Traditional Chinese Medicine for Hashimoto’s Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals
Abstract
:1. Introduction
1.1. Epidemiology and Symptomatology
1.2. Brief Description of Underlying Molecular Mechanism in HT
1.2.1. Oxidative Stress
1.2.2. Immune Imbalance
1.2.3. Genetic Variation
1.3. Treatment
1.3.1. Selenium and HT
1.3.2. Traditional Chinese Medicine and HT
2. Methods
3. Clinical and Translational Evidence on TCM for HT
3.1. Assessment of Clinical Outcomes in TCM for HT
3.2. Human Studies on Chinese Medicine Prescriptions for HT
Biological Activities of Herbs Commonly Used in TCM for HT
3.3. Human Studies on Medicinal Herbs for HT
3.4. Preclinical Studies on Phytochemicals for HT
No. | Phytochemicals (Extracts) | Sources of TCM (Plants) | HT Animal Model | Experimental Groups | Interventions | Treatment Duration | Effect | Potential Mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Saikosaponin-d (SSd) | Bupleurum | mouse | 16 (HT) vs. 10 (HT) vs. 10 (healthy) | SSd dissolved in sodium carboxymethyl cellulose (CMC) solution vs. sodium CMC solution vs. normal saline, respectively | 6 weeks | TPOAb↓ | IFN-γ↓, IL-17↓ | [108] |
2 | Total Glucosides of Paeonia lactiflora (TGPL) | Paeonia lactiflora | rat | 24 (HT) vs.8 (HT) vs. 8 (HT) vs. 8 (healthy) | TGPL (low, medium, high dose) vs. selenium vs. normal saline vs. normal saline, respectively | 6 weeks | TPOAb↓, TGAb↓ | TNF-α↓, IL-10↑ | [109] |
3 | Ginsenosides | Ginseng | rat | 24 (HT) vs. 8 (HT) vs. 8 (healthy) | Ginsenosides (low, medium, high dose) vs. normal saline vs. normal saline, respectively | 8 weeks | TPOAb↓, TGAb↓ | IFN-γ↓, IL-2↓, IL-4↑ | [110,123] |
4 | Tripterygium wilfordii Multiglycosides (TWM) | Tripterygium wilfordii Hook F. | rat | 17 (HT) vs. 17 (HT) vs. 17 (HT) vs. 17 (healthy) | TWM vs. selenium vs. normal saline vs. normal saline, respectively | 4 weeks | TPOAb↓, TGAb↓, FT3↑, FT4↑ | TNF-α↓, IL-10↑, SOD↑, GPx↑, TAC↑ | [111] |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AGEs | advanced glycation end products |
AITD | autoimmune thyroid disease |
Anti-TG | anti-thyroglobulin |
Anti-TPO | anti-thyroid peroxidase |
CAT | catalase |
CMC | carboxymethyl cellulose |
FT3 | Free triiodothyronine |
FT4 | Free thyroxine |
GPx | glutathione peroxidase |
H2O2 | hydrogen peroxide |
HLA-DR | Human Leukocyte Antigen DR |
HRQoL | health-related quality of life |
HT | Hashimoto’s thyroiditis |
IFN-γ | interferon-γ |
IL | interleukin |
L-T4 | levothyroxine |
NOX | NADPH oxidases |
NRF2 | nuclear factor erythroid 2-related factor 2 |
OSI | oxidative stress index |
RCTs | randomized controlled trials |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
SCI | Science Citation Index |
Sec | selenocysteine |
SELENOS | selenoprotein S |
SNPs | single nucleotide polymorphisms |
SOD | superoxide dismutase |
T3 | triiodothyronine |
T4 | thyroxine |
TAC | total antioxidant capacity |
TCM | traditional Chinese medicine |
TGAb | anti-thyroglobulin autoantibodies |
Th | T helper |
TNF-α | tumor necrosis factor-alpha |
TOS | total oxidant status |
TPOAb | anti-thyroid peroxidase autoantibodies |
Treg cells | T regulatory lymphocytes |
TSH | thyroid-stimulating hormone |
References
- McDermott, M.T. Hypothyroidism. Ann. Intern. Med. 2020, 173, ITC1–ITC16. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, F.; Fallahi, P.; Elia, G.; Gonnella, D.; Paparo, S.R.; Giusti, C.; Churilov, L.P.; Ferrari, S.M.; Antonelli, A. Hashimotos’ Thyroiditis: Epidemiology, Pathogenesis, Clinic and Therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101367. [Google Scholar] [CrossRef]
- Ralli, M.; Angeletti, D.; Fiore, M.; D’Aguanno, V.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Hashimoto’s Thyroiditis: An Update on Pathogenic Mechanisms, Diagnostic Protocols, Therapeutic Strategies, and Potential Malignant Transformation. Autoimmun. Rev. 2020, 19, 102649. [Google Scholar] [CrossRef]
- Prummel, M.F.; Wiersinga, W.M. Thyroid Peroxidase Autoantibodies in Euthyroid Subjects. Best Pract. Res. Clin. Endocrinol. Metab. 2005, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Martinez Quintero, B.; Yazbeck, C.; Sweeney, L.B. Thyroiditis: Evaluation and Treatment. Am. Fam. Physician 2021, 104, 609–617. [Google Scholar] [PubMed]
- Caturegli, P.; De Remigis, A.; Rose, N.R. Hashimoto Thyroiditis: Clinical and Diagnostic Criteria. Autoimmun. Rev. 2014, 13, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, Y.; Shen, Y.; Tian, R.; Sheng, Y.; Que, H. Global Prevalence and Epidemiological Trends of Hashimoto’s Thyroiditis in Adults: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 1020709. [Google Scholar] [CrossRef] [PubMed]
- Dhillon-Smith, R.K.; Middleton, L.J.; Sunner, K.K.; Cheed, V.; Baker, K.; Farrell-Carver, S.; Bender-Atik, R.; Agrawal, R.; Bhatia, K.; Edi-Osagie, E.; et al. Levothyroxine in Women with Thyroid Peroxidase Antibodies before Conception. N. Engl. J. Med. 2019, 380, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Thangaratinam, S.; Tan, A.; Knox, E.; Kilby, M.D.; Franklyn, J.; Coomarasamy, A. Association between Thyroid Autoantibodies and Miscarriage and Preterm Birth: Meta-Analysis of Evidence. BMJ 2011, 342, d2616. [Google Scholar] [CrossRef]
- Huisman, P.; Krogh, J.; Nielsen, C.H.; Nielsen, H.S.; Feldt-Rasmussen, U.; Bliddal, S. Thyroglobulin Antibodies in Women with Recurrent Pregnancy Loss: A Systematic Review and Meta-Analysis. Thyroid 2023, 33, 1287–1301. [Google Scholar] [CrossRef]
- Shih, M.-L.; Lee, J.A.; Hsieh, C.-B.; Yu, J.-C.; Liu, H.-D.; Kebebew, E.; Clark, O.H.; Duh, Q.-Y. Thyroidectomy for Hashimoto’s Thyroiditis: Complications and Associated Cancers. Thyroid 2008, 18, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Qi, S.; Zhang, X.; Lai, H.; Li, X.; Xiaoheng, C.; Li, Z.; Yao, S.; Ding, Z. Local Symptoms of Hashimoto’s Thyroiditis: A Systematic Review. Front. Endocrinol. 2022, 13, 1076793. [Google Scholar] [CrossRef]
- Martino, G.; Caputo, A.; Vicario, C.M.; Feldt-Rasmussen, U.; Watt, T.; Quattropani, M.C.; Benvenga, S.; Vita, R. Alexithymia, Emotional Distress, and Perceived Quality of Life in Patients with Hashimoto’s Thyroiditis. Front. Psychol. 2021, 12, 667237. [Google Scholar] [CrossRef] [PubMed]
- Groenewegen, K.L.; Mooij, C.F.; van Trotsenburg, A.S.P. Persisting Symptoms in Patients with Hashimoto’s Disease despite Normal Thyroid Hormone Levels: Does Thyroid Autoimmunity Play a Role? A Systematic Review. J. Transl. Autoimmun. 2021, 4, 100101. [Google Scholar] [CrossRef] [PubMed]
- Patti, M.; Christian, R.; Palokas, M. Association between Anti-Thyroid Antibodies and Quality of Life in Patients with Hashimoto Thyroiditis: A Systematic Review and Meta-Analysis. JBI Evid. Synth. 2021, 19, 2307–2338. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, W.; Li, J.; Shan, Z. Emerging Trends and Hot Spots in Autoimmune Thyroiditis Research from 2000 to 2022: A Bibliometric Analysis. Front. Immunol. 2022, 13, 953465. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, K.; Szmidt, M.K.; Kaluza, J.; Zylka, A.; Sicinska, E. Do Dietary Supplements Affect Inflammation, Oxidative Stress, and Antioxidant Status in Adults with Hypothyroidism or Hashimoto’s Disease?—A Systematic Review of Controlled Trials. Antioxidants 2023, 12, 1798. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.R.; Durães, C.; Ziros, P.G.; Pestana, A.; Esteves, C.; Neves, C.; Carvalho, D.; Bongiovanni, M.; Renaud, C.O.; Chartoumpekis, D.V.; et al. Interaction of Genetic Variations in NFE2L2 and SELENOS Modulates the Risk of Hashimoto’s Thyroiditis. Thyroid 2019, 29, 1302–1315. [Google Scholar] [CrossRef]
- Ruggeri, R.M.; Vicchio, T.M.; Cristani, M.; Certo, R.; Caccamo, D.; Alibrandi, A.; Giovinazzo, S.; Saija, A.; Campennì, A.; Trimarchi, F.; et al. Oxidative Stress and Advanced Glycation End Products in Hashimoto’s Thyroiditis. Thyroid 2016, 26, 504–511. [Google Scholar] [CrossRef]
- Ates, I.; Arikan, M.F.; Altay, M.; Yilmaz, F.M.; Yilmaz, N.; Berker, D.; Guler, S. The Effect of Oxidative Stress on the Progression of Hashimoto’s Thyroiditis. Arch. Physiol. Biochem. 2018, 124, 351–356. [Google Scholar] [CrossRef]
- Ates, I.; Yilmaz, F.M.; Altay, M.; Yilmaz, N.; Berker, D.; Güler, S. The Relationship between Oxidative Stress and Autoimmunity in Hashimoto’s Thyroiditis. Eur. J. Endocrinol. 2015, 173, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Ahsan, H.; Zia, M.K.; Siddiqui, T.; Khan, F.H. Understanding Oxidants and Antioxidants: Classical Team with New Players. J. Food Biochem. 2020, 44, e13145. [Google Scholar] [CrossRef] [PubMed]
- Kochman, J.; Jakubczyk, K.; Bargiel, P.; Janda-Milczarek, K. The Influence of Oxidative Stress on Thyroid Diseases. Antioxidants 2021, 10, 1442. [Google Scholar] [CrossRef] [PubMed]
- Thanas, C.; Ziros, P.G.; Chartoumpekis, D.V.; Renaud, C.O.; Sykiotis, G.P. The Keap1/Nrf2 Signaling Pathway in the Thyroid-2020 Update. Antioxidants 2020, 9, 1082. [Google Scholar] [CrossRef] [PubMed]
- Duthoit, C.; Estienne, V.; Giraud, A.; Durand-Gorde, J.M.; Rasmussen, A.K.; Feldt-Rasmussen, U.; Carayon, P.; Ruf, J. Hydrogen Peroxide-Induced Production of a 40 kDa Immunoreactive Thyroglobulin Fragment in Human Thyroid Cells: The Onset of Thyroid Autoimmunity? Biochem. J. 2001, 360, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Rayman, M.P. Multiple Nutritional Factors and the Risk of Hashimoto’s Thyroiditis. Thyroid 2017, 27, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Rostami, R.; Nourooz-Zadeh, S.; Mohammadi, A.; Khalkhali, H.R.; Ferns, G.; Nourooz-Zadeh, J. Serum Selenium Status and Its Interrelationship with Serum Biomarkers of Thyroid Function and Antioxidant Defense in Hashimoto’s Thyroiditis. Antioxidants 2020, 9, 1070. [Google Scholar] [CrossRef] [PubMed]
- Burek, C.L.; Rose, N.R. Autoimmune Thyroiditis and ROS. Autoimmun. Rev. 2008, 7, 530–537. [Google Scholar] [CrossRef]
- Baser, H.; Can, U.; Baser, S.; Yerlikaya, F.H.; Aslan, U.; Hidayetoglu, B.T. Assesment of Oxidative Status and Its Association with Thyroid Autoantibodies in Patients with Euthyroid Autoimmune Thyroiditis. Endocrine 2015, 48, 916–923. [Google Scholar] [CrossRef]
- Figueroa-Vega, N.; Alfonso-Pérez, M.; Benedicto, I.; Sánchez-Madrid, F.; González-Amaro, R.; Marazuela, M. Increased Circulating Pro-Inflammatory Cytokines and Th17 Lymphocytes in Hashimoto’s Thyroiditis. J. Clin. Endocrinol. Metab. 2010, 95, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Botelho, I.M.B.; Neto, A.M.; Silva, C.A.; Tambascia, M.A.; Alegre, S.M.; Zantut-Wittmann, D.E. Vitamin D in Hashimoto’s Thyroiditis and Its Relationship with Thyroid Function and Inflammatory Status. Endocr. J. 2018, 65, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Akhter, S.; Tasnim, F.M.; Islam, M.N.; Rauf, A.; Mitra, S.; Emran, T.B.; Alhumaydhi, F.A.; Khalil, A.A.; Aljohani, A.S.M.; Al Abdulmonem, W.; et al. Role of Th17 and IL-17 Cytokines on Inflammatory and Auto-Immune Diseases. Curr. Pharm. Des. 2023, 29, 2078–2090. [Google Scholar] [CrossRef] [PubMed]
- Mazzieri, A.; Montanucci, P.; Basta, G.; Calafiore, R. The Role behind the Scenes of Tregs and Th17s in Hashimoto’s Thyroiditis: Toward a Pivotal Role of FOXP3 and BACH2. Front. Immunol. 2022, 13, 1098243. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, S.; Zhou, H. Pathogenic Role of Th17 Cells in Autoimmune Thyroid Disease and Their Underlying Mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101743. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Yu, X.; Shen, L. Autoimmune Thyroid Diseases and Th17/Treg Lymphocytes. Life Sci. 2018, 192, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Zaghlol, R.Y.; Haghighi, A.; Alkhayyat, M.M.; Theyab, O.F.; Owaydah, A.M.; Massad, M.M.; Atari, M.A.; Zayed, A.A. Consanguinity and the Risk of Hashimoto’s Thyroiditis. Thyroid 2017, 27, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Li, C.W.; Hammerstad, S.S.; Stefan, M.; Tomer, Y. Immunogenetics of Autoimmune Thyroid Diseases: A Comprehensive Review. J. Autoimmun. 2015, 64, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Baki, M.; Akman, F.E.; Vural, P.; Doğru-Abbasoğlu, S.; Özderya, A.; Karadağ, B.; Uysal, M. The Combination of Interleukin-10-1082 and Tumor Necrosis Factor α-308 or Interleukin-6-174 Genes Polymorphisms Suggests an Association with Susceptibility to Hashimoto’s Thyroiditis. Int. Immunopharmacol. 2012, 12, 543–546. [Google Scholar] [CrossRef]
- Santos, L.R.; Durães, C.; Mendes, A.; Prazeres, H.; Alvelos, M.I.; Moreira, C.S.; Canedo, P.; Esteves, C.; Neves, C.; Carvalho, D.; et al. A Polymorphism in the Promoter Region of the Selenoprotein S Gene (SEPS1) Contributes to Hashimoto’s Thyroiditis Susceptibility. J. Clin. Endocrinol. Metab. 2014, 99, E719–E723. [Google Scholar] [CrossRef]
- Jonklaas, J.; Bianco, A.C.; Cappola, A.R.; Celi, F.S.; Fliers, E.; Heuer, H.; McAninch, E.A.; Moeller, L.C.; Nygaard, B.; Sawka, A.M.; et al. Evidence-Based Use of Levothyroxine/Liothyronine Combinations in Treating Hypothyroidism: A Consensus Document. Thyroid 2021, 31, 156–182. [Google Scholar] [CrossRef] [PubMed]
- Duntas, L.H. Reassessing Selenium for the Management of Hashimoto’s Thyroiditis: The Selini Shines Bright for Autoimmune Thyroiditis Patients. Thyroid 2024, 34, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Duntas, L.H. Nutrition and Thyroid Disease. Curr. Opin. Endocrinol. Diabetes Obes. 2023, 30, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Fradejas-Villar, N. Consequences of Mutations and Inborn Errors of Selenoprotein Biosynthesis and Functions. Free Radic. Biol. Med. 2018, 127, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Schomburg, L. Selenium, Selenoproteins and the Thyroid Gland: Interactions in Health and Disease. Nat. Rev. Endocrinol. 2011, 8, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int. J. Endocrinol. 2017, 2017, 1297658. [Google Scholar] [CrossRef] [PubMed]
- Winther, K.H.; Rayman, M.P.; Bonnema, S.J.; Hegedüs, L. Selenium in Thyroid Disorders—Essential Knowledge for Clinicians. Nat. Rev. Endocrinol. 2020, 16, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Rayman, M.P.; Lv, H.; Schomburg, L.; Cui, B.; Gao, C.; Chen, P.; Zhuang, G.; Zhang, Z.; Peng, X.; et al. Low Population Selenium Status Is Associated with Increased Prevalence of Thyroid Disease. J. Clin. Endocrinol. Metab. 2015, 100, 4037–4047. [Google Scholar] [CrossRef]
- Wang, W.; Mao, J.; Zhao, J.; Lu, J.; Yan, L.; Du, J.; Lu, Z.; Wang, H.; Xu, M.; Bai, X.; et al. Decreased Thyroid Peroxidase Antibody Titer in Response to Selenium Supplementation in Autoimmune Thyroiditis and the Influence of a Selenoprotein P Gene Polymorphism: A Prospective, Multicenter Study in China. Thyroid 2018, 28, 1674–1681. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, L.; Xu, E.; Bi, Y.; Hu, X.; Pei, X.; Jin, G. Levothyroxine Monotherapy versus Levothyroxine and Selenium Combination Therapy in Chronic Lymphocytic Thyroiditis. J. Endocrinol. Investig. 2017, 40, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Liu, S.; Deng, X.; Li, X.; Lei, J.; Jiang, H.; Liu, M.; Zhang, N.; Liu, S. Clinical Efficacy of Bupleurum inula Flower Soup for Immune Damage Intervention in Hashimoto’s Thyroiditis: A Placebo-Controlled Randomized Trial. Front. Pharmacol. 2022, 13, 1049618. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.-X.; Li, Q.; Li, C.-C.; Huo, J.-J. Efficacy of Chinese Medicine in the Adjuvant Treatment of Hashimoto’s Thyroiditis with Hypothyroidism: A Systematic Review and Meta-Analysis. Biotechnol. Genet. Eng. Rev. 2023, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; ISBN 9787521434538. [Google Scholar]
- Qiu, Y.; Xing, Z.; Xiang, Q.; Yang, Q.; Zhu, J.; Su, A. Insufficient Evidence to Support the Clinical Efficacy of Selenium Supplementation for Patients with Chronic Autoimmune Thyroiditis. Endocrine 2021, 73, 384–397. [Google Scholar] [CrossRef] [PubMed]
- van Zuuren, E.J.; Albusta, A.Y.; Fedorowicz, Z.; Carter, B.; Pijl, H. Selenium Supplementation for Hashimoto’s Thyroiditis. Cochrane Database Syst. Rev. 2013, 2013, CD010223. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, Y.; Chen, P.; Wei, J.; Lv, H.; Wang, S.; Wu, Y.; Zhao, X.; Peng, X.; Rijntjes, E.; et al. Increased Incidence of Hashimoto Thyroiditis in Selenium Deficiency: A Prospective 6-Year Cohort Study. J. Clin. Endocrinol. Metab. 2022, 107, e3603–e3611. [Google Scholar] [CrossRef] [PubMed]
- Huwiler, V.V.; Maissen-Abgottspon, S.; Stanga, Z.; Mühlebach, S.; Trepp, R.; Bally, L.; Bano, A. Selenium Supplementation in Patients with Hashimoto Thyroiditis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Thyroid 2024, 34, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.; Winther, K.H.; Cramon, P.K.; Rasmussen, Å.K.; Feldt-Rasmusssen, U.; Knudsen, N.J.; Bjorner, J.B.; Schomburg, L.; Demircan, K.; Chillon, T.S.; et al. Selenium Supplementation and Placebo Are Equally Effective in Improving Quality of Life in Patients with Hypothyroidism. Eur. Thyroid J. 2024, 13, e230175. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Ma, W.; Zhang, W.; Yin, D.; Tang, Y.; Jia, W.; Jiang, Y.; Wang, C.; Gong, Y. Efficacy and Safety of Ophiocordyceps Sinensis in the Treatment of Hashimoto’s Thyroiditis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2023, 14, 1272124. [Google Scholar] [CrossRef]
- Lin, N.; Wang, J.-J.; Liao, W.-P.; Wen, Y. Meta-Analysis of Clinical Effects of Integrative Medicine in the Treatment of Hashimoto’s Thyroiditis. West. J. Tradit. Chin. Med. 2022, 35, 62–67. [Google Scholar]
- Yu, H.-J.; Chen, J.-L.; Deng, L.; Zuo, Y.-M.; Guo, Y.-L. Effect of Using Jieyu Xiaoying Decoction in Treating Liver Depression and Spleen Deficiency Type Hashimoto’s Thyroiditis and Its Effect on Th17 and Treg Related Factors. J. Sichuan Tradit. Chin. Med. 2022, 40, 85–89. [Google Scholar]
- Wang, L.-N.; Mou, S.-M. Clinical Effect of Fuzheng Jiedu Xiaoying Decoction in Treating Hashimoto’s Thyroiditis. Shaanxi J. Tradit. Chin. Med. 2023, 44, 205–208. [Google Scholar]
- Chen, Q.-Y.; Zhou, L.; Ma, Y.-Y.; Tang, H. Clinical Effects of Jianpi Xiaoying Decoction on Patients with Hashimoto’s Thyroiditis due to Spleen-Qi Deficiency. Chin. Tradit. Pat. Med. 2019, 41, 2102–2106. [Google Scholar]
- Zhao, Y.; Wang, X.-L.; Tian, X.-L.; Pei, X.; Xia, F.-M.; Hua, C.; Zuo, X.-H. Efficacy of Qi-jian Goiter-eliminating Decoction on Hashimoto’s Thyroiditis and Its Effect on Oxidative Stress and Inflammasome. Mod. J. Integr. Tradit. Chin. West. Med. 2023, 32, 2636–2642+2650. [Google Scholar]
- Zhang, D.; Zheng, M.; Fan, Z.-H.; Yang, H.-J. Clinical Study of Qiaojiafang Granule in the Treatment of Hashimoto Thyroiditis. Shanghai J. Tradit. Chin. Med. 2018, 52, 51–53. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, H.-M.; Zhang, Y.-L.; Zhang, Y.; Zhang, L.-L.; Sun, J.-L.; Chen, H.-Y.; Li, F.-H. Clinical Research of Hashimoto’s Thyroiditis Treated with Shugan Sanjie Formula in the Patients with Normal Thyroid Function. World J. Integr. Tradit. West. Med. 2014, 9, 849–851. [Google Scholar] [CrossRef]
- Yin, D.; Hui, Y. Clinical Observation of Jin-kui Shen-qi Pill Combined with Levothyroxine Tablets in Treatment of Hashimoto’s Thyroiditis with Hypothyroidism. Chin. Arch. Tradit. Chin. Med. 2018, 36, 756–758. [Google Scholar] [CrossRef]
- Sun, C.; Ma, J.; Zhao, N. Clinical Observation of Jianggui Yiying Prescription on Treating the Spleen Kidney Yang Deficiency Type of Hashimoto’s Thyroiditis with Hypothyroidism. J. Tianjin Univ. Tradit. Chin. Med. 2016, 35, 15–18. [Google Scholar] [CrossRef]
- Chen, X.-M.; Cai, M.-X.; Zhuang, L.-M.; Luo, L.-Q.; Cai, X.-Y. Clinical Efficacy of Modified Shenling Baizhu San in Treatment of Hashimoto’s Thyroiditis. Chin. J. Exp. Tradit. Med. Formulae 2019, 25, 15–19. [Google Scholar] [CrossRef]
- Shan, F.; Deng, C.; Han, T. Effect of Shugan Jianpi Formula on thyroid function and immune inflammatory response in Hashimoto thyroiditis patients. J. Pract. Pharm. Clin. Remedies 2021, 24, 692–695. [Google Scholar]
- Liu, M.-M.; Hu, C.-P.; Feng, Z.-F.; Gao, J.-F.; Yan, J. Effect of Lianyu Xiaoying Decoction on CD4+CD45RO+ Memory T Cell in Peripheral Blood of Patients with Hashimoto Thyroiditis with Normal Thyroid Function. Guid. J. Tradit. Chin. Med. Pharm. 2021, 27, 78–81. [Google Scholar] [CrossRef]
- Geng, W.-Q.; Qi, S.; Shang, J.-W.; Yuan, J.-J.; Zhang, X.-F.; Ding, Z.-G. Clinical Efficacy of Qinggan Sanjie Xiaoying Formula Combined with Selenium in the Treatment of Hashimoto′s Disease. World Chin. Med. 2022, 17, 3524–3528+3532. [Google Scholar]
- Pu, L.-L.; Zeng, J.-H.; Zhao, Z.-R.; Yang, H. Short-Term and Long-Term Effect of Qiyu Yiqi Shugan Recipe on Autoantibody Level in Patients with Hashimoto Thyroiditis with Syndrome of Qi Deficiency and Liver Depression. Liaoning J. Tradit. Chin. Med. 2021, 48, 134–137+223. [Google Scholar] [CrossRef]
- Bai, Y.; Xia, B.; Xie, W.; Zhou, Y.; Xie, J.; Li, H.; Liao, D.; Lin, L.; Li, C. Phytochemistry and Pharmacological Activities of the Genus Prunella. Food Chem. 2016, 204, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lv, X.; Wang, J.; Zhang, C.; Zhao, J.; Yang, Y. Research on the Anti-Ageing Mechanism of Prunella vulgaris L. Sci. Rep. 2023, 13, 12398. [Google Scholar] [CrossRef] [PubMed]
- Adesso, S.; Russo, R.; Quaroni, A.; Autore, G.; Marzocco, S. Astragalus membranaceus Extract Attenuates Inflammation and Oxidative Stress in Intestinal Epithelial Cells via NF-κB Activation and Nrf2 Response. Int. J. Mol. Sci. 2018, 19, 800. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Song, X.-M.; Dan, L.-W.; Tang, J.-M.; Jiang, Y.; Deng, C.; Zhang, D.-D.; Li, Y.-Z.; Wang, W. Astragali Radix: Comprehensive Review of Its Botany, Phytochemistry, Pharmacology and Clinical Application. Arch. Pharm. Res. 2024, 47, 165–218. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, S.; Zhang, J.; Yuan, F. Systematic Review of Ethnomedicine, Phytochemistry, and Pharmacology of Cyperi Rhizoma. Front. Pharmacol. 2022, 13, 965902. [Google Scholar] [CrossRef]
- Lu, Y.; Yin, L.; Yang, W.; Wu, Z.; Niu, J. Antioxidant Effects of Paeoniflorin and Relevant Molecular Mechanisms as Related to a Variety of Diseases: A Review. Biomed. Pharmacother. 2024, 176, 116772. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Han, Y.; Zheng, A.; Liu, G.; Meng, K.; Yang, P.; Chen, Z. Effects of Crude Extract of Glycyrrhiza Radix and Atractylodes macrocephala on Immune and Antioxidant Capacity of SPF White Leghorn Chickens in an Oxidative Stress Model. Antioxidants 2024, 13, 578. [Google Scholar] [CrossRef]
- Jeong, D.; Dong, G.-Z.; Lee, H.J.; Ryu, J.-H. Anti-Inflammatory Compounds from Atractylodes macrocephala. Molecules 2019, 24, 1859. [Google Scholar] [CrossRef]
- Yang, L.; Yu, H.; Hou, A.; Man, W.; Wang, S.; Zhang, J.; Wang, X.; Zheng, S.; Jiang, H.; Kuang, H. A Review of the Ethnopharmacology, Phytochemistry, Pharmacology, Application, Quality Control, Processing, Toxicology, and Pharmacokinetics of the Dried Rhizome of Atractylodes macrocephala. Front. Pharmacol. 2021, 12, 727154. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Nassiri-Asl, M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytother. Res. 2015, 29, 1868–1886. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Huang, N.; Liu, R.; Sun, R. A Comprehensive Review and Perspectives on Pharmacology and Toxicology of Saikosaponins. Phytomedicine 2018, 50, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Cholet, J.; Decombat, C.; Vareille-Delarbre, M.; Gainche, M.; Berry, A.; Senejoux, F.; Ripoche, I.; Delort, L.; Vermerie, M.; Fraisse, D.; et al. In Vitro Anti-Inflammatory and Immunomodulatory Activities of an Extract from the Roots of Bupleurum rotundifolium. Medicines 2019, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Zhang, H.; Wang, S.; Xiang, Z.; Kong, H.; Xue, Q.; He, M.; Yu, X.; Li, Y.; Sun, D.; et al. A Review on the Advances in the Extraction Methods and Structure Elucidation of Poria cocos Polysaccharide and Its Pharmacological Activities and Drug Carrier Applications. Int. J. Biol. Macromol. 2022, 217, 536–551. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Deng, Z.; Peng, X.; Tian, Y. Study on the Pharmacodynamic Effect of Rhizoma Dioscoreae Polysaccharides on Cerebral Ischemia-Reperfusion Injury in Rats and the Possible Mechanism. J. Ethnopharmacol. 2022, 296, 115517. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, F.; Zhang, J.; Chen, J.; Chen, W.; Hong, Y.; Hu, J.; Liu, Q. Research Progress on the Structure, Derivatives, Pharmacological Activity, and Drug Carrier Capacity of Chinese Yam Polysaccharides: A Review. Int. J. Biol. Macromol. 2024, 261, 129853. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, C.; Wei, Y.; Wang, X.; Jia, J.; Li, J.; Li, K.; Cao, G.; Yang, P. Isolation, Purification, Structural Characteristics, Pharmacological Activities, and Combined Action of Hedyotis diffusa Polysaccharides: A Review. Int. J. Biol. Macromol. 2021, 183, 119–131. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Hu, R.-X.; Zhao, H.; Yang, W.; Yu, D.-D.; Li, H.-M.; Liao, X.; Gu, H. Systematic Review and Trail Sequential Analysis of Preparation of Xiakucao for Hashimoto’s Thyroiditis. China J. Chin. Mater. Medica 2020, 45, 5777–5788. [Google Scholar] [CrossRef]
- Zhang, L.-Q.; Lu, H.; Xu, P.-Y. Effect of Huangqi Capsule on the Level of Autoimmune Antibodies in Patients with Hashimoto’s Thyroiditis. World Chin. Med. 2016, 11, 1279–1281+1285. [Google Scholar]
- Cao, Y.-J.; Xu, Z.-J.; Chen, Y.-Q.; Jiang, S.-S.; Li, H.; Luo, Y.-P. Effects of dioscorea nipponica on the expression of Th17/Treg cytokines in patients with hashimoto thyroiditis. Chin. J. Pract. Pharm. Clin. Remedies 2016, 31, 3294–3297. [Google Scholar]
- Guan, H.-R.; Li, B.; Zhang, Z.-H.; Wu, H.-S.; He, X.-L.; Dong, Y.-J.; Su, J.; Lv, G.-Y.; Chen, S.-H. Integrated Bioinformatics and Network Pharmacology to Explore the Therapeutic Target and Molecular Mechanisms of Bailing Capsule on Polycystic Ovary Syndrome. BMC Complement. Med. Ther. 2023, 23, 458. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gao, Y.; Zhou, Y.; Yu, F.; Li, X.; Zhang, N. Mechanism of Cordyceps Sinensis and Its Extracts in the Treatment of Diabetic Kidney Disease: A Review. Front. Pharmacol. 2022, 13, 881835. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Luo, L.; Dressel, W.; Shadier, G.; Krumbiegel, D.; Schmidtke, P.; Zepp, F.; Meyer, C.U. Cordycepin Is an Immunoregulatory Active Ingredient of Cordyceps Sinensis. Am. J. Chin. Med. 2008, 36, 967–980. [Google Scholar] [CrossRef]
- Yang, L.; Li, G.; Chai, Z.; Gong, Q.; Guo, J. Synthesis of Cordycepin: Current Scenario and Future Perspectives. Fungal Genet. Biol. 2020, 143, 103431. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, T.; Yoo, S.-K.; Kim, S.-W.; Hwang, S.-Y.; Sohn, S.-H.; Kim, I.-W.; Kim, S.-K. Cordycepin (3′-Deoxyadenosine) Attenuates Age-Related Oxidative Stress and Ameliorates Antioxidant Capacity in Rats. Exp. Gerontol. 2012, 47, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-S.; Hua, C.; Yang, J.-Y.; Xia, F.-M.; Xie, M.; Zhao, Y.; Zuo, X.-H. Advances in the Treatment of Autoimmune Thyroiditis with Prunella vulgaris L. Mod. J. Integr. Tradit. Chin. West. Med. 2021, 30, 1018–1022. [Google Scholar]
- Liu, G.-X.; Chen, F.; Gao, W.; Wang, X.-Y.; Lu, Y.-M.; Hou, Z.; Zhao, L.-C. Study on Effect of Astragaloside IV on Apoptosis of Thyroid Cells in Rats with Hashimoto’s Thyroiditis and RhoA/ROCK2 Pathway. Chin. J. Immunol. 2023, 39, 2517–2522. [Google Scholar]
- Pickering, I.J.; Wright, C.; Bubner, B.; Ellis, D.; Persans, M.W.; Yu, E.Y.; George, G.N.; Prince, R.C.; Salt, D.E. Chemical Form and Distribution of Selenium and Sulfur in the Selenium Hyperaccumulator Astragalus bisulcatus. Plant Physiol. 2003, 131, 1460–1467. [Google Scholar] [CrossRef]
- Ye, R.; Guo, Q.; Huang, J.; Wang, Z.; Chen, Y.; Dong, Y. Eucommia Ulmoides Polysaccharide Modified Nano-Selenium Effectively Alleviated DSS-Induced Colitis through Enhancing Intestinal Mucosal Barrier Function and Antioxidant Capacity. J. Nanobiotechnol. 2023, 21, 222. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Tang, T.; Tang, W.; Long, Y.; Wang, L.; Liu, M. Astragalus Improves Intestinal Barrier Function and Immunity by Acting on Intestinal Microbiota to Treat T2DM: A Research Review. Front. Immunol. 2023, 14, 1243834. [Google Scholar] [CrossRef]
- Song, Q.; Cheng, S.W.; Li, D.; Cheng, H.; Lai, Y.S.; Han, Q.; Wu, H.Y.; Shaw, P.C.; Zuo, Z. Gut Microbiota Mediated Hypoglycemic Effect of Astragalus membranaceus Polysaccharides in Db/Db Mice. Front. Pharmacol. 2022, 13, 1043527. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, C.; Fu, X. Hypoglycemic Effect of the Polysaccharides from Astragalus membranaceus on Type 2 Diabetic Mice Based on the “Gut Microbiota-Mucosal Barrier”. Food Funct. 2022, 13, 10121–10133. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, L.; Ma, Q.; Zhang, X.; Chen, M.; Liu, F.; Zhang, T.; Jia, W.; Zhu, L.; Qi, W.; et al. Astragalus Polysaccharide Modulates the Gut Microbiota and Metabolites of Patients with Type 2 Diabetes in an In Vitro Fermentation Model. Nutrients 2024, 16, 1698. [Google Scholar] [CrossRef]
- Zhao, W.; Duan, C.; Liu, Y.; Lu, G.; Lyu, Q.; Liu, X.; Zheng, J.; Zhao, X.; Wang, S.; Zhao, H. Modulating Effects of Astragalus Polysaccharide on Immune Disorders via Gut Microbiota and the TLR4/NF-κB Pathway in Rats with Syndrome of Dampness Stagnancy Due to Spleen Deficiency. J. Zhejiang Univ. Sci. B 2023, 24, 650–662. [Google Scholar] [CrossRef]
- Du, P.; Xu, J.; Jiang, Y.; Zhao, J.; Gao, C.; Fang, Y.; Yang, X.; Yang, Y.-P.; Zhang, J.-A. Saikosaponin-d Attenuates Hashimoto’s Thyroiditis by Regulating Macrophage Polarization. J. Immunol. Res. 2022, 2022, 7455494. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.-F.; Xiang, N.; Zuo, X.-H.; Yu, X.-R.; Zhao, Y.; Chen, J.-D. Effects of Total Glucosides of Paeonia lactiflora on Intestinal Mucosal Barrier and Intestinal Flora in Rats with Autoimmune Thyroiditis. Chin. Tradit. Herb. Drugs 2021, 52, 3269–3277. [Google Scholar]
- Chen, J.; Feng, X.; Huang, Q. Modulation of T-Bet and GATA-3 Expression in Experimental Autoimmune Thyroiditis Rats through Ginsenoside Treatment. Endocr. Res. 2016, 41, 28–33. [Google Scholar] [CrossRef]
- Yang, N. Effect of Tripterygium Wilfordii Extract on Serum IL-10, Antibody Levels and Antioxidant Capacity in Autoimmune Thyroiditis Rats. Chin. Arch. Tradit. Chin. Med. 2019, 37, 2744–2747+2831. [Google Scholar] [CrossRef]
- Jiang, N.; Yu, J.; Yang, L.; Liu, T. Research Progress on Pharmacological Action of Chinese Herb Saikosaponin. Glob. Tradit. Chin. Med. 2018, 11, 796–800. [Google Scholar]
- Yuan, B.; Yang, R.; Ma, Y.; Zhou, S.; Zhang, X.; Liu, Y. A Systematic Review of the Active Saikosaponins and Extracts Isolated from Radix Bupleuri and Their Applications. Pharm. Biol. 2017, 55, 620–635. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Zhang, P.; Xu, X.-X.; Pang, B. Total Glucosides of Paeony Inhibited Autophagy and Improved Acute Kidney Injury Induced by Ischemia-Reperfusion via the lncRNA TUG1/miR-29a/PTEN Axis. Drug Des. Dev. Ther. 2021, 15, 2229–2242. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Ma, Z.; Chu, W.; Jiang, P.; Fu, Y.; Wang, P. Identification and Hepatoprotective Activity of Total Glycosides of Paeony with High Content of Paeoniflorin Extracted from Paeonia lactiflora Pall. Food Chem. Toxicol. 2023, 173, 113624. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Li, H.; Guo, H.; Wu, S.; Lu, C.; Chen, Y.; Li, S. Efficacy and Safety of Total Glucosides of Paeony in the Treatment of Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 932874. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Jiang, W.; Sun, X.; Ma, T.; Xu, W.; Shen, F.; Li, H.; Xie, S.; Li, B.; Li, X. Total Glucosides of Paeony for the Treatment of Psoriasis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phytomedicine 2019, 62, 152940. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Dong, Y.; Yu, X.; Zhang, L.; Li, W. Exploring the Mechanism of Action of Total Glucosides of Paeony against Autoimmune Thyroiditis Based on Network Pharmacology and Molecular Docking. Medicine 2023, 102, e36290. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, C.; Feng, S.; He, R.; Zhang, S. Intestinal Microbiota Regulates the Gut-Thyroid Axis: The New Dawn of Improving Hashimoto Thyroiditis. Clin. Exp. Med. 2024, 24, 39. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, E.P.; Mikhailopulo, K.I.; Sviridov, O.V.; Novik, G.I.; Knirel, Y.A.; Szwajcer Dey, E. The Role of Components of Bifidobacterium and Lactobacillus in Pathogenesis and Serologic Diagnosis of Autoimmune Thyroid Diseases. Benef. Microbes 2011, 2, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E.; Wahl, R. Microbiota and Thyroid Interaction in Health and Disease. Trends Endocrinol. Metab. 2019, 30, 479–490. [Google Scholar] [CrossRef]
- Yu, S.E.; Mwesige, B.; Yi, Y.-S.; Yoo, B.C. Ginsenosides: The Need to Move Forward from Bench to Clinical Trials. J. Ginseng Res. 2019, 43, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Feng, X.-H.; Zhang, Y.-X.; Zhao, Y.-L.; Miao, Q.; Lin, X.-J. Effect of Ginsenosides on Th1/Th2-Related Cytokines in Rats with Experimental Autoimmune Thyroiditis. J. Tradit. Chin. Med. 2013, 54, 2132–2134. [Google Scholar] [CrossRef]
- Ge, J.-C.; Qian, Q.; Gao, Y.-H.; Zhang, Y.-F.; Li, Y.-X.; Wang, X.; Fu, Y.; Ma, Y.-M.; Wang, Q. Toxic Effects of Tripterygium Glycoside Tablets on the Reproductive System of Male Rats by Metabolomics, Cytotoxicity, and Molecular Docking. Phytomedicine 2023, 114, 154813. [Google Scholar] [CrossRef] [PubMed]
Common TCM Symptoms | Absent (0) | Mild (2) | Moderate (4) | Severe (6) |
---|---|---|---|---|
1. Anterior neck enlargement | Absent | Enlargement is palpable but not visible | Enlargement is both visible and palpable, but it does not exceed the sternocleidomastoid muscle | Enlargement beyond the sternocleidomastoid muscle |
2. Cold intolerance | Absent | Aversion to wind | Aversion to cold but without need to add extra clothes | Aversion to cold, with need to add extra clothes |
3. Epigastric pain | Absent | Occasional | Pain for less than 2 h per day | Persistent pain |
4. Emotional instability | Absent | Occasional | Frequent but manageable | Frequent and difficult to control |
5. Fatigue | Absent | Fatigue after strenuous activity | Fatigue after light activity | Fatigue at the resting stage |
6. Loss of appetite | Absent | Occasional | Eating 1/3 to one-half less than usual | Eating less than one-half of usual |
7. Sleepiness | Absent | Mildy sleepy | Moderately sleepy | Overtly sleepy |
8. Insomnia | Absent | Occasional | Frequent | Almost daily |
9. Constipation | Absent | Difficulty in defecation, one bowel movement per day | Difficulty in defecation, one bowel movement every 2–3 days | Difficulty in defecation, one bowel movement every more than 3 days |
10. Edema | Absent | Facial or lower extremity edema | Facial and lower extremity edema | Generalized edema |
Category | Definition |
---|---|
1. Clinical cure | Disappearance or near disappearance of clinical symptoms and signs in TCM and reduction in TCM syndrome score by ≥95% |
2. Obvious effect | Significant improvement of clinical symptoms and signs, reduction in TCM syndrome score by 70–95% |
3. Effective | Improvement of clinical symptoms and signs in TCM, reduction in TCM syndrome score by 30–70% |
4. Ineffective | No obvious improvement in clinical symptoms and signs, or even aggravation, and reduction in TCM syndrome score < 30%. |
No. | TCM Formula | Constituents | Study Design | Thyroid Function | Interventions (Sample Size) | Treatment Duration | TCM Effects | Potential Mechanisms | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Fuzheng-Jiedu-Xiaoying decoction | Astragalus membranaceus, pangolin, Lonicera japonica, Prunella, Angelica sinensis, Forsythia suspensa, Scutellaria barbata, Buthus martensii karsch, Trionyx sinensis wiegmann, Glycyrrhiza uralensis | Randomized, controlled | / | TCM (n = 30) vs. Selenium (n = 30) | 12 weeks | TPOAb↓, TGAb↓, FT3↑, FT4↑, TSH↓, TCM syndrome score↓, total effective rate↑, thyroid volume↓ | Treg ratio↑, Th17 ratio↓, Th17/Treg ratio↓, IL-17↓, IL-6↓ | [63] |
2 | Jianpi-Xiaoying decoction | Astragalus membranaceus, Atractylodes macrocephala, Codonopsis pilosula, Poria cocos, Curcuma phaeocaulis, Sinapis alba, Arctium lappa, Prunella, Hedyotis diffusa, Euphorbia humifusa, Cyperus rotundus, Epimedium brevicornu, Ganoderma lucidum, Glycyrrhiza uralensis | Randomized, controlled | / | TCM (n = 40) vs. Selenium (n = 40) | 12 weeks | TPOAb↓, TGAb↓, TCM syndrome score↓, total effective rate↑ | IFN-γ↓, IL-4/IFN-γ ratio↑ | [64] |
3 | Qijian-Goiter-eliminating decoction | Astragalus membranaceus, Euonymus alatus, Dioscorea nipponica makino, Paeonia ostii | Randomized, controlled | Euthyroid | TCM (n = 30) vs. Selenium (n = 30) | 12 weeks | TPOAb↓, TGAb↓, thyroid volume↓, TCM syndrome score↓, total effective rate↑ | MDA↓, SOD↑, GPx↑, TAC↑, IL-1β↓, IL-18↓ | [65] |
4 | Qiaojiafang granule | Astragalus membranaceus, Prunella, Atractylodes macrocephala, Forsythia suspensa, Rehmannia, Cyperus rotundus | Randomized, controlled | Euthyroid | TCM (n = 35) vs. Selenium (n = 35) | 12 weeks | TPOAb↓, TGAb↓ | / | [66] |
5 | Shugan Sanjie formula | Bupleurum, Cyperus rotundus, Prunella, Fritillaria, Paeonia ostii, Glycyrrhiza uralensis | Randomized, controlled | Euthyroid | TCM (n = 60) vs. Placebo (n = 60) | 12 weeks | TPOAb↓, TGAb↓, FT3↑, FT4↑, TSH↓, TCM syndrome score↓, total effective rate↑, thyroid volume↓ | / | [67] |
6 | Jieyu-Xiaoying decoction | Dioscorea nipponica makino, Ostrea gigas, Hedyotis diffusa, Bupleurum, Angelica sinensis, Paeonia ostii, Dioscorea opposita thunb, Cyperus rotundus, Atractylodes macrocephala, Poria cocos, Scutellaria barbata, Pseudostellaria heterophylla, Sparganium stoloniferum, Curcuma phaeocaulis, Scutellaria baicalensis, Pinellia ternata, Fritillaria thunbergii | Randomized, controlled | / | TCM + Selenium (n = 47) vs. Selenium (n = 47) | 12 weeks | TPOAb↓, TGAb↓, TSH↓, thyroid volume↓, TCM syndrome score↓, total effective rate↑ | IFN-γ↓, IL-17↓, IL-10↑, IL-35↑ | [62] |
7 | Jinkui-Shenqi pill | Rehmannia, Dioscorea opposita thunb, Cornus officinalis, Poria cocos, Moutan cortex, Alisma orientale, Cinnamomum cassia presl, Aconitum carmichaelii, Achyranthes bidentata, Plantago asiatica | Controlled | Hypothyroid | TCM + L-T4 (n = 30) vs. L-T4 (n = 34) | 12 weeks | TPOAb↓, TGAb↓, TSH↓, total effective rate↑ | / | [68] |
8 | Bupleurum inula Flower Soup | Bupleurum, Paeonia ostii, Pinellia, Fritillaria, Prunella, Cyperus rotundus, Codonopsis, Inula | Randomized, controlled | Hypothyroid | TCM + L-T4 (n = 24) vs. Placebo + L-T4 (n = 24) | 8 weeks | TPOAb↓, TGAb↓, TSH↓, thyroid volume↓, HRQoL score↑ | / | [52] |
9 | Jianggui-Yiying decoction | Zingiber officinale, Cinnamomum cassia, Rehmannia, Dioscorea opposita thunb, Poria cocos, Alisma orientale, Prunella, Scrophularia ningpoensis, Astragalus membranaceus, Atractylodes macrocephala, Angelica sinensis, Ligusticum chuanxiong, Citrus reticulata blanco | Randomized, controlled | Hypothyroid | TCM + L-T4 (n = 30) vs. L-T4 (n = 30) | 12 weeks | TPOAb↓, TGAb↓, FT3↑, FT4↑, TSH↓, TCM syndrome score↓ | / | [69] |
10 | Modified-Shenling-Baizhu San | Panax ginseng, Atractylodes macrocephala, Poria cocos, Glycyrrhiza uralensis, Dolichos lablab, Dioscorea opposita thunb, Coix lacryma-jobi, Nelumbo nucifera, Amomum villosum, Platycodon grandiflorum, Scrophularia ningpoensis, Fritilaria thunbergii, Ostrea gigas, Prunella, Cremastra appendiculata | Randomized, controlled | Hypothyroid | TCM + L-T4 (n = 34) vs. L-T4 (n = 34) | 12 weeks | TPOAb↓, TGAb↓, FT3↑, FT4↑, TSH↓, TCM syndrome score↓, total effective rate↑ | / | [70] |
11 | Shugan-Jianpi formula | Bupleurum, Atractylodes macrocephala, Astragalus membranaceus, Paeonia ostii, Prunella, Sparganium stoloniferum, Cyperus rotundus, Citrus reticulata blanco, Glycyrrhiza uralensis | Randomized, controlled | Hypothyroid | TCM + L-T4 (n = 41) vs. L-T4 (n = 41) | 4 weeks | TPOAb↓, TGAb↓, FT3↑, FT4↑, TSH↓, TCM syndrome score↓, total effective rate↑ | IFN-γ↓, TNF-α↓, IL-8↓, IL-6↓ | [71] |
12 | Lianyu-Xiaoying decoction | Bupleurum, Cyperus rotundus, Curcuma wenyujin, Paeonia ostii, Atractylodes macrocephala, Poria cocos, Pinellia ternata, Fritilaria thunbergii, Dioscorea nipponica makino, Hedyotis diffusa, Paris polyphylla, Scutellaria barbata, Glycyrrhiza uralensis | Randomized, controlled | Euthyroid | TCM + Selenium (n = 44) vs. TCM (n = 44) vs. Selenium (n = 44) | 12 weeks | TPOAb↓, TGAb↓ | IFN-γ↓, IL-17↓ | [72] |
13 | Qinggan-Sanjie-Xiaoying formula | Prunella, Platycodon grandiflorum, Paeonia ostii, Ostrea gigas, Astragalus membranaceus, Scutellaria baicalensis, Paeonia suffruticosa, Hyriopsis cumingii, Ranunculus ternatus, Bupleurum, Albizia julibrissin | Retrospective | Euthyroid | TCM + Iodine-restricted diet (n = 40) vs. TCM + Selenium + Iodine-restricted diet (n = 40) vs. Iodine-restricted diet (n = 38) | 12 weeks | TPOAb↓, TGAb↓, TCM syndrome score↓ | / | [73] |
14 | Qiyu-Yiqi-Shugan recipe | Astragalus membranaceus, Cyperus rotundus, Curcuma wenyujin, Ganoderma lucidum, Hedyotis diffusa, Glycyrrhiza uralensis | Controlled | Euthyroid or Subclinical hypothyroidism | TCM + Selenium (n = 89) vs. TCM (n = 140) vs. Selenium (n = 110) | 8 weeks | TPOAb↓, TGAb↓ | / | [74] |
No. | TCM Name | Use Frequency (in Table 3) | Medicinal Herbs | Bioactivities | Ref. |
---|---|---|---|---|---|
1 | Prunella | 9 | Dried fruit spikes of Prunella vulgaris L. | AO, IM, AI, AA | [75,76] |
2 | Astragalus membranaceus | 8 | Dried roots of Astragalus membranaceus (Fisch.) Bge | AO, IM, AI, AA | [77,78] |
3 | Cyperus rotundus | 8 | Dried rhizomes of Cyperus rotundus L. | AO, AI | [79] |
4 | Paeonia ostii | 7 | Dried roots of Paeonia lactiflora Pall. | AO, IM, AI | [80] |
5 | Atractylodes macrocephala | 7 | Dried rhizomes of Atractylodes macrocephala Koidz. | AO, IM, AI | [81,82,83] |
6 | Glycyrrhiza uralensis | 7 | Dried rhizomes of Glycyrrhiza uralensis Fisch. | AO, IM, AI | [84] |
7 | Bupleurum | 6 | Dried roots of Bupleurum chinense DC. | AO, IM, AI, AA | [85,86] |
8 | Poria cocos | 6 | The dried sclerotium of Poria cocos (Schw.) Wolf | AO, IM, AI | [87] |
9 | Dioscorea opposita thunb | 4 | Dried rhizomes of Dioscorea opposita Thunb. | AO, IM, AI, AA | [88,89] |
10 | Hedyotis diffusa | 4 | Dried whole plants of Oldenlandia diffusa(Willd.) Roxb. | AO, IM, AI | [90] |
No. | TCM Name | Medicinal Herbs | Study Design | Thyroid Function | Sample Size | Interventions | Treatment Duration | TCM Effects | Potential Mechanisms | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | Cordyceps sinensis | The dried fungus Cordyceps sinensis growing on caterpillar larvae | Meta-analysis | Variable | 1014 (14 RCTs) | TCM + Iodine-restricted diet or L-T4 vs. Iodine-restricted diet or L-T4 | Variable | TPOAb↓, TGAb↓, FT4↑ | TNF-α↓, IL-2↓, IL-6↓ | [60] |
2 | Prunella | Dried fruit spikes of Prunella vulgaris L. | Meta-analysis | Hypothyroid | 1215 (11 RCTs) | TCM + L-T4 vs. L-T4 | Variable | TPOAb↓, thyroid volume↓, total effective rate↑ | / | [91] |
3 | Astragalus membranaceus | Dried roots of Astragalus membranaceus (Fisch.) Bge | Randomized, controlled | / | 30 vs. 30 | TCM + Iodine-restricted diet vs. Iodine-restricted diet | 12 weeks | TPOAb↓, TGAb↓ | / | [92] |
4 | Dioscorea nipponica makino | Dried tubers of Dioscorea nipponica makino | Randomized, controlled | Hypothyroid | 32 vs. 32 | TCM + L-T4 vs. L-T4 | 24 weeks | TPOAb↓, TGAb↓, FT3↑, FT4↑, TSH↓, TCM syndrome score↓, total effective rate↑ | Treg ratio↑, Th17 ratio↓, IL-6↓ | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Ziros, P.G.; Chartoumpekis, D.V.; Psarias, G.; Duntas, L.; Zuo, X.; Li, X.; Ding, Z.; Sykiotis, G.P. Traditional Chinese Medicine for Hashimoto’s Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals. Antioxidants 2024, 13, 868. https://doi.org/10.3390/antiox13070868
Huang S, Ziros PG, Chartoumpekis DV, Psarias G, Duntas L, Zuo X, Li X, Ding Z, Sykiotis GP. Traditional Chinese Medicine for Hashimoto’s Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals. Antioxidants. 2024; 13(7):868. https://doi.org/10.3390/antiox13070868
Chicago/Turabian StyleHuang, Sheng, Panos G. Ziros, Dionysios V. Chartoumpekis, Georgios Psarias, Leonidas Duntas, Xinhe Zuo, Xinyi Li, Zhiguo Ding, and Gerasimos P. Sykiotis. 2024. "Traditional Chinese Medicine for Hashimoto’s Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals" Antioxidants 13, no. 7: 868. https://doi.org/10.3390/antiox13070868
APA StyleHuang, S., Ziros, P. G., Chartoumpekis, D. V., Psarias, G., Duntas, L., Zuo, X., Li, X., Ding, Z., & Sykiotis, G. P. (2024). Traditional Chinese Medicine for Hashimoto’s Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals. Antioxidants, 13(7), 868. https://doi.org/10.3390/antiox13070868