Valorization of Date By-Products: Enhancement of Antioxidant and Antimicrobial Potentials through Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Reagents
2.3. Strain and Culture Medium
2.4. Solid State Fermentation
- -
- For fungal fermentation, the substrate was inoculated with a spore suspension of Aspergillus niger at a concentration of 2 × 105 spores/g of solid substrate.
- -
- For the co-culture assays, Lactiplantibacillus plantarum and Limosilactobacillus reuteri were cultured overnight in MRS broth at 37 °C, then centrifuged at 6000× g for 10 min.
2.5. Ultrasonic Assisted Extraction of Polyphenolic Compounds
2.6. Total Polyphenol Content
2.7. Total Flavonoid Content
2.8. DPPH Free Radical Scavenging Activity
2.9. Metal Chelating Ability
2.10. Hydrogen Peroxide Scavenging Activity
2.11. HPLC-PDA Analysis
2.12. Fourier-Transform Infrared Spectroscopy (FT-IR) Analysis
2.13. Antimicrobial Activity
2.14. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic and Flavonoid Content
3.2. Antioxidant Activities
3.2.1. DPPH
3.2.2. Metal Chelating Activity
3.2.3. H2O2 Scavenging Ability
3.3. Correlations
3.4. Profile of Polyphenols
3.5. FT-IR Analysis
Observed Wavelength (cm−1) | Assignment | Description | Specific Organic Compounds | Reference |
---|---|---|---|---|
3370–3399 | O-H stretching | sugars, polyphenols | Hydroxyl groups in polyphenols, sugars, and water | [57] |
2930–2934 | C-H stretching | Alkanes | Methylene and methyl groups in polysaccharides and proteins | [55] |
1737–1745 | C=O stretching | Carbonyl groups (esters, ketones, aldehydes) | Ester groups in hemicellulose, ketones from degradation products such as flavonoids and phenolic acids | [58] |
[55,56] | C=C stretching | Alkenes, aromatic rings | Aromatic rings in lignin, C=C in polyphenols, carotenoids | [56,57] |
1421–1442 | C-H bending | Alkanes | Methylene and methyl groups in polysaccharides | [55] |
1245–1257 | C-O stretching in C–C(=O)–O bonds | Esters, ethers, polyphenols | Ester groups in hemicellulose, ethers in polysaccharides, phenolic ethers | [59] |
1047–1056 | C-O stretching in O–C–C bonds | Alcohols, ethers, carboxylic acids | Glycosidic bonds in cellulose and hemicellulose, primary and secondary alcohols | [58] |
917–919 | C-H rocking/bending vibration | Carbohydrates | Cellulose and hemicellulose | [54] |
866–867 | C-H bending/rocking vibration | Carbohydrates | Cellulose and hemicellulose | [54] |
818–819 | C-H bending/rocking vibration | Aromatics | Aromatic rings in lignin | [52] |
778–779 | C-H rocking vibration | Carbohydrates | Cellulose and hemicellulose | [52] |
705–706 | C-H rocking vibration | Carbohydrates | Cellulose and hemicellulose | [52] |
3.6. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Antioxidant, Anti-Inflammatory and DNA Scission Inhibitory Activities of Phenolic Compounds in Selected Onion and Potato Varieties. J. Funct. Foods 2013, 5, 930–939. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Q.; Miao, J.; Rui, X.; Li, T.; Dong, M. Antioxidant Activity and DNA Damage Protection of Mung Beans Processed by Solid State Fermentation with Cordyceps Militaris SN-18. Innov. Food Sci. Emerg. Technol. 2015, 31, 216–225. [Google Scholar] [CrossRef]
- Khosravi, A.; Razavi, S.H.; Fadda, A.M. Advanced Assessments on Innovative Methods to Improve the Bioaccessibility of Polyphenols in Wheat. Process Biochem. 2019, 88, 1–14. [Google Scholar] [CrossRef]
- Khosravi, A.; Razavi, S.H. The Role of Bioconversion Processes to Enhance Polyphenol Bioaccessibility in Rice Bioaccessibility of Polyphenols in Rice. Food Biosci. 2020, 35, 100605. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Gil-Izquierdo, Á.; Medina, S.; Ferreres, F. Phenolic Composition Profiling of Different Edible Parts and By-Products of Date Palm (Phoenix dactylifera L.) by Using HPLC-DAD-ESI/MSn. Food Res. Int. 2017, 100, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Benmeddour, Z.; Mehinagic, E.; Le Meurlay, D.; Louaileche, H. Phenolic Composition and Antioxidant Capacities of Ten Algerian Date (Phoenix dactylifera L.) Cultivars: A Comparative Study. J. Funct. Foods 2013, 5, 346–354. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of Antioxidant Activity, Anthocyanins, Carotenoids, and Phenolics of Three Native Fresh and Sun-Dried Date (Phoenix dactylifera L.) Varieties Grown in Oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef]
- Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A. Antioxidant Capacity, Antioxidant Compounds and Antioxidant Enzyme Activities in Five Date Cultivars during Development and Ripening. Sci. Hortic. 2011, 129, 688–693. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K. Resources, Conservation & Recycling Citrus Processing Wastes: Environmental Impacts, Recent Advances, and Future Perspectives in Total Valorization. Resour. Conserv. Recycl. 2018, 129, 153–167. [Google Scholar] [CrossRef]
- Torres-Leon, C.; Chavez-Gonzalez, M.L.; Hernandez-Almanza, A.; Martinez-Medina, G.A.; Ramirez-Guzman, N.; Londono-Hernandez, L.; Aguilar, C.N. Recent Advances on the Microbiological and Enzymatic Processing for Conversion of Food Wastes to Valuable Bioproducts. Curr. Opin. Food Sci. 2020, 38, 40–45. [Google Scholar] [CrossRef]
- Faria, D.J.; de Carvalho, A.P.; Conte-Junior, C.A. Valorization of Fermented Food Wastes and Byproducts: Bioactive and Valuable Compounds, Bioproduct Synthesis, and Applications. Fermentation 2023, 9, 920. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.C.; Selvaggi, R.; Pecorino, B. Co-Digestion of by-Products and Agricultural Residues: A Bioeconomy Perspective for a Mediterranean Feedstock Mixture. Sci. Total Environ. 2019, 700, 134440. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F. Trends in Food Science & Technology Sustainable Valorisation of Tomato Pomace: A Comprehensive Review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Khosravi, A.; Razavi, S.H. Therapeutic Effects of Polyphenols in Fermented Soybean and Black Soybean Products. J. Funct. Foods 2021, 81, 104467. [Google Scholar] [CrossRef]
- Bei, Q.; Chen, G.; Lu, F.; Wu, S.; Wu, Z. Enzymatic Action Mechanism of Phenolic Mobilization in Oats (Avena sativa L.) during Solid-State Fermentation with Monascus Anka. Food Chem. 2018, 245, 297–304. [Google Scholar] [CrossRef]
- Ayyash, M.; Johnson, S.K.; Liu, S.Q.; Mesmari, N.; Dahmani, S.; Al Dhaheri, A.S.; Kizhakkayil, J. In Vitro Investigation of Bioactivities of Solid-State Fermented Lupin, Quinoa and Wheat Using Lactobacillus spp. Food Chem. 2019, 275, 50–58. [Google Scholar] [CrossRef]
- Gulsunoglu, Z.; Purves, R.; Karbancioglu-guler, F.; Kilic-akyilmaz, M. Biocatalysis and Agricultural Biotechnology Enhancement of Phenolic Antioxidants in Industrial Apple Waste by Fermentation with Aspergillus spp. Biocatal. Agric. Biotechnol. 2020, 25, 101562. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of Solid-State Fermentation with Two Filamentous Fungi on the Total Phenolic Contents, Flavonoids, Antioxidant Activities and Lipid Fractions of Plum Fruit (Prunus domestica L.) by-Products. Food Chem. 2016, 209, 27–36. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Olalere, O.A. Ethanolic Extraction of Flavonoids, Phenolics and Antioxidants from Vernonia Amygdalina Leaf Using Two-Level Factorial Design. J. King Saud. Univ. Sci. 2020, 32, 7–16. [Google Scholar] [CrossRef]
- Liu, Y.H.; Lin, S.Y.; Lee, C.C.; Hou, W.C. Antioxidant and Nitric Oxide Production Inhibitory Activities of Galacturonyl Hydroxamic Acid. Food Chem. 2008, 109, 159–166. [Google Scholar] [CrossRef]
- Mansouri, A.; Embarek, G.; Kokkalou, E.; Kefalas, P. Phenolic Profile and Antioxidant Activity of the Algerian Ripe Date Palm Fruit (Phoenix dactylifera). Food Chem. 2005, 89, 411–420. [Google Scholar] [CrossRef]
- Decker, E.A.; Welch, B. Role of Ferritin as a Lipid Oxidation Catalyst in Muscle Food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Ruch, R.J.; Cheng, S.-J.; Klaunig, J.E. Prevention of Cytotoxicity and Inhibition of Intercellular Communication by Antioxidant Catechins Isolated from Chinese Green Tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Kchaou, W.; Abbès, F.; Ben Mansour, R.; Blecker, C.; Attia, H.; Besbes, S. Phenolic Profile, Antibacterial and Cytotoxic Properties of Second Grade Date Extract from Tunisian Cultivars (Phoenix dactylifera L.). Food Chem. 2016, 194, 1048–1055. [Google Scholar] [CrossRef]
- Saafi, E.B.; El Arem, A.; Issaoui, M.; Hammami, M.; Achour, L. Phenolic Content and Antioxidant Activity of Four Date Palm (Phoenix dactylifera L.) Fruit Varieties Grown in Tunisia. Int. J. Food Sci. Technol. 2009, 44, 2314–2319. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Ye, J.H.; Huang, L.Y.; Terefe, N.S.; Augustin, M.A. Fermentation-Based Biotransformation of Glucosinolates, Phenolics and Sugars in Retorted Broccoli Puree by Lactic Acid Bacteria. Food Chem. 2019, 286, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Enhancement of the Antioxidant Capacity of Chickpeas by Solid State Fermentation with Cordyceps Militaris SN-18. J. Funct. Foods 2014, 10, 210–222. [Google Scholar] [CrossRef]
- Yeo, J.D.; Tsao, R.; Sun, Y.; Shahidi, F. Liberation of Insoluble-Bound Phenolics from Lentil Hull Matrices as Affected by Rhizopus Oryzae Fermentation: Alteration in Phenolic Profiles and Their Inhibitory Capacities against Low-Density Lipoprotein (LDL) and DNA Oxidation. Food Chem. 2021, 363, 130275. [Google Scholar] [CrossRef]
- Khan, S.A.; Zhang, M.; Liu, L.; Dong, L.; Ma, Y.; Wei, Z.; Chi, J.; Zhang, R. Co-Culture Submerged Fermentation by Lactobacillus and Yeast More Effectively Improved the Profiles and Bioaccessibility of Phenolics in Extruded Brown Rice than Single-Culture Fermentation. Food Chem. 2020, 326, 126985. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, J.; Li, X.L.; Yi, K.; Ye, Y.; Liu, G.; Wang, S.F.; Hu, H.L.; Zou, L.; Wang, Z.G. Dynamic Changes in Antioxidant Activity and Biochemical Composition of Tartary Buckwheat Leaves during Aspergillus niger Fermentation. J. Funct. Foods 2017, 32, 375–381. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Zhang, W.; Lin, X.; Li, C.; Wu, Z. Role of Carbohydrate-Cleaving Enzymes in Phenolic Mobilization of Guava Leaves Tea during Solid State Bio-Processing with Monascus Anka and Bacillus Sp; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 82, ISBN 2039380663. [Google Scholar]
- Luo, D.; Li, X.; Zhao, L.; Chen, G. Regulation of Phenolic Release in Corn Seeds (Zea mays L.) for Improving Their Antioxidant Activity by Mix-Culture Fermentation with Monascus Anka, Saccharomyces Cerevisiae and Bacillus Subtilis. J. Biotechnol. 2021, 325, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Chawla, P.; Duhan, J.S. Fermentation Approach on Phenolic, Antioxidants and Functional Properties of Peanut Press Cake. Food Biosci. 2018, 22, 113–120. [Google Scholar] [CrossRef]
- Liu, H.; Cao, J.; Jiang, W. Evaluation and Comparison of Vitamin C, Phenolic Compounds, Antioxidant Properties and Metal Chelating Activity of Pulp and Peel from Selected Peach Cultivars. LWT 2015, 63, 1042–1048. [Google Scholar] [CrossRef]
- Islam, T.; Yu, X.; Xu, B. Phenolic Profiles, Antioxidant Capacities and Metal Chelating Ability of Edible Mushrooms Commonly Consumed in China. LWT-Food Sci. Technol. 2016, 72, 423–431. [Google Scholar] [CrossRef]
- Abbès, F.; Kchaou, W.; Blecker, C.; Ongena, M.; Lognay, G.; Attia, H.; Besbes, S. Effect of Processing Conditions on Phenolic Compounds and Antioxidant Properties of Date Syrup. Ind. Crops Prod. 2013, 44, 634–642. [Google Scholar] [CrossRef]
- Brito, B.d.N.D.C.; Campos Chisté, R.; da Silva Pena, R.; Abreu Gloria, M.B.; Santos Lopes, A. Bioactive Amines and Phenolic Compounds in Cocoa Beans Are Affected by Fermentation. Food Chem. 2017, 228, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Al Harthi, S.S.; Pharm, B.; Mavazhe, A.; Pharm, B.; Al Mahroqi, H.; Sc, M.; Khan, S.A.; Ph, D. Quantification of Phenolic Compounds, Evaluation of Physicochemical Properties and Antioxidant Activity of Four Date (Phoenix dactylifera L.) Varieties of Oman. J. Taibah Univ. Med. Sci. 2015, 10, 346–352. [Google Scholar] [CrossRef]
- Bouhlali, T.; El, J.; Ennassir, J.; Benlyas, M.; Alem, C.; Amarouch, M.; Filali-zegzouti, Y. Journal of King Saud University—Science Anti-Inflammatory Properties and Phenolic Profile of Six Moroccan Date Fruit (Phoenix dactylifera L.) Varieties. J. King Saud. Univ. Sci. 2018, 30, 519–526. [Google Scholar] [CrossRef]
- Hachani, S.; Hamia, C.; Boukhalkhal, S.; Silva, A.M.S.; Djeridane, A.; Yousfi, M. Morphological, Physico-Chemical Characteristics and Effects of Extraction Solvents on UHPLC-DAD-ESI-MSn Profiling of Phenolic Contents and Antioxidant Activities of Five Date Cultivars (Phoenix dactylifera L.) Growing in Algeria. NFS J. 2018, 13, 10–22. [Google Scholar] [CrossRef]
- Abd Razak, D.L.; Abd Rashid, N.Y.; Jamaluddin, A.; Sharifudin, S.A.; Long, K. Enhancement of Phenolic Acid Content and Antioxidant Activity of Rice Bran Fermented with Rhizopus Oligosporus and Monascus Purpureus. Biocatal. Agric. Biotechnol. 2015, 4, 33–38. [Google Scholar] [CrossRef]
- Vaquero, I.; Marcobal, A.; Munoz, R. Tannase Activity by Lactic Acid Bacteria Isolated from Grape Must and Wine. Int. J. Food Microbiol. 2004, 96, 199–204. [Google Scholar] [CrossRef]
- Curiel, J.A.; Rodríguez, H.; Landete, J.M.; De Rivas, B.; Muñoz, R. Ability of Lactobacillus brevis Strains to Degrade Food Phenolic Acids. Food Chem. 2010, 120, 225–229. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, Z.; Liu, D.; Zheng, H.; Chen, H. A Comparative Study on the Degradation of Gallic Acid by Aspergillus oryzae and Phanerochaete chrysosporium. Water Sci. Technol. 2014, 70, 175–182. [Google Scholar] [CrossRef]
- Jiménez, N.; Esteban-Torres, M.; Mancheño, J.M.; de Las Rivas, B.; Muñoz, R. Tannin degradation by a novel tannase enzyme present in Some Lactobacillus Plantarum strains. Appl. Environ. Microbiol. 2014, 80, 92–97. [Google Scholar] [CrossRef]
- Arentshorst, M.; Di Falco, M.; Moisan, M.; Reid, I.D.; Spaapen, T.O.M.; Van Dam, J.; Demirci, E.; Powlowski, J. Identification of a Conserved Transcriptional Activator-Repressor Module Controlling the Expression of Genes Involved in Tannic Acid Degradation and Gallic Acid Utilization in Aspergillus Niger. Front. Fungal Biol. 2021, 2, 681631. [Google Scholar] [CrossRef]
- Hegde, R. Degradation of Cereal Bran Polysaccharide-Phenolic Acid Complexes by Aspergillus niger CFR 1105. Food Chem. 2006, 96, 14–19. [Google Scholar] [CrossRef]
- Martins, S.; Mussatto, S.I.; Martínez-avila, G.; Montañez-saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive Phenolic Compounds: Production and Extraction by Solid-State Fermentation. A Review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef]
- Randhir, R.; Shetty, K. Mung Beans Processed by Solid-State Bioconversion Improves Phenolic Content and Functionality Relevant for Diabetes and Ulcer Management. Innov. Food Sci. Emerg. Technol. 2007, 8, 197–204. [Google Scholar] [CrossRef]
- Holker, U.; Hofer, M.; Lenz, J. Biotechnological Advantages of Laboratory-Scale Solid-State Fermentation with Fungi. Appl. Microbiol. Biotechnol. 2004, 64, 175–186. [Google Scholar] [CrossRef]
- Tang, Z.; Shi, L.; Aleid, S.M. Date Fruit: Chemical Compositions, Nutritional and Medicinal Values, Products. J. Sci. Food Agric. 2013, 93, 2351–2361. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Hadi, S.; Khodaiyan, F.; Blesa, J.; Esteve, M.J. Fermented Corn Bran: A by-Product with Improved Total Phenolic Content and Antioxidant Activity. LWT 2023, 184, 115090. [Google Scholar] [CrossRef]
- Tarantilis, P.A.; Beljebbar, A.; Manfait, M.; Polissiou, M. FT-IR, FT-Raman Spectroscopic Study of Carotenoids from Saffron (Crocus sativus L.) and Some Derivatives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1998, 54, 651–657. [Google Scholar] [CrossRef]
- Nabili, A.; Fattoum, A.; Passas, R.; Elaloui, E. Extraction and characterization of cellulose from date palm. Cellul. Chem. Technol. 2016, 50, 1015–1023. [Google Scholar]
- Baltacıo, C.; Yalıç, M. Vibrational Spectroscopy Optimization of Microwave-Assisted Extraction of Phenolic Compounds from Tomato: Characterization by FTIR and HPLC and Comparison with Conventional Solvent Extraction. Vib. Spectrosc. 2021, 113, 103204. [Google Scholar] [CrossRef]
- Mekonnen, K.D. Heliyon Fourier Transform Infrared Spectroscopy as a Tool for Identifying the Unique Characteristic Bands of Lipid in Oilseed Components: Confirmed via Ethiopian Indigenous Desert Date Fruit. Heliyon 2023, 9, e14699. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Kiefer, J.; Santini, A.; Lombardi-boccia, G.; Souto, E.B.; Romani, A.; Lampe, A.; Nicoli, S.F.; Gabrielli, P.; et al. Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy. Foods 2020, 9, 10. [Google Scholar] [CrossRef]
- Grasel, S.; Flôres, M.; Rodolfo, C. Development of Methodology for Identification the Nature of the Polyphenolic Extracts by FTIR Associated with Multivariate Analysis Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Development of Methodology for Identi Fi Cation the Na. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 153, 94–101. [Google Scholar] [CrossRef]
- Daoud, A.; Malika, D.; Bakari, S.; Hfaiedh, N.; Mnafgui, K.; Kadri, A.; Gharsallah, N. Assessment of Polyphenol Composition, Antioxidant and Antimicrobial Properties of Various Extracts of Date Palm Pollen (DPP) from Two Tunisian Cultivars. Arab. J. Chem. 2019, 12, 3075–3086. [Google Scholar] [CrossRef]
- Kısa, D.; Kaya, Z.; İmamoğlu, R.; Genç, N.; Taslimi, P.; Taskin-Tok, T. Assessment of Antimicrobial and Enzymes Inhibition Effects of Allium Kastambulense with in Silico Studies: Analysis of Its Phenolic Compounds and Flavonoid Contents. Arab. J. Chem. 2022, 15, 103810. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Saleh, R.M.; Kabli, S.A.; Al-Garni, S.M. Influence of Solid State Fermentation by Trichoderma Spp. on Solubility, Phenolic Content, Antioxidant, and Antimicrobial Activities of Commercial Turmeric. Biosci. Biotechnol. Biochem. 2016, 80, 920–928. [Google Scholar] [CrossRef] [PubMed]
Sample | TPC (mg GA/g DW) | TFC (mg QE/g DW) |
---|---|---|
Kabkab | ||
K1 | 3.07 ± 0.07 j | 0.18 ± 0.04 g |
K2 | 7.78 ± 0.28 g | 0.81 ± 0.10 f |
K3 | 8.93 ± 0.11 f | 1.12 ± 0.09 e |
K4 | 10.84 ± 0.25 d | 1.34 ± 0.05 d |
Mozafati | ||
M1 | 3.69 ± 0.07 i | 0.26 ± 0.04 g |
M2 | 9.55 ± 0.16 e | 1.09 ± 0.09 e |
M3 | 11.15 ± 0.19 cd | 1.57 ± 0.05 bc |
M4 | 12.98 ± 0.29 a | 1.75 ± 0.07 ab |
Sayer | ||
S1 | 4.64 ± 0.07 h | 0.33 ± 0.06 g |
S2 | 9.21 ± 0.30 ef | 0.93 ± 0.08 ef |
S3 | 11.56 ± 0.10 c | 1.54 ± 0.05 cd |
S4 | 12.16 ± 0.04 b | 1.83 ± 0.07 a |
Sample | DPPH Scavenging Activity (%) | Metal Chelating Ability (%) | H2O2 Scavenging Ability (%) |
---|---|---|---|
Kabkab | |||
K1 | 28.23 ± 0.97 g | 23.36 ± 0.94 g | 37.26 ± 0.57 g |
K2 | 41.30 ± 1.25 f | 54.53 ± 1.40 de | 48.60 ± 0.10 c |
K3 | 55.73 ± 1.40 e | 67.60 ± 1.22 c | 47.86 ± 0.45 c |
K4 | 70.43 ± 1.22 c | 69.70 ± 0.55 bc | 42.46 ± 0.65 de |
Mozafati | |||
M1 | 40.13 ± 0.87 f | 25.63 ± 1.18 fg | 40.43 ± 0.80 ef |
M2 | 60.40 ± 1.77 d | 52.10 ± 1.49 e | 48.40 ± 0.65 c |
M3 | 69.50 ± 1.05 c | 55.26 ± 0.72 de | 38.73 ± 0.85 fg |
M4 | 84.40 ± 1.18 a | 72.10 ± 1.28 ab | 49.40 ± 0.89 bc |
Sayer | |||
S1 | 43.26 ± 1.20 f | 28.40 ± 1.51 f | 38.46 ± 1.29 fg |
S2 | 62.43 ± 0.92 d | 70.53 ± 1.30 bc | 51.53 ± 0.87 ab |
S3 | 80.40 ± 1.37 b | 57.66 ± 0.78 d | 51.96 ± 0.60 a |
S4 | 79.23 ± 1.82 b | 74.33 ± 1.21 a | 44.13 ± 0.87 d |
Sample | Gallic Acid (mg/g) | Caffeic Acid (mg/g) | p-Coumaric Acid (mg/g) | Ferulic Acid (mg/g) | Rutin (mg/g) | Quercetin (mg/g) | Kampferol (mg/g) |
---|---|---|---|---|---|---|---|
Kabkab | |||||||
K1 | 0.367 ± 0.013 e | 0.580 ± 0.010 i | 0.583 ± 0.023 i | 0.830 ± 0.013 c | - | 0.047 ± 0.006 j | 0.123 ± 0.031 i |
K2 | 0.140 ± 0.005 f | 2.040 ± 0.046 g | 3.410 ± 0.080 g | 0.317 ±0.043 e | - | 0.260 ± 0.055 g | 0.430 ± 0.018 g |
K3 | - | 2.330 ± 0.150 f | 4.210 ± 0.068 f | 0.123 ± 0.025 hi | 2.110 ± 0.097 e | 0.427 ± 0.028 e | 0.583 ± 0.039 e |
K4 | - | 2.620 ± 0.085 d | 4.340 ± 0.120 e | 0.153 ± 0.010 gh | 2.720 ± 0.190 c | 0.460 ± 0.017 de | 0.593 ± 0.048 e |
Mozafati | |||||||
M1 | 0.577 ± 0.015 b | 0.647 ± 0.050 h | 0.770 ± 0.010 h | 0.890 ± 0.020 b | - | 0.070 ± 0.001 i | 0.123 ± 0.009 h |
M2 | 0.420 ± 0.010 d | 2.510 ± 0.080 e | 4.290 ± 0.150 e | 0.253 ± 0.041 f | - | 0.443 ± 0.006 e | 0.507 ± 0.051 f |
M3 | - | 2.610 ± 0.053 d | 4.440 ± 0.083 d | 0.163 ± 0.074 g | 2.630 ± 0.220 d | 0.490 ± 0.024 cd | 0.653 ± 0.072 d |
M4 | - | 2.810 ± 0.180 b | 4.870 ± 0.074 a | 0.123 ± 0.052 hi | 3.310 ± 0.092 a | 0.637 ± 0.011 a | 0.780 ± 0.035 b |
Sayer | |||||||
S1 | 0.607 ± 0.007 a | 0.717± 0.020 a | 0.813 ± 0.021 h | 0.973 ± 0.030 a | - | 0.113 ± 0.012 h | 0.200 ± 0.018 h |
S2 | 0.490 ± 0.015 c | 2.690 ± 0.028 c | 4.490 ± 0.940 cd | 0.393 ± 0.024 d | - | 0.333 ± 0.009 f | 0.417 ± 0.015 g |
S3 | - | 2.760 ± 0.070 b | 4.540 ± 0.055 c | 0.107 ± 0.018 i | 2.710 ± 0.036 c | 0.523 ± 0.021 c | 0.710 ± 0.027 c |
S4 | - | 2.940 ± 0.084 a | 4.650 ± 0.080 b | 0.103 ± 0.009 i | 2.800 ± 0.210 b | 0.567 ± 0.033 b | 0.833 ± 0.005 a |
Sample | OH Stretching (3600–3200 cm−1) | C-H Stretching (3000–2800 cm−1) | C=O Stretching (1750–1680 cm−1) | C=C Stretching (1680–1620 cm−1) | C-H Stretching (1600–1400 cm−1) | C-O Stretching (1300–1000 cm−1) | C-H Stretching (920–705 cm−1) |
---|---|---|---|---|---|---|---|
M1 | 3391.76 | 2932.74 | - | 1631.18 | 1425.25 | 1256.9, 1056.69 | 917.74, 866.53, 778.05, 705.91 |
M2 | 3393.23 | 2927.54 | - | 1629.62 | 1432.47 | 1254.3, 1056.06 | 918.66, 866.43, 818.06, 778.07, 705.83 |
M3 | 3399.1 | 2931.98 | 1740.92 | 1622.3 | 1429.84 | 1245.64, 1047.54 | 918.23, 867.91, 818.11, 778.02, 705.32 |
M4 | 3398.61 | 2934.22 | 1744.02 | 1619.28 | 1433.94 | 1245.12, 1049.19 | 918.32, 867.16, 818.26, 778.1, 705.07 |
K1 | 3394.32 | 2931.11 | - | 1629.48 | 1421.72 | 1257.14, 1055.61 | 918.27, 866.22, 818.2, 777.83, 705.06 |
K2 | 3394.72 | 2931.32 | - | 1628.32 | 1439.42 | 1256.73, 1055.61 | 918.24, 866.69, 818.16, 777.75, 705.11 |
K3 | 3395.31 | 2932.17 | 1743.05 | 1627.54 | 1442.14 | 1250.62, 1055.97 | 919.03, 867.22, 818.19, 778.86, 705.37 |
K4 | 3396.58 | 2932.68 | 1738.12 | 1624.77 | 1439.63 | 1253.07, 1056.32 | 919.41, 867.23, 818.16, 778.19, 705.42 |
S1 | 3370.72 | 2930.24 | - | 1634.9 | 1427.8 | 1256.34, 1056.18 | 917.84, 866.39, 818.57, 777.79, 705.93 |
S2 | 3383.78 | 2931.52 | - | 1629.43 | 1428.04 | 1255.93, 1056.22 | 918.04, 866.51, 818.55, 777.83, 705.65 |
S3 | 3389.34 | 2931.62 | 1742.13 | 1624.33 | 1428.03 | 1254.69, 1056.27 | 918.23, 866.58, 818.43, 777.83, 705.48 |
S4 | 3393.17 | 2933.32 | 1737.95 | 1623.92 | 1428.14 | 1255.04, 1056.53 | 918.42, 866.76, 818.2, 777.91, 705.52 |
Salmonella enteritidis | Escherichia coli | Staphylococcus aureus | |
---|---|---|---|
Inhibition Zone (mm) | Inhibition Zone (mm) | Inhibition Zone (mm) | |
Kabkab | |||
K1 | nd | nd | nd |
K2 | 8.53 ± 0.14 h | 8.76 ± 0.11 h | 8.26 ± 0.06 i |
K3 | 9.30 ± 0.11 g | 9.20 ± 0.10 g | 9.66 ± 0.16 f |
K4 | 10.56 ± 0.15 f | 10.60 ± 0.12 f | 10.20 ± 0.08 g |
Mozafati | |||
M1 | 8.20 ± 0.12 i | 8.36 ± 0.11 i | 8.24 ± 0.20 i |
M2 | 11.86 ± 0.20 d | 10.33 ± 0.11 f | 12.30 ± 0.05 e |
M3 | 15.43 ± 0.21 c | 15.90 ± 0.10 c | 17.20 ± 0.16 c |
M4 | 16.26 ± 0.15 b | 16.70 ± 0.14 b | 17.73 ± 0.09 b |
Sayer | |||
S1 | 8.23 ± 0.05 i | 8.24 ± 0.09 i | 8.33 ± 0.11 i |
S2 | 11.26 ± 0.15 e | 11.40 ± 0.11 e | 11.80 ± 0.11 f |
S3 | 15.10 ± 0.17 c | 14.20 ± 0.15 d | 15.27 ± 0.05 d |
S4 | 15.26 ± 0.15 c | 15.70 ± 0.09 c | 15.56 ± 0.12 d |
Gentamicin (as control) | |||
23.20 + 0.45 a | 24.10 + 0.45 a | 20.70 + 0.62 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khosravi, A.; Razavi, S.H.; Castangia, I.; Manca, M.L. Valorization of Date By-Products: Enhancement of Antioxidant and Antimicrobial Potentials through Fermentation. Antioxidants 2024, 13, 1102. https://doi.org/10.3390/antiox13091102
Khosravi A, Razavi SH, Castangia I, Manca ML. Valorization of Date By-Products: Enhancement of Antioxidant and Antimicrobial Potentials through Fermentation. Antioxidants. 2024; 13(9):1102. https://doi.org/10.3390/antiox13091102
Chicago/Turabian StyleKhosravi, Azin, Seyed Hadi Razavi, Ines Castangia, and Maria Letizia Manca. 2024. "Valorization of Date By-Products: Enhancement of Antioxidant and Antimicrobial Potentials through Fermentation" Antioxidants 13, no. 9: 1102. https://doi.org/10.3390/antiox13091102
APA StyleKhosravi, A., Razavi, S. H., Castangia, I., & Manca, M. L. (2024). Valorization of Date By-Products: Enhancement of Antioxidant and Antimicrobial Potentials through Fermentation. Antioxidants, 13(9), 1102. https://doi.org/10.3390/antiox13091102