Kinetic Insights into the Antioxidant Effect of Isatin-Thiosemicarbazone in Biodiesel Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Schiff Based Isatin-Thiosemicarbazones Synthesis
2.2.2. Preparations of Biodiesel–Diesel Blends
2.2.3. Differential Scanning Calorimetry (DSC)
2.2.4. Thermogravimetric Analysis (TGA)
2.2.5. Fourier Transform Infrared Spectroscopy (FT-IR)
2.2.6. DPPH. Method for Antioxidant Activity
2.2.7. Kinetics of Isatin-Thiosemicarbazone Derivatives
2.2.8. Analytical Statistics
3. Results and Discussion
3.1. Differential Scanning Calorimetry (DSC)
3.2. Thermogravimetric Analysis (TGA)
3.3. Fourier Transform Infrared Spectroscopy (FT-IR)
3.4. DPPH˙ Free Radical Scavenger Effect for Isatin-Thiosemicarbazones
3.5. Thermal Characterization of Isatin-Thiosemicarbazones
3.6. Investigating the Kinetics of Isatin-Thiosemicarbazones
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, H.L.; McCormick, R.L. Spectroscopic Study of Biodiesel Degradation Pathways; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2006; pp. 776–790. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Rizwanul Fattah, I.M.; Masjuki, H.H.; Kalam, M.A.; Hazrat, M.A.; Masum, B.M.; Imtenan, S.; Ashraful, A.M. Effect of Antioxidants on Oxidation Stability of Biodiesel Derived from Vegetable and Animal Based Feedstocks. Renew. Sustain. Energy Rev. 2014, 30, 356–370. [Google Scholar] [CrossRef]
- Pullen, J.; Saeed, K. An Overview of Biodiesel Oxidation Stability. Renew. Sustain. Energy Rev. 2012, 16, 5924–5950. [Google Scholar] [CrossRef]
- Rashedul, H.K.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H.; How, H.G.; Rizwanul Fattah, I.M. Effect of Antioxidant on the Oxidation Stability and Combustion-Performance-Emission Characteristics of a Diesel Engine Fueled with Diesel-Biodiesel Blend. Energy Convers. Manag. 2015, 106, 849–858. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A Comprehensive Review on Biodiesel as an Alternative Energy Resource and Its Characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Srivastava, A.; Prasad, R. Triglycerides-Based Diesel Fuels. Renew. Sustain. Energy Rev. 2000, 4, 111–133. [Google Scholar] [CrossRef]
- Hosseinzadeh-bandbafha, H.; Kumar, D.; Singh, B.; Shahbeig, H.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Biodiesel Antioxidants and Their Impact on the Behavior of Diesel Engines: A Comprehensive Review. Fuel Process. Technol. 2022, 232, 107264. [Google Scholar] [CrossRef]
- Ravi Krishna, E.; Muralidhar Reddy, P.; Sarangapani, M.; Hanmanthu, G.; Geeta, B.; Shoba Rani, K.; Ravinder, V. Synthesis of N4 Donor Macrocyclic Schiff Base Ligands and Their Ru (II), Pd (II), Pt (II) Metal Complexes for Biological Studies and Catalytic Oxidation of Didanosine in Pharmaceuticals. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 97, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Kumar Saluja, R.; Kumar, V.; Sham, R. Stability of Biodiesel—A Review. Renew. Sustain. Energy Rev. 2016, 62, 866–881. [Google Scholar] [CrossRef]
- Uddin, M.N.; Ahmed, S.S.; Alam, S.M.R. REVIEW: Biomedical Applications of Schiff Base Metal Complexes. J. Coord. Chem. 2020, 73, 3109–3149. [Google Scholar] [CrossRef]
- Rao, N.S.; Reddy, M.G. Studies on the Synthesis, Characterisation and Antimicrobial Activity of New Co(II), Ni(II) and Zn(II) Complexes of Schiff Base Derived from Ninhydrin and Glycine. Biol. Met. 1990, 3, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Kalem, E.; Ağar, E. Biological Activity of Schiff Bases. Sci. Technıque 21st Century 2021, 8, 57–76. [Google Scholar]
- Chen, Y.; Mi, Y.; Li, Q.; Dong, F.; Guo, Z. Synthesis of Schiff Bases Modified Inulin Derivatives for Potential Antifungal and Antioxidant Applications. Int. J. Biol. Macromol. 2020, 143, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Wang, R.; Komatsu, K.; Bonaz-Krause, P.; Zyrianov, Y.; McKenna, C.E.; Csipke, C.; Tokes, Z.A.; Lien, E.J. Synthesis, Biological Evaluation, and Quantitative Structure−Activity Relationship Analysis of New Schiff Bases of Hydroxysemicarbazide as Potential Antitumor Agents. J. Med. Chem. 2002, 45, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Duff, B.; Reddy Thangella, V.; Creaven, B.S.; Walsh, M.; Egan, D.A. Anti-Cancer Activity and Mutagenic Potential of Novel Copper(II) Quinolinone Schiff Base Complexes in Hepatocarcinoma Cells. Eur. J. Pharmacol. 2012, 689, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Jarrahpour, A.; Sheikh, J.; El Mounsi, I.; Juneja, H.; Ben Hadda, T. Computational Evaluation and Experimental in Vitro Antibacterial, Antifungal and Antiviral Activity of Bis-Schiff Bases of Isatin and Its Derivatives. Med. Chem. Res. 2013, 22, 1203–1211. [Google Scholar] [CrossRef]
- Singh, K.; Raparia, S.; Surain, P. Co(II), Ni(II), Cu(II) and Zn(II) Complexes of 4-(4-Cyanobenzylideneamino)-3-Mercapto-5-Oxo-1,2,4-Triazine: Synthesis, Characterization and Biological Studies. Med. Chem. Res. 2015, 24, 2336–2346. [Google Scholar] [CrossRef]
- Tople, M.S.; Patel, N.B.; Patel, P.P.; Purohit, A.C.; Ahmad, I.; Patel, H. An in Silico-in Vitro Antimalarial and Antimicrobial Investigation of Newer 7-Chloroquinoline Based Schiff-Bases. J. Mol. Struct. 2023, 1271, 134016. [Google Scholar] [CrossRef]
- Petrović, Z.D.; Orović, J.; Simijonović, D.; Petrović, V.P.; Marković, Z. Experimental and Theoretical Study of Antioxidative Properties of Some Salicylaldehyde and Vanillic Schiff Bases. RSC Adv. 2015, 5, 24094–24100. [Google Scholar] [CrossRef]
- Marković, Z.; Đorović, J.; Petrović, Z.D.; Petrović, V.P.; Simijonović, D. Investigation of the Antioxidant and Radical Scavenging Activities of Some Phenolic Schiff Bases with Different Free Radicals. J. Mol. Model. 2015, 21, 293. [Google Scholar] [CrossRef]
- Amić, A.; Marković, Z.; Marković, J.M.D.; Jeremić, S.; Lučić, B.; Amić, D. Free Radical Scavenging and COX-2 Inhibition by Simple Colon Metabolites of Polyphenols: A Theoretical Approach. Comput. Biol. Chem. 2016, 65, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Marković, Z. Study of the Mechanisms of Antioxidative Action of Different Antioxidants. J. Serbian Soc. Comput. Mech. 2016, 10, 135–150. [Google Scholar] [CrossRef]
- Agarwal, S.; Singhal, S.; Singh, M.; Arora, S.; Tanwer, M. Role of Antioxidants in Enhancing Oxidation Stability of Biodiesels. ACS Sustain. Chem. Eng. 2018, 6, 11036–11049. [Google Scholar] [CrossRef]
- Rice-Evans, C. Plant Polyphenols: Free Radical Scavengers or Chain-Breaking Antioxidants? Biochem. Soc. Symp. 1995, 61, 103–116. [Google Scholar] [CrossRef]
- Bharti, S.K.; Nath, G.; Tilak, R.; Singh, S.K. Synthesis, Anti-Bacterial and Anti-Fungal Activities of Some Novel Schiff Bases Containing 2,4-Disubstituted Thiazole Ring. Eur. J. Med. Chem. 2010, 45, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and Evaluation of Anti-HIV Activity of Isatin β-Thiosemicarbazone Derivatives. Bioorganic Med. Chem. Lett. 2005, 15, 4451–4455. [Google Scholar] [CrossRef] [PubMed]
- Cvijetić, I.N.; Herlah, B.; Marinković, A.; Perdih, A.; Bjelogrlić, S.K. Phenotypic Discovery of Thiocarbohydrazone with Anticancer Properties and Catalytic Inhibition of Human DNA Topoisomerase IIα. Pharmaceuticals 2023, 16, 341. [Google Scholar] [CrossRef]
- de Oliveira, R.B.; de Souza-Fagundes, E.M.; Soares, R.P.P.; Andrade, A.A.; Krettli, A.U.; Zani, C.L. Synthesis and Antimalarial Activity of Semicarbazone and Thiosemicarbazone Derivatives. Eur. J. Med. Chem. 2008, 43, 1983–1988. [Google Scholar] [CrossRef]
- Fayed, E.A.; Ragab, A.; Ezz Eldin, R.R.; Bayoumi, A.H.; Ammar, Y.A. In Vivo Screening and Toxicity Studies of Indolinone Incorporated Thiosemicarbazone, Thiazole and Piperidinosulfonyl Moieties as Anticonvulsant Agents. Bioorganic Chem. 2021, 116, 105300. [Google Scholar] [CrossRef]
- Jacob, Í.T.T.; Gomes, F.O.S.; de Miranda, M.D.S.; de Almeida, S.M.V.; da Cruz-Filho, I.J.; Peixoto, C.A.; da Silva, T.G.; Moreira, D.R.M.; de Melo, C.M.L.; de Oliveira, J.F.; et al. Anti-Inflammatory Activity of Novel Thiosemicarbazone Compounds Indole-Based as COX Inhibitors. Pharmacol. Rep. 2021, 73, 907–925. [Google Scholar] [CrossRef]
- Yakan, H. Preparation, Structure Elucidation, and Antioxidant Activity of New Bis(Thiosemicarbazone) Derivatives. Turk. J. Chem. 2020, 44, 1085–1099. [Google Scholar] [CrossRef]
- Pelosi, G.; Bisceglie, F.; Bignami, F.; Ronzi, P.; Schiavone, P.; Re, M.C.; Casoli, C.; Pilotti, E. Antiretroviral Activity of Thiosemicarbazone Metal Complexes. J. Med. Chem. 2010, 53, 8765–8769. [Google Scholar] [CrossRef]
- Yakan, H.; Muğlu, H.; Türkeş, C.; Demir, Y.; Erdoğan, M.; Çavuş, M.S.; Beydemir, Ş. A Novel Series of Thiosemicarbazone Hybrid Scaffolds: Design, Synthesis, DFT Studies, Metabolic Enzyme Inhibition Properties, and Molecular Docking Calculations. J. Mol. Struct. 2023, 1280, 135077. [Google Scholar] [CrossRef]
- Qin, Y.; Xing, R.; Liu, S.; Li, K.; Meng, X.; Li, R.; Cui, J.; Li, B.; Li, P. Novel Thiosemicarbazone Chitosan Derivatives: Preparation, Characterization, and Antifungal Activity. Carbohydr. Polym. 2012, 87, 2664–2670. [Google Scholar] [CrossRef]
- Khan, S.A.; Kumar, P.; Joshi, R.; Iqbal, P.F.; Saleem, K. Synthesis and in Vitro Antibacterial Activity of New Steroidal Thiosemicarbazone Derivatives. Eur. J. Med. Chem. 2008, 43, 2029–2034. [Google Scholar] [CrossRef]
- Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Cremonini, M.A.; Placucci, G.; et al. New Isatin Derivatives with Antioxidant Activity. Eur. J. Med. Chem. 2010, 45, 1374–1378. [Google Scholar] [CrossRef]
- Elsaman, T.; Mohamed, M.S.; Eltayib, E.M.; Abdel-Aziz, H.A.; Abdalla, A.E.; Munir, M.U.; Mohamed, M.A. Isatin Derivatives as Broad-Spectrum Antiviral Agents: The Current Landscape. Med. Chem. Res. 2022, 31, 244–273. [Google Scholar] [CrossRef] [PubMed]
- Chohan, Z.H.; Pervez, H.; Rauf, A.; Khan, K.M.; Supuran, C.T. Isatin-Derived Antibacterial and Antifungal Compounds and Their Transition Metal Complexes. J. Enzym. Inhib. Med. Chem. 2004, 19, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Guo, H. Isatin Derivatives and Their Anti-Bacterial Activities. Eur. J. Med. Chem. 2019, 164, 678–688. [Google Scholar] [CrossRef]
- Tangadanchu, V.K.R.; Sui, Y.-F.; Zhou, C.-H. Isatin-Derived Azoles as New Potential Antimicrobial Agents: Design, Synthesis and Biological Evaluation. Bioorganic Med. Chem. Lett. 2021, 41, 128030. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, G.-Q.; Liu, X.; Zhang, Z.; Feng, L.-S.; Liu, M.L. Isatin Derivatives with Potential Antitubercular Activities. J. Heterocycl. Chem. 2018, 55, 1263–1279. [Google Scholar] [CrossRef]
- Nain, S.; Mathur, G. Recent Advancement in Synthesis of Isatin as Anticonvulsant Agents: A Review. Med. Chem. 2014, 4, 417–727. [Google Scholar] [CrossRef]
- Van Den Berg, R.; Haenen, G.R.M.M.; Van Den Berg, H.; Bast, A. Applicability of an Improved Trolox Equivalent Antioxidant Capacity (TEAC) Assay for Evaluation of Antioxidant Capacity Measurements of Mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Lúcio, M.; Nunes, C.; Gaspar, D.; Ferreira, H.; Lima, J.L.F.C.; Reis, S. Antioxidant Activity of Vitamin E and Trolox: Understanding of the Factors That Govern Lipid Peroxidation Studies in Vitro. Food Biophys. 2009, 4, 312–320. [Google Scholar] [CrossRef]
- Volkan, Y.M. Investigation of The Evaluation of Diasporic Bauxite from Islahiye Region in Alumina Production. Ph.D. Thesis, Sakarya University, Sakarya, Turkey, 2022. [Google Scholar]
- Božić, A.R.; Filipović, N.R.; Novaković, I.T.; Bjelogrlić, S.K.; Nikolić, J.B.; Drmanić, S.; Marinković, A.D. Synthesis, Antioxidant and Antimicrobial Activity of Carbohydrazones. J. Serbian Chem. Soc. 2017, 82, 495–508. [Google Scholar] [CrossRef]
- Gangarapu, K.; Manda, S.; Jallapally, A.; Thota, S.; Karki, S.S.; Balzarini, J.; De Clercq, E.; Tokuda, H. Synthesis of Thiocarbohydrazide and Carbohydrazide Derivatives as Possible Biologically Active Agents. Med. Chem. Res. 2014, 23, 1046–1056. [Google Scholar] [CrossRef] [PubMed]
- Muğlu, H. Synthesis, Characterization, and Antioxidant Activity of Some New N 4-Arylsubstituted-5-Methoxyisatin-β-Thiosemicarbazone Derivatives. Res. Chem. Intermed. 2020, 46, 2083–2098. [Google Scholar] [CrossRef]
- Wang, X.; Dai, M.; Xie, Y.; Han, J.; Ma, Y.; Chen, C. Experimental Investigation of Evaporation Characteristics of Biodiesel-Diesel Blend Droplets with Carbon Nanotubes and Nanoceria as Nanoadditives. Appl. Surf. Sci. 2020, 505, 144186. [Google Scholar] [CrossRef]
- Dunn, R.O. Effect of Antioxidants on the Oxidative Stability of Methyl Soyate (Biodiesel). Fuel Process. Technol. 2005, 86, 1071–1085. [Google Scholar] [CrossRef]
- Maru, M.M.; Lucchese, M.M.; Legnani, C.; Quirino, W.G.; Balbo, A.; Aranha, I.B.; Costa, L.T.; Vilani, C.; de Sena, L.Á.; Damasceno, J.C.; et al. Biodiesel Compatibility with Carbon Steel and HDPE Parts. Fuel Process. Technol. 2009, 90, 1175–1182. [Google Scholar] [CrossRef]
- Soykan, C. Synthesis, Characterization, and Biological Activity of N-(4-Acetylphenyl)Maleimide and Its Oxime, Carbazone, Thiosemicarbazone Derivatives and Their Polymers. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 1942–1951. [Google Scholar] [CrossRef]
- Aniza, R.; Chen, W.H.; Kwon, E.E.; Bach, Q.V.; Hoang, A.T. Lignocellulosic Biofuel Properties and Reactivity Analyzed by Thermogravimetric Analysis (TGA) toward Zero Carbon Scheme: A Critical Review. Energy Convers. Manag. X 2024, 22, 100538. [Google Scholar] [CrossRef]
- Kutuk, H.; Turkoz, N. Microwave-Assisted Synthesis of Disulfides. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 1515–1522. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Yakan, H.; Cakmak, S.; Kutuk, H.; Yenigun, S.; Ozen, T. Synthesis, Characterization, Antioxidant, and Antibacterial Activities of New 2,3-Dimethoxy and 3-Acetoxy-2-Methyl Benzamides. Res. Chem. Intermed. 2020, 46, 2767–2787. [Google Scholar] [CrossRef]
- Vlase, T.; Doca, N.; Vlase, G.; Bolcu, C.; Borcan, F. Kinetics of Non-Isothermal Decomposition of Three IRGANOX-Type Antioxidants. J. Therm. Anal. Calorim. 2008, 92, 15–18. [Google Scholar] [CrossRef]
- Haji, I.; Yildız, K. Decomposition Kinetics of Diasporitic Bauxite from Gaziantep Region. In Proceedings of the 9th International Scientific Research Congress, Ankara, Turkey, 4–5 December 2021; pp. 439–447. [Google Scholar]
- Angelopoulos, P.; Samouhos, M.; Taxiarchou, M. Thermal Decomposition Kinetics of Greek Diasporic Bauxite. In Proceedings of the OPMR 2016—Opportunities in Processing of Metal Resources in South East Europe, Budapest, Hungary, 28–30 November 2016; pp. 191–200. [Google Scholar]
- Küçük, F.; Yildiz, K. The Decomposition Kinetics of Mechanically Activated Alunite Ore in Air Atmosphere by Thermogravimetry. Thermochim. Acta 2006, 448, 107–110. [Google Scholar] [CrossRef]
- Borugadda, V.B.; Goud, V. Thermal, Oxidative and Low Temperature Properties of Methyl Esters Prepared from Oils of Different Fatty Acids Composition: A Comparative Study. Thermochim. Acta 2014, 577, 33–40. [Google Scholar] [CrossRef]
- Çavuş, M.S.; Yakan, H.; Muğlu, H.; Bakır, T. Novel Carbohydrazones Including 5-Substituted Isatin: Synthesis, Characterization, and Quantum-Chemical Studies on the Relationship between Electronic and Antioxidant Properties. J. Phys. Chem. Solids 2020, 140, 109362. [Google Scholar] [CrossRef]
- Pitucha, M.; Ramos, P.; Wojtunik-Kulesza, K.; Głogowska, A.; Stefańska, J.; Kowalczuk, D.; Monika, D.; Augustynowicz-Kopeć, E. Thermal Analysis, Antimicrobial and Antioxidant Studies of Thiosemicarbazone Derivatives. J. Therm. Anal. Calorim. 2023, 148, 4223–4234. [Google Scholar] [CrossRef]
Compound Code | R | Molecular Formula | Molecular Weight | Melting Point (°C) | Yield % |
---|---|---|---|---|---|
1 | 2-OCH3 | C17H16N4O3S | 356.41 | 218–220 | 87 |
2 | 2-F | C16H13FN4O2S | 344.37 | 234–235 | 82 |
Sample | Biodiesel (%) | Diesel (%) |
---|---|---|
D100 | - | 100 |
B20D80 | 20 | 80 |
B20D80TROLOX | 20 | 80 |
B20D80–2 | 20 | 80 |
B20D80–1 | 20 | 80 |
Sample | (°C) | |
---|---|---|
D100 | 7.97 | 4.55 |
B20D80 | 8.48 | 2.64 |
B20D80TROLOX | 10.89 | 0.62 |
B20D80–2 | 11.53 | 2.03 |
B20D80–1 | 11.65 | 2.39 |
Sample Name | Temperature Range (°C) | (°C) (Tonset) | (%) | ||
---|---|---|---|---|---|
D100 | 25–250 | 99.36 | 0.06 | 11.52 | 5.29 |
B20D80 | 25–250 | 99.12 | 1.10−4 | 7.72 | 2.25 |
B20D80TROLOX | 25–250 | 99.27 | 0.03 | 7.71 | 2.28 |
B20D80–2 | 25–250 | 99.24 | 0.02 | 8.94 | 0.08 |
B20D80–1 | 25–250 | 98.56 | 0.30 | 10.20 | 0.86 |
Compound | ν(O–H) | ν(C–H) Aromatic | ν(C–H) Aliphatic | ν(C=O) | ν(N–H) | ν(C–N) | ν(C–O) |
---|---|---|---|---|---|---|---|
B20D80–2 | – | 2925 | 2874 | 1746 | 1458 | 1199 | 1079 |
B20D80–1 | – | 2925 | 2874 | 1746 | 1458 | 1173 | 1079 |
B20D80 TROLOX | 3687 | 2925 | 2857 | 1746 | – | – | 1079 |
B20D80 | 3687 | 2925 | 2857 | 1746 | – | – | 1079 |
D100 | 3687 | 2925 | 2857 | 1746 | – | – | 1079 |
Compound | IC50 Values μM |
---|---|
1 | 66.178 ± 0.11 b |
2 | 79.927 ± 0.13 c |
Trolox | 8.757 ± 0.07 a |
α | Activation Energies (kJ mol−1) | The Standard Deviation(s) for the Kissinger, Ozawa, and Boswell Methods | ||
---|---|---|---|---|
Kissinger | Ozawa | Boswell | ||
0.1 | 163.05 | 171.68 | 167.37 | 4.31 |
0.2 | 155.18 | 163.89 | 159.53 | 4.35 |
0.3 | 152.00 | 160.77 | 156.38 | 4.38 |
0.4 | 146.72 | 155.54 | 151.13 | 4.41 |
0.5 | 143.70 | 152.59 | 148.15 | 4.44 |
0.6 | 130.64 | 139.65 | 135.14 | 4.50 |
0.7 | 114.96 | 124.38 | 119.67 | 4.71 |
0.8 | 123.40 | 133.24 | 128.32 | 4.92 |
0.9 | 153.22 | 163.51 | 158.36 | 5.14 |
Standard deviation for each method | 16.09 | 15.88 | 15.98 |
α | Activation Energies (kJ mol−1) | The Standard Deviation(s) for the Kissinger, Ozawa, and Boswell Methods | ||
---|---|---|---|---|
Kissinger | Ozawa | Boswell | ||
0.1 | 211.74 | 220.40 | 216.07 | 4.33 |
0.2 | 206.48 | 215.19 | 210.83 | 4.35 |
0.3 | 199.63 | 208.38 | 204.01 | 4.37 |
0.4 | 190.60 | 199.38 | 194.99 | 4.39 |
0.5 | 182.53 | 191.35 | 186.94 | 4.41 |
0.6 | 169.41 | 178.29 | 173.85 | 4.44 |
0.7 | 125.89 | 134.98 | 130.44 | 4.54 |
0.8 | 129.56 | 139.17 | 134.36 | 4.80 |
0.9 | 160.42 | 170.57 | 165.49 | 5.07 |
Standard deviation for each method | 31.56 | 31.24 | 31.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakullukçu, N.T.; Muğlu, H.; Yakan, H.; Yılmaz, V.M.; Marah, S.; İnce, İ.A. Kinetic Insights into the Antioxidant Effect of Isatin-Thiosemicarbazone in Biodiesel Blends. Antioxidants 2024, 13, 819. https://doi.org/10.3390/antiox13070819
Karakullukçu NT, Muğlu H, Yakan H, Yılmaz VM, Marah S, İnce İA. Kinetic Insights into the Antioxidant Effect of Isatin-Thiosemicarbazone in Biodiesel Blends. Antioxidants. 2024; 13(7):819. https://doi.org/10.3390/antiox13070819
Chicago/Turabian StyleKarakullukçu, Nalan Türköz, Halit Muğlu, Hasan Yakan, Volkan Murat Yılmaz, Sarmad Marah, and İkbal Agah İnce. 2024. "Kinetic Insights into the Antioxidant Effect of Isatin-Thiosemicarbazone in Biodiesel Blends" Antioxidants 13, no. 7: 819. https://doi.org/10.3390/antiox13070819
APA StyleKarakullukçu, N. T., Muğlu, H., Yakan, H., Yılmaz, V. M., Marah, S., & İnce, İ. A. (2024). Kinetic Insights into the Antioxidant Effect of Isatin-Thiosemicarbazone in Biodiesel Blends. Antioxidants, 13(7), 819. https://doi.org/10.3390/antiox13070819