Antioxidant and Anti-Apoptotic Neuroprotective Effects of Cinnamon in Imiquimod-Induced Lupus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animals and Study Groups
2.3. Hippocampal Cell Culture
2.4. Hippocampus Histology and Immunofluorescence
2.5. Western Blot and Antibody Array
2.6. Live-Cell ROS Imaging
2.7. Statistical Analysis
3. Results
3.1. In Vivo Results
3.1.1. IgG Deposition in Brain Tissue and Activation of TLR7/MyD88 Pathway
3.1.2. Oxidative Stress Markers in Brain Tissue
3.1.3. Apoptosis Markers in Brain Tissue
3.2. In Vitro Results of Cell Cultures Treated with Plasma of Different Mice Groups
3.2.1. ROS Imaging and Oxidative Markers
3.2.2. TLR7/MyD88 Pathway
3.2.3. Apoptotic Markers
3.3. In Vitro Results of Cell Cultures Treated with Imiquimod or Imiquimod with Cinnamon
3.3.1. TLR7/MyD88 Pathway
3.3.2. ROS Imaging and Oxidative Stress Markers
3.3.3. Apoptosis Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duarte-Delgado, N.P.; Cala, M.P.; Barreto, A.; Rodríguez, C.L.-S. Metabolites and Metabolic Pathways Associated with Rheumatoid Arthritis and Systemic Lupus Erythematosus. J. Transl. Autoimmun. 2022, 5, 100150. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ahsan, H. Singlet Oxygen Species and Systemic Lupus Erythematosus: A Brief Review. J. Immunoass. Immunochem. 2019, 40, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Shruthi, S.; Thabah, M.M.; Zachariah, B.; Negi, V.S. Association of Oxidative Stress with Disease Activity and Damage in Systemic Lupus Erythematosus: A Cross Sectional Study from a Tertiary Care Centre in Southern India. Indian. J. Clin. Biochem. 2021, 36, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yan, P.; Song, X.; Zhang, S.; Deng, Y.; Huang, C.; Zhao, X.; Liu, S.; Cheng, X.; Liao, D. MT-CO1 Expression in Nine Organs and Tissues of Different-Aged MRL/Lpr Mice: Investigation of Mitochondrial Respiratory Chain Dysfunction at Organ Level in Systemic Lupus Erythematosus Pathogenesis. Arch. Rheumatol. 2022, 37, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Monaco, A.; Ferrandino, I.; Boscaino, F.; Cocca, E.; Cigliano, L.; Maurano, F.; Luongo, D.; Spagnuolo, M.S.; Rossi, M.; Bergamo, P. Conjugated Linoleic Acid Prevents Age-Dependent Neurodegeneration in a Mouse Model of Neuropsychiatric Lupus via the Activation of an Adaptive Response. J. Lipid Res. 2018, 59, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Sinha, K.; Das, J.; Pal, P.B.; Sil, P.C. Oxidative Stress: The Mitochondria-Dependent and Mitochondria-Independent Pathways of Apoptosis. Arch. Toxicol. 2013, 87, 1157–1180. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Wang, H.; Lu, L.; Chen, J.; Cheng, Q.; Guo, M.; Hou, Y.; Dou, H. Hippocampal Microglia CD40 Mediates NPSLE Cognitive Dysfunction in Mice. J. Neuroimmunol. 2021, 357, 577620. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.J.; Cañete, P.F.; Wang, H.; Medhavy, A.; Bones, J.; Roco, J.A.; He, Y.; Qin, Y.; Cappello, J.; Ellyard, J.I.; et al. TLR7 Gain-of-Function Genetic Variation Causes Human Lupus. Nature 2022, 605, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-P.; Hsu, T.-C.; Hsu, G.-J.; Li, S.-L.; Tzang, B.-S. Cystamine Attenuates the Expressions of NOS- and TLR-Associated Molecules in the Brain of NZB/W F1 Mice. Eur. J. Pharmacol. 2009, 607, 102–106. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, J.; Zhang, R.; Zhang, L.; Zhang, Q.; Yang, H.; An, J. Neuroprotective Effects of Natural Compounds on Neurotoxin-Induced Oxidative Stress and Cell Apoptosis. Nutr. Neurosci. 2022, 25, 1078–1099. [Google Scholar] [CrossRef]
- Mashhadi, N.S.; Ghiasvand, R.; Hariri, M.; Askari, G.; Feizi, A.; Darvishi, L.; Hajishafiee, M.; Barani, A. Effect of Ginger and Cinnamon Intake on Oxidative Stress and Exercise Performance and Body Composition in Iranian Female Athletes. Int. J. Prev. Med. 2013, 4, S31–S35. [Google Scholar] [PubMed]
- Amin, K.A.; Abd El-Twab, T.M. Oxidative Markers, Nitric Oxide and Homocysteine Alteration in Hypercholesterolimic Rats: Role of Atorvastatine and Cinnamon. Int. J. Clin. Exp. Med. 2009, 2, 254–265. [Google Scholar] [PubMed]
- Moselhy, S.S.; Ali, H.K.H. Hepatoprotective Effect of Cinnamon Extracts against Carbon Tetrachloride Induced Oxidative Stress and Liver Injury in Rats. Biol. Res. 2009, 42, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-C.; Chung, Y.-L.; Wu, M.-L.; Chuang, S.-M. Cinnamaldehyde Enhances Nrf2 Nuclear Translocation to Upregulate Phase II Detoxifying Enzyme Expression in HepG2 Cells. J. Agric. Food Chem. 2011, 59, 5164–5171. [Google Scholar] [CrossRef] [PubMed]
- Yulug, B.; Kilic, E.; Altunay, S.; Ersavas, C.; Orhan, C.; Dalay, A.; Tuzcu, M.; Sahin, N.; Juturu, V.; Sahin, K. Cinnamon Polyphenol Extract Exerts Neuroprotective Activity in Traumatic Brain Injury in Male Mice. CNS Neurol. Disord. Drug Targets 2018, 17, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Ashafaq, M.; Hussain, S.; Alshahrani, S.; Madkhali, O.; Siddiqui, R.; Khuwaja, G.; Alam, M.I.; Islam, F. Role of Cinnamon Oil against Acetaminophen Overdose Induced Neurological Aberrations through Brain Stress and Cytokine Upregulation in Rat Brain. Drug Chem. Toxicol. 2022, 45, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Kaech, S.; Banker, G. Culturing Hippocampal Neurons. Nat. Protoc. 2006, 1, 2406–2415. [Google Scholar] [CrossRef] [PubMed]
- Moutin, E.; Hemonnot, A.-L.; Seube, V.; Linck, N.; Rassendren, F.; Perroy, J.; Compan, V. Procedures for Culturing and Genetically Manipulating Murine Hippocampal Postnatal Neurons. Front. Synaptic Neurosci. 2020, 12, 19. [Google Scholar] [CrossRef]
- Yokogawa, M.; Takaishi, M.; Nakajima, K.; Kamijima, R.; Fujimoto, C.; Kataoka, S.; Terada, Y.; Sano, S. Epicutaneous Application of Toll-like Receptor 7 Agonists Leads to Systemic Autoimmunity in Wild-Type Mice: A New Model of Systemic Lupus Erythematosus. Arthritis Rheumatol. 2014, 66, 694–706. [Google Scholar] [CrossRef]
- Wang, M.; Peng, Y.; Li, H.; Zhang, X. From Monogenic Lupus to TLR7/MyD88-Targeted Therapy. Innovation 2022, 3, 100299. [Google Scholar] [CrossRef]
- Cenac, C.; Ducatez, M.F.; Guéry, J.-C. Hydroxychloroquine Inhibits Proteolytic Processing of Endogenous TLR7 Protein in Human Primary Plasmacytoid Dendritic Cells. Eur. J. Immunol. 2022, 52, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; He, J.; Gu, L.; Shahror, R.A.; Li, Y.; Cao, T.; Wang, S.; Zhu, J.; Huang, H.; Chen, F.; et al. Brain Innate Immune Response via miRNA-TLR7 Sensing in Polymicrobial Sepsis. Brain Behav. Immun. 2022, 100, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Coleman, L.G.; Zou, J.; Crews, F.T. Microglial-Derived miRNA Let-7 and HMGB1 Contribute to Ethanol-Induced Neurotoxicity via TLR7. J. Neuroinflammation 2017, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Butchi, N.B.; Woods, T.; Du, M.; Morgan, T.W.; Peterson, K.E. TLR7 and TLR9 Trigger Distinct Neuroinflammatory Responses in the CNS. Am. J. Pathol. 2011, 179, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Deng, Q.; Guo, M.; Li, X.; Xian, D.; Zhong, J. Proanthocyanidins: A Novel Approach to Henoch-Schonlein Purpura through Balancing Immunity and Arresting Oxidative Stress via TLR4/MyD88/NF-κB Signaling Pathway (Review). Exp. Ther. Med. 2023, 25, 300. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Yu, H.-Y.; Zhang, C.-L.; Zhu, T.-N.; Huang, S.-H. Respiratory Syncytial Virus Infection Up-Regulates TLR7 Expression by Inducing Oxidative Stress via the Nrf2/ARE Pathway in A549 Cells. Arch. Virol. 2018, 163, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- To, E.E.; Broughton, B.R.S.; Hendricks, K.S.; Vlahos, R.; Selemidis, S. Influenza A Virus and TLR7 Activation Potentiate NOX2 Oxidase-Dependent ROS Production in Macrophages. Free Radic. Res. 2014, 48, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Lavieri, R.; Piccioli, P.; Carta, S.; Delfino, L.; Castellani, P.; Rubartelli, A. TLR Costimulation Causes Oxidative Stress with Unbalance of Proinflammatory and Anti-Inflammatory Cytokine Production. J. Immunol. 2014, 192, 5373–5381. [Google Scholar] [CrossRef] [PubMed]
- Robles-Vera, I.; Visitación, N.D.L.; Toral, M.; Sánchez, M.; Gómez-Guzmán, M.; O’valle, F.; Jiménez, R.; Duarte, J.; Romero, M. Toll-like Receptor 7-Driven Lupus Autoimmunity Induces Hypertension and Vascular Alterations in Mice. J. Hypertens. 2020, 38, 1322–1335. [Google Scholar] [CrossRef]
- Rocco, R.; Cambindo Botto, A.E.; Muñoz, M.J.; Reingruber, H.; Wainstok, R.; Cochón, A.; Gazzaniga, S. Early Redox Homeostasis Disruption Contributes to the Differential Cytotoxicity of Imiquimod on Transformed and Normal Endothelial Cells. Exp. Dermatol. 2022, 31, 608–614. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, Q.; Xia, Y. Oxidative Stress Contributes to Inflammatory and Cellular Damage in Systemic Lupus Erythematosus: Cellular Markers and Molecular Mechanism. J. Inflamm. Res. 2023, 16, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Yamauchi, H.; Yamamoto, H.; Aminaka, M.; Murakami, H.; Kamiyama, N.; Miyamoto, Y.; Koitabashi, Y. The Evaluation of Oxidative DNA Damage in Children with Brain Damage Using 8-Hydroxydeoxyguanosine Levels. Brain Dev. 2008, 30, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Frankič, T.; Levart, A.; Salobir, J. The Effect of Vitamin E and Plant Extract Mixture Composed of Carvacrol, Cinnamaldehyde and Capsaicin on Oxidative Stress Induced by High PUFA Load in Young Pigs. Animal 2010, 4, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Harder, B.; Rojo de la Vega, M.; Wong, P.K.; Chapman, E.; Zhang, D.D. P62 Links Autophagy and Nrf2 Signaling. Free Radic. Biol. Med. 2015, 88, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Matsuda, N. Proteostasis and Neurodegeneration: The Roles of Proteasomal Degradation and Autophagy. Biochim. Biophys. Acta 2014, 1843, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Osburn, W.O.; Kensler, T.W. Nrf2 Signaling: An Adaptive Response Pathway for Protection against Environmental Toxic Insults. Mutat. Res. 2008, 659, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Davies, K.J.A.; Forman, H.J. Oxidative Stress Response and Nrf2 Signaling in Aging. Free Radic. Biol. Med. 2015, 88, 314–336. [Google Scholar] [CrossRef]
- Li, J.; Stein, T.D.; Johnson, J.A. Genetic Dissection of Systemic Autoimmune Disease in Nrf2-Deficient Mice. Physiol. Genom. 2004, 18, 261–272. [Google Scholar] [CrossRef]
- Long, M.; Tao, S.; de la Vega, M.R.; Jiang, T.; Wen, Q.; Park, S.L.; Zhang, D.D.; Wondrak, G.T. Nrf2-Dependent Suppression of Azoxymethane/Dextran Sulfate Sodium-Induced Colon Carcinogenesis by the Cinnamon-Derived Dietary Factor Cinnamaldehyde. Cancer Prev. Res. 2015, 8, 444–454. [Google Scholar] [CrossRef]
- Lu, M.; Xu, W.; Gao, B.; Xiong, S. Blunting Autoantigen-Induced FOXO3a Protein Phosphorylation and Degradation Is a Novel Pathway of Glucocorticoids for the Treatment of Systemic Lupus Erythematosus. J. Biol. Chem. 2016, 291, 19900–19912. [Google Scholar] [CrossRef]
- Lin, L.; Hron, J.D.; Peng, S.L. Regulation of NF-kappaB, Th Activation, and Autoinflammation by the Forkhead Transcription Factor Foxo3a. Immunity 2004, 21, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Santo, E.E.; Paik, J. FOXO in Neural Cells and Diseases of the Nervous System. Curr. Top. Dev. Biol. 2018, 127, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Gu, Y.; Chen, L.; Su, X. Upregulation of FoxO3a Expression through PI3K/Akt Pathway Attenuates the Progression of Lupus Nephritis in MRL/Lpr Mice. Int. Immunopharmacol. 2020, 89, 107027. [Google Scholar] [CrossRef]
- Connelly, L.; Jacobs, A.T.; Palacios-Callender, M.; Moncada, S.; Hobbs, A.J. Macrophage Endothelial Nitric-Oxide Synthase Autoregulates Cellular Activation and pro-Inflammatory Protein Expression. J. Biol. Chem. 2003, 278, 26480–26487. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chang, D.; Zhou, X. Development of Novel Herbal Compound Formulations Targeting Neuroinflammation: Network Pharmacology, Molecular Docking, and Experimental Verification. Evid. Based Complement. Altern. Med. 2023, 2023, 2558415. [Google Scholar] [CrossRef] [PubMed]
- Oates, J.C.; Gilkeson, G.S. Nitric Oxide Induces Apoptosis in Spleen Lymphocytes from MRL/Lpr Mice. J. Investig. Med. 2004, 52, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Eleutherio, E.C.A.; Silva Magalhães, R.S.; de Araújo Brasil, A.; Monteiro Neto, J.R.; de Holanda Paranhos, L. SOD1, More than Just an Antioxidant. Arch. Biochem. Biophys. 2021, 697, 108701. [Google Scholar] [CrossRef] [PubMed]
- Abd El Azeem, R.A.; Zedan, M.M.; Saad, E.A.; Mutawi, T.M.; Attia, Z.R. Single-Nucleotide Polymorphisms (SNPs) of Antioxidant Enzymes SOD2 and GSTP1 Genes and SLE Risk and Severity in an Egyptian Pediatric Population. Clin. Biochem. 2021, 88, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.Y.; Yong, Y.K.; Xue, Y.C.; Liu, H.; Furihata, T.; Shankar, E.M.; Ng, C.S. cGAS and DDX41-STING Mediated Intrinsic Immunity Spreads Intercellularly to Promote Neuroinflammation in SOD1 ALS Model. iScience 2022, 25, 104404. [Google Scholar] [CrossRef]
- Otsuki, N.; Konno, T.; Kurahashi, T.; Suzuki, S.; Lee, J.; Okada, F.; Iuchi, Y.; Homma, T.; Fujii, J. The SOD1 Transgene Expressed in Erythroid Cells Alleviates Fatal Phenotype in Congenic NZB/NZW-F1 Mice. Free Radic. Res. 2016, 50, 793–800. [Google Scholar] [CrossRef]
- Ryu, J.-S.; Kang, H.-Y.; Lee, J.K. Effect of Treadmill Exercise and Trans-Cinnamaldehyde against d-Galactose- and Aluminum Chloride-Induced Cognitive Dysfunction in Mice. Brain Sci. 2020, 10, 793. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Fattah, M.M.; Hassanein, E.H.M.; Sayed, A.M.; Alsufyani, S.E.; El-Sheikh, A.A.K.; Arab, H.H.; Mohamed, W.R. Targeting SIRT1/FoxO3a/Nrf2 and PI3K/AKT Pathways with Rebamipide Attenuates Acetic Acid-Induced Colitis in Rats. Pharmaceuticals 2023, 16, 533. [Google Scholar] [CrossRef] [PubMed]
- Bărbulescu, A.L.; Sandu, R.E.; Vreju, A.F.; Ciurea, P.L.; Criveanu, C.; Firulescu, S.C.; Chisălău, A.B.; Pârvănescu, C.D.; Ciobanu, D.A.; Radu, M.; et al. Neuroinflammation in Systemic Lupus Erythematosus—A Review. Rom. J. Morphol. Embryol. 2019, 60, 781–786. [Google Scholar] [PubMed]
- Mahajan, S.D.; Tutino, V.M.; Redae, Y.; Meng, H.; Siddiqui, A.; Woodruff, T.M.; Jarvis, J.N.; Hennon, T.; Schwartz, S.; Quigg, R.J.; et al. C5a Induces Caspase-Dependent Apoptosis in Brain Vascular Endothelial Cells in Experimental Lupus. Immunology 2016, 148, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, Z.; Zhu, B.; Wang, G.; Jia, Q.; Li, Y.; Wu, X. A-Type Cinnamon Procyanidin Oligomers Protect Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice Through Inhibiting the P38 Mitogen-Activated Protein Kinase/P53/BCL-2 Associated X Protein Signaling Pathway. J. Nutr. 2020, 150, 1731–1737. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Rubinsztein, D.C. Atg5 and Bcl-2 Provide Novel Insights into the Interplay between Apoptosis and Autophagy. Cell Death Differ. 2007, 14, 1247–1250. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wu, P.; Gao, D.-M.; Hu, J.; Wang, Q.; Chen, N.-F.; Tong, S.-Q.; Rao, L.; Liu, J. The Impact of Vitamin D on Cognitive Dysfunction in Mice with Systemic Lupus Erythematosus. Med. Sci. Monit. 2019, 25, 4716–4722. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, X.; Yang, K.; Fan, Y. Association of BCL2 Polymorphisms and the IL19 Single Nucleotide Polymorphism Rs2243188 with Systemic Lupus Erythematosus. J. Int. Med. Res. 2021, 49, 3000605211019187. [Google Scholar] [CrossRef] [PubMed]
- Hockenbery, D.M.; Oltvai, Z.N.; Yin, X.M.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 Functions in an Antioxidant Pathway to Prevent Apoptosis. Cell 1993, 75, 241–251. [Google Scholar] [CrossRef]
- Kowaltowski, A.J.; Fiskum, G. Redox Mechanisms of Cytoprotection by Bcl-2. Antioxid. Redox Signal 2005, 7, 508–514. [Google Scholar] [CrossRef]
- Antony, R.; Hardy, M.; Bazan, N.G. Oxidative Stress Triggers the Expression of Bcl–2 Family Proteins in Retinal Pigment Epithelial Cells (RPE). Investig. Ophthalmol. Vis. Sci. 2005, 46, 5357. [Google Scholar]
- Bermpohl, D.; You, Z.; Korsmeyer, S.J.; Moskowitz, M.A.; Whalen, M.J. Traumatic Brain Injury in Mice Deficient in Bid: Effects on Histopathology and Functional Outcome. J. Cereb. Blood Flow. Metab. 2006, 26, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Plesnila, N.; Zinkel, S.; Le, D.A.; Amin-Hanjani, S.; Wu, Y.; Qiu, J.; Chiarugi, A.; Thomas, S.S.; Kohane, D.S.; Korsmeyer, S.J.; et al. BID Mediates Neuronal Cell Death after Oxygen/ Glucose Deprivation and Focal Cerebral Ischemia. Proc. Natl. Acad. Sci. USA 2001, 98, 15318–15323. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-M.; Ho, Y.-J.; Yu, S.-H.; Liu, Y.-F.; Lin, Y.-Y.; Huang, C.-Y.; Ou, H.-C.; Huang, H.-L.; Lee, S.-D. Anti-Apoptotic Effects of Diosgenin in D-Galactose-Induced Aging Brain. Am. J. Chin. Med. 2020, 48, 391–406. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maalouly, G.; Martin, C.-M.-A.; Baz, Y.; Saliba, Y.; Baramili, A.-M.; Fares, N. Antioxidant and Anti-Apoptotic Neuroprotective Effects of Cinnamon in Imiquimod-Induced Lupus. Antioxidants 2024, 13, 880. https://doi.org/10.3390/antiox13070880
Maalouly G, Martin C-M-A, Baz Y, Saliba Y, Baramili A-M, Fares N. Antioxidant and Anti-Apoptotic Neuroprotective Effects of Cinnamon in Imiquimod-Induced Lupus. Antioxidants. 2024; 13(7):880. https://doi.org/10.3390/antiox13070880
Chicago/Turabian StyleMaalouly, Georges, Christine-Marie-Anne Martin, Yara Baz, Youakim Saliba, Anna-Maria Baramili, and Nassim Fares. 2024. "Antioxidant and Anti-Apoptotic Neuroprotective Effects of Cinnamon in Imiquimod-Induced Lupus" Antioxidants 13, no. 7: 880. https://doi.org/10.3390/antiox13070880
APA StyleMaalouly, G., Martin, C. -M. -A., Baz, Y., Saliba, Y., Baramili, A. -M., & Fares, N. (2024). Antioxidant and Anti-Apoptotic Neuroprotective Effects of Cinnamon in Imiquimod-Induced Lupus. Antioxidants, 13(7), 880. https://doi.org/10.3390/antiox13070880