794. [Google Scholar] [CrossRef]
- Muzykiewicz, A.; Zielonka-Brzezicka, J.; Siemak, J.; Klimowicz, A. Antioxidant Activity and Polyphenol Content in Extracts from Various Parts of Fresh and Frozen Mangosteen. Acta Sci. Pol. Technol. Aliment. 2020, 19, 261–270. [Google Scholar] [CrossRef]
- Kęsik, M.; Klimowicz, A. Antioxidant Potential of Extracts from Different Parts of Cichorium intybus L. Pomeranian J. Life Sci. 2024, 70, 59–63. [Google Scholar] [CrossRef]
- Gajewska, S.; Siemak, J.; Bilska, J.; Nowak, A.; Klimowicz, A. Effect of Storage on the Antioxidant Properties of Plantago lanceolata L. and Plantago major L. Alcoholic Extracts. Pomeranian J. Life Sci. 2021, 67, 52–56. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczak, J.; Wróblewska, A.; Bosacka, M.; Koren, Z.C.; Michalkiewicz, B. Studies on the Catalytic Activities of ZSM-5 Zeolites with Different Aluminum Contents in the Green Oxidation of α-Pinene to High Value-Added Products. Chem. Eng. Res. Des. 2023, 192, 338–349. [Google Scholar] [CrossRef]
- Muzykiewicz, A.; Zielonka-Brzezicka, J.; Klimowicz, A. The Antioxidant Potential of Flesh, Albedo and Flavedo Extracts from Different Varieties of Grapefruits. Acta Sci. Pol. Technol. Aliment. 2019, 18, 453–462. [Google Scholar] [CrossRef]
- Lewandowska, N.; Klimowicz, A. Antioxidant Properties of Selected Parts of Syringa vulgaris L. Pomeranian J. Life Sci. 2022, 68, 64–74. [Google Scholar] [CrossRef]
- Liu, P.; Liu, X.; Saburi, T.; Kubota, S.; Huang, P.; Wada, Y. Thermal Stability and Oxidation Characteristics of α-Pinene, β-Pinene and α-Pinene/β-Pinene Mixture. RSC Adv. 2021, 11, 20529–20540. [Google Scholar] [CrossRef]
- Li, D.-G.; Huang, Z.; Lŭ, X.; Zhang, W.; Yang, J. Physico-Chemical Properties of Ethanol–Diesel Blend Fuel and Its Effect on Performance and Emissions of Diesel Engines. Renew. Energy 2005, 30, 967–976. [Google Scholar] [CrossRef]
- Fazelan, Z.; Hoseini, S.M.; Yousefi, M.; Khalili, M.; Hoseinifar, S.H.; Van Doan, H. Effects of Dietary Eucalyptol Administration on Antioxidant and Inflammatory Genes in Common Carp (Cyprinus carpio) Exposed to Ambient Copper. Aquaculture 2020, 520, 734988. [Google Scholar] [CrossRef]
- Rawat, A.; Rawat, M.; Prakash, O.M.; Kumar, R.; Punetha, H.; Rawat, D.S. Comparative Study on Eucalyptol and Camphor Rich Essential Oils from Rhizomes of Hedychium Spicatum Sm. and Their Pharmacological, Antioxidant and Antifungal Activities. Acad. Bras. Cienc. 2022, 94, e20210932. [Google Scholar] [CrossRef]
- Bicas, J.L.; Neri-Numa, I.A.; Ruiz, A.L.T.G.; De Carvalho, J.E.; Pastore, G.M. Evaluation of the Antioxidant and Antiproliferative Potential of Bioflavors. Food Chem. Toxicol. 2011, 49, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.; Pandey, A.; Sharma, S.; Suradkar, U.S.; Ambedkar, Y.R.; Meena, P.; Raman, R.; Gurjar, A.S. Assessment of Antioxidant Activity of Rosemary (Rosmarinus officinalis) Leaves Extract. J. Pharmacogn. Phytochem. 2020, 9, 14–17. [Google Scholar]
- Mokhtari, R.; Kazemi Fard, M.; Rezaei, M.; Moftakharzadeh, S.A.; Mohseni, A. Antioxidant, Antimicrobial Activities, and Characterization of Phenolic Compounds of Thyme (Thymus vulgaris L.), Sage (Salvia officinalis L.), and Thyme–Sage Mixture Extracts. J. Food Qual. 2023, 2023, 2602454. [Google Scholar] [CrossRef]
- Abdelkader, M.; Ahcen, B.; Rachid, D.; Hakim, H. Phytochemical Study and Biological Activity of Sage (Salvia officinalis L.). Int. J. Bioeng. Life Sci. 2015, 8, 1253–1257. [Google Scholar]
- Ben Farhat, M.; Jordán, M.J.; Chaouech-Hamada, R.; Landoulsi, A.; Sotomayor, J.A. Variations in Essential Oil, Phenolic Compounds, and Antioxidant Activity of Tunisian Cultivated Salvia officinalis L. J. Agric. Food Chem. 2009, 57, 10349–10356. [Google Scholar] [CrossRef]
- Venkatesan, T.; Choi, Y.-W.; Kim, Y.-K. Effect of an Extraction Solvent on the Antioxidant Quality of Pinus Densiflora Needle Extract. J. Pharm. Anal. 2019, 9, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Latos-Brozio, M.; Masek, A.; Chrzescijanska, E.; Podsędek, A.; Kajszczak, D. Characteristics of the Polyphenolic Profile and Antioxidant Activity of Cone Extracts from Conifers Determined Using Electrochemical and Spectrophotometric Methods. Antioxidants 2021, 10, 1723. [Google Scholar] [CrossRef]
- Šarac, Z.; Matejić, J.S.; Stojanović-Radić, Z.Z.; Veselinović, J.B.; Džamić, A.M.; Bojović, S.; Marin, P.D. Biological Activity of Pinus Nigra Terpenes—Evaluation of FtsZ Inhibition by Selected Compounds as Contribution to Their Antimicrobial Activity. Comput. Biol. Med. 2014, 54, 72–78. [Google Scholar] [CrossRef]
Ethanol Concentration [% (v/v)] | Extraction Time (min) | ||
---|---|---|---|
15 | 30 | 60 | |
40 |
|
|
|
70 |
|
|
|
96 |
|
|
|
Ethanol Concentration [% (v/v)] | Extraction Time (min) | ||
---|---|---|---|
15 | 30 | 60 | |
40 |
|
|
|
70 |
|
|
|
96 |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzeszczak, J.; Wróblewska, A.; Klimowicz, A.; Gajewska, S.; Kucharski, Ł.; Koren, Z.C.; Janda-Milczarek, K. Antioxidant Activities of Ethanolic Extracts Obtained from α-Pinene-Containing Plants and Their Use in Cosmetic Emulsions. Antioxidants 2024, 13, 811. https://doi.org/10.3390/antiox13070811
Grzeszczak J, Wróblewska A, Klimowicz A, Gajewska S, Kucharski Ł, Koren ZC, Janda-Milczarek K. Antioxidant Activities of Ethanolic Extracts Obtained from α-Pinene-Containing Plants and Their Use in Cosmetic Emulsions. Antioxidants. 2024; 13(7):811. https://doi.org/10.3390/antiox13070811
Chicago/Turabian StyleGrzeszczak, Jadwiga, Agnieszka Wróblewska, Adam Klimowicz, Sylwia Gajewska, Łukasz Kucharski, Zvi C. Koren, and Katarzyna Janda-Milczarek. 2024. "Antioxidant Activities of Ethanolic Extracts Obtained from α-Pinene-Containing Plants and Their Use in Cosmetic Emulsions" Antioxidants 13, no. 7: 811. https://doi.org/10.3390/antiox13070811
APA StyleGrzeszczak, J., Wróblewska, A., Klimowicz, A., Gajewska, S., Kucharski, Ł., Koren, Z. C., & Janda-Milczarek, K. (2024). Antioxidant Activities of Ethanolic Extracts Obtained from α-Pinene-Containing Plants and Their Use in Cosmetic Emulsions. Antioxidants, 13(7), 811. https://doi.org/10.3390/antiox13070811