Oxidative Stress and Age-Related Tumors
Abstract
:1. Introduction
2. Antioxidant and Oxidative Stress Driving Genes
3. Role of Oxidative Stress in Normal Cell Signal Transduction and Homeostasis
4. Oxidative Stress and Ageing
5. Oxidative Stress and Tumorigenesis
6. Antioxidants in the Prevention and Treatment of Age-Related Cancer
6.1. Antioxidant Mechanisms of Action
6.2. Types of Antioxidants
6.3. Evidence from Research and Clinical Studies
6.4. Antioxidants in Cancer Treatment
7. Imaging Techniques to Study Oxidative Damage In Vivo
- Fluorescence and Bioluminescence Imaging, which provide sensitive and non-invasive ways to visualize and quantify oxidative stress and related cellular damage, by means of fluorescent probes [128] or bioluminescent reporters [129], in living tissues and organisms [130]:
- ROS-sensitive probes can be used to visualize and quantify ROS in living cells. These probes react with specific ROS to emit fluorescence, which can be detected using fluorescence or confocal microscopy. Dihydroethidium (DHE) reacts with O2•− to produce fluorescent ethidium, which intercalates into DNA. 2′,7′-Dichlorodihydrofluorescein diacetate (DCFH-DA) reacts with hydrogen peroxide (H2O2) to produce a fluorescent product, dichlorofluorescein (DCF). MitoSOX™ (Thermo Fisher Scientific, Waltham, MA, USA), a mitochondria-targeted version of DHE, specifically detects superoxide production within mitochondria, a key site of oxidative stress.
- Lipid Peroxidation Probes, such as BODIPY C11, are fluorescent dyes that detect lipid peroxidation, a process driven by oxidative stress that damages cell membranes.
- Protein and DNA Damage Probes, such as a. Oxidation-Sensitive GFP (roGFP), which is a genetically encoded fluorescent protein that changes its fluorescence in response to changes in the redox state of cells, allowing real-time visualization of oxidative stress; and b. DNA Damage Sensors consisting of fluorescent probes or labeled antibodies that detect 8-oxoguanine, a marker of oxidative DNA damage.
- Bioluminescent Reporters are genetically encoded or chemically synthesized fluorescent proteins that emit light when excited by a specific wavelength of light. These fluorophores can be targeted to specific cells, organelles, or molecules involved in oxidative stress. For example, luciferase-based reporters, where oxidative stress-induced gene expression triggers bioluminescence, allow real-time imaging of oxidative damage [129].
- Magnetic Resonance Imaging (MRI) is a powerful non-invasive imaging technique with excellent spatial resolution and the ability to visualize soft tissues without ionizing radiation. MRI has been adapted to visualize oxidative damage by using redox-sensitive contrast agents or combined with Electron Paramagnetic Resonance (EPR) [131]:
- Redox-Sensitive MRI Contrast Agents that are sensitive to the redox state of tissues can be used to assess oxidative damage. For example, manganese-based contrast agents are oxidized or reduced depending on the oxidative environment, altering their MRI signal.
- EPR is a technique that detects unpaired electrons, such as those in free radicals, making it well-suited for studying oxidative stress [132]. EPR can be combined with MRI to create EPR-MRI, allowing for spatial mapping of free radicals in tissues. Nitroxide-based probes are commonly used in EPR-MRI to detect ROS [133]. These probes are stable free radicals that change their magnetic properties upon reduction by antioxidants or reaction with ROS, providing imaging of oxidative damage in vivo.
- Positron Emission Tomography (PET) is traditionally used to visualize metabolic processes, such as glucose metabolism or blood flow, and can also be applied to study oxidative damage, using specialized radiotracers that target oxidative stress or its related consequences:
- PET Imaging with Redox-Sensitive Radiotracers that are sensitive to redox changes, such as [18F]-labeled dihydroethidine (18F-DHE), and especially [18F]ROStrace, have proven effective for visualizing ROS production and oxidative stress in live models of neuroinflammation [134].
- Hypoxia Imaging. PET imaging with tracers like [18F]FMISO (fluoromisonidazole) is used to study oxidative stress associated with hypoxic conditions (leading to oxidative stress) in ischemic tissues or to identify hypoxic regions of tumors [135], which may be more aggressive and resistant to treatment. PET imaging with 62Cu-ATSM, which accumulates in the presence of an over-reductive state, detects oxidative stress in the disease-related brain regions of patients with mitochondrial disease, Parkinson’s disease, and ALS and can be useful for monitoring antioxidant therapies [136].
- Optical Imaging (Near-Infrared Fluorescence, NIRF) takes advantage of the tissue-penetrating properties of near-infrared light and the use of fluorescent probes that can penetrate deep tissues and be activated by ROS or that target specific molecular markers of oxidative stress. ROS-activated probes are non-fluorescent in their native state but become fluorescent upon reacting with ROS, such as H2O2, O2•−, or •OH. Examples include IR-775c, a near-infrared dye (with absorption and emission typically between 650–900 nm, and good photostability), which becomes fluorescent upon oxidation by ROS, and Cy7-Based Probes, a family of cyanine dyes (with absorption typically around 740 nm and emission around 770–790 nm), which are commonly used in NIRF imaging and can be modified to become activated by ROS.
- Multiphoton Microscopy employs two or more photons of low energy (near-infrared light) to excite a fluorophore, which then emits light at a higher energy level. The use of longer wavelength light allows for deeper penetration into tissues and minimizes photodamage, making it ideal for studying processes such as oxidative stress in living cells and tissues [137,138]:
- Multiphoton Excitation Microscopy allows the viewing of oxidative stress-induced changes in cellular structures and can also image ROS by using fluorescent probes, such as dihydroethidium (DHE), which becomes fluorescent when oxidized by superoxide; and MitoSOX™, which is a mitochondria-targeted fluorescent probe that selectively detects superoxide production within mitochondria, a major site of oxidative stress [139].
- Multiphoton microscopy can also detect the intrinsic autofluorescence of naturally occurring fluorophores like NADH/NADPH and flavoproteins (involved in oxidative phosphorylation and used to assess mitochondrial function), whose fluorescence can change in response to oxidative stress, allowing for indirect detection of oxidative damage.
- Raman Spectroscopy and Imaging provide non-invasive, label-free detection of biochemical alterations, making them highly suitable for investigating oxidative modifications in lipids, proteins, and nucleic acids [140] and enabling real-time monitoring of oxidative stress and damage under physiological conditions:
- Surface-Enhanced Raman Scattering (SERS) imaging can detect molecular vibrations that provide detailed information about chemical structures. SERS enhances the Raman signal, enabling the detection of biomolecules involved in oxidative stress, such as lipid peroxidation or protein oxidation, and nucleic acid alterations, providing information on base modifications, backbone damage, and strand breaks.
- Label-Free Raman Imaging can be used to detect oxidative damage to biomolecules without using external probes, thus providing a label-free approach to studying oxidative stress in vivo [141].
- Super-Resolution Microscopy, which includes STORM (Stochastic Optical Reconstruction Microscopy) and PALM (Photoactivated Localization Microscopy), relies on the precise localization of individual fluorescent molecules. By turning subsets of fluorophores on and off, their exact positions can be calculated, allowing the construction of super-resolution images (at the nanoscale, 20–30 nm) from the aggregated data. STORM and PALM allow for visualizing oxidative damage at the molecular level within cells (cellular organelles, such as mitochondria and endoplasmic reticulum) and are especially useful in studying oxidative damage to DNA or proteins in situ [142].
8. Overgeneration of ROS as Anti-Cancer Therapy
9. Understanding the Mechanisms Underlying the Oxidative Stress–Aging–Carcinogenesis Relationships to Fight Age-Related Tumors
9.1. Cancers Associated with Oxidative Stress and Aging
9.2. Strategies to Mitigate Oxidative Stress or Improve Antioxidant Defenses
- The CRISPR/Cas9 system allows for precise editing of genes that contribute to oxidative stress, such as Kelch-like ECH-associated protein 1 (Keap1), which regulates the activity of Nrf2 [216] and other redox regulators. CRISPR has been used to knock out mutant forms of proteins that lead to oxidative damage, offering a potential cure for neurodegenerative diseases (Alzheimer’s, Parkinson’s, and ALS), cardiovascular disorders, and cancer.In neurodegenerative diseases, CRISPR has been used to selectively knock out the mutant form of the huntingtin (HTT) gene, reducing the toxic protein burden and mitigating oxidative stress in neuronal cells [217]. Mutations in the SOD1 gene are implicated in familial ALS. CRISPR/Cas9 has been used to knock out the mutant SOD1 gene in cellular and animal models of ALS, reducing oxidative stress and extending survival in preclinical studies [218]. Mutations in the PARK7 (DJ-1) gene are associated with oxidative damage in Parkinson’s Disease. CRISPR/Cas9 has been employed to knock out these mutant genes or restore normal gene function, reducing oxidative stress and improving cellular survival in experimental models [219].In cardiovascular diseases, including atherosclerosis and ischemia-reperfusion injury, which are characterized by oxidative stress-induced damage to the vascular endothelium and heart tissue, CRISPR/Cas9 has been used to target genes that contribute to ROS production or impair antioxidant defenses. CRISPR/Cas9-mediated knockout of the PCSK9 gene, which plays a role in cholesterol metabolism and oxidative stress in vascular cells, has been explored as a therapeutic strategy to reduce oxidative damage in atherosclerosis, with promising results in animal models [220].In the oncology field, CRISPR/Cas9 is being used to target genes that exacerbate oxidative damage in cancer cells, either by knocking out pro-oxidant genes or modulating antioxidant defenses. CRISPR/Cas9-mediated knockout mutant forms of the TP53 gene restore normal redox balance and reduce oxidative damage in cancer cells [221]. Glutathione (GSH) is a major antioxidant in cells. CRISPR/Cas9 has been used to knock out genes like the Glutamate–cysteine ligase catalytic subunit, GCLC (a key enzyme in glutathione synthesis), in Acute myeloid leukemia (AML) and solid tumors [222] to increase their sensitivity to oxidative damage, making them more susceptible to chemotherapy and radiotherapy.
- siRNA or ASOs can silence genes involved in ROS production or modulate antioxidant pathways. NOX enzymes are key contributors to ROS production. siRNA or ASOs targeting NOX subunits can reduce ROS levels in various cell types. siRNA-targeting NOX2 has shown promise in reducing oxidative stress in models of cardiovascular disease and neuroinflammation [223,224,225].The mechanistic target of rapamycin (mTOR) pathway regulates various cellular processes, including oxidative stress. siRNA-targeting components of the mTOR pathway, such as mTOR itself or downstream effectors, can modulate ROS production in cancer and metabolic disorders [226,227]. siRNA or ASOs targeting negative regulators of SOD (e.g., SOD1 mutations in ALS) aim to enhance SOD activity indirectly by silencing genes that inhibit its function [228,229].GPx enzymes reduce hydrogen peroxide to water. siRNA targeting genes involved in the regulation or production of GPx (e.g., GPx4) [230] can enhance the cellular antioxidant capacity in models of cancer and neurodegenerative diseases [231,232].Nrf2 is a key transcription factor that regulates antioxidant gene expression. siRNA can target negative regulators of Nrf2 (e.g., Keap1) to increase the activity of Nrf2 and enhance antioxidant responses. In diseases where Nrf2 is dysfunctional, such as autoimmune (Multiple Sclerosis), chronic inflammatory diseases (Rheumatoid Arthritis), and neurodegenerative disorders [233], siRNA can help restore its normal function.While gene and molecular therapies hold significant promise in developing therapies for oxidative stress, further studies are needed to overcome challenges related to delivery, immune responses, off-target effects, and safety concerns such as the risk of insertional mutagenesis or unintended gene activation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flohé, L. Looking Back at the Early Stages of Redox Biology. Antioxidants 2020, 9, 1254. [Google Scholar] [CrossRef] [PubMed]
- Auger, C.; Lemire, J.; Cecchini, D.; Bignucolo, A.; Appanna, V.D. The metabolic reprogramming evoked by nitrosative stress triggers the anaerobic utilization of citrate in Pseudomonas fluorescens. PLoS ONE 2011, 6, e28469. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging Hallmarks and the Role of Oxidative Stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef]
- Halliwell, B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 2024, 25, 13–33. [Google Scholar] [CrossRef]
- Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.I.; Griendling, K.K. Nox proteins in signal transduction. Free Radic. Biol. Med. 2009, 47, 1239–1253. [Google Scholar] [CrossRef]
- Calcerrada, P.; Peluffo, G.; Radi, R. Nitric oxide-derived oxidants with a focus on peroxynitrite: Molecular targets, cellular responses and therapeutic implications. Curr. Pharm. Des. 2011, 17, 3905–3932. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Kavdia, M. Endothelial NO and O2− production rates differentially regulate oxidative, nitroxidative, and nitrosative stress in the microcirculation. Free Radic. Biol. Med. 2013, 63, 161–174. [Google Scholar] [CrossRef]
- Wisastra, R.; Dekker, F.J. Inflammation, Cancer and Oxidative Lipoxygenase Activity are Intimately Linked. Cancers 2014, 6, 1500–1521. [Google Scholar] [CrossRef] [PubMed]
- Veith, A.; Moorthy, B. Role of cytochrome p450s in the generation and metabolism of reactive oxygen species. Curr. Opin. Toxicol. 2018, 7, 44–51. [Google Scholar] [CrossRef]
- Hrycay, E.G.; Bandiera, S.M. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer. Adv. Pharmacol. 2015, 74, 35–84. [Google Scholar] [CrossRef]
- Seychell, B.C.; Vella, M.; Hunter, G.J.; Hunter, T. The Good and the Bad: The Bifunctional Enzyme Xanthine Oxidoreductase in the Production of Reactive Oxygen Species. In Reactive Oxygen Species—Advances and Developments; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Li, H.S.; Zhou, Y.N.; Li, L.; Li, S.F.; Long, D.; Chen, X.L.; Zhang, J.B.; Feng, L.; Li, Y.P. HIF-1α protects against oxidative stress by directly targeting mitochondria. Redox Biol. 2019, 25, 101109. [Google Scholar] [CrossRef]
- Luo, Z.; Tian, M.; Yang, G.; Tan, Q.; Chen, Y.; Li, G.; Zhang, Q.; Li, Y.; Wan, P.; Wu, J. Hypoxia signaling in human health and diseases: Implications and prospects for therapeutics. Signal Transduct. Target. Ther. 2022, 7, 218. [Google Scholar] [CrossRef]
- Wang, X.X.; Chen, W.Z.; Li, C.; Xu, R.S. Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis. Rev. Neurosci. 2024, 35, 549–563. [Google Scholar] [CrossRef]
- Abati, E.; Bresolin, N.; Comi, G.; Corti, S. Silence superoxide dismutase 1 (SOD1): A promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opin. Ther. Targets 2020, 24, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Waquar, S.; Idrees, N.; Malik, A. Impending role of inflammatory markers and their specificity and sensitivity in breast cancer patients. Sci. Rep. 2024, 14, 15117. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef] [PubMed]
- Couto, N.; Wood, J.; Barber, J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 2016, 95, 27–42. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Wu, J.; Bao, S.; Wang, Y.; Li, J.; Song, T.; Sun, Y.; Pi, J. Nrf2 Mitigates RANKL and M-CSF Induced Osteoclast Differentiation via ROS-Dependent Mechanisms. Antioxidants 2023, 12, 2094. [Google Scholar] [CrossRef]
- Kim, J.; Cha, Y.N.; Surh, Y.J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 2010, 690, 12–23. [Google Scholar] [CrossRef]
- Chiang, S.K.; Chen, S.E.; Chang, L.C. The Role of HO-1 and Its Crosstalk with Oxidative Stress in Cancer Cell Survival. Cells 2021, 10, 2401. [Google Scholar] [CrossRef]
- Gozzelino, R.; Jeney, V.; Soares, M.P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 323–354. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Weng, M.S.; Chang, J.H.; Hung, W.Y.; Yang, Y.C.; Chien, M.H. The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res. 2018, 37, 61. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-C.; An, S.; Lee, H.; Woo, S.-H.; Jin, H.-O.; Seo, S.-K.; Choe, T.-B.; Yoo, D.-H.; Lee, S.-J.; Hong, Y.-J.; et al. Activation of epidermal growth factor receptor and its downstream signaling pathway by nitric oxide in response to ionizing radiation. Mol. Cancer Res. 2008, 6, 996–1002. [Google Scholar] [CrossRef]
- Movafagh, S.; Crook, S.; Vo, K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: New developments in an old debate. J. Cell. Biochem. 2015, 116, 696–703. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxidative Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef] [PubMed]
- Kohlgrüber, S.; Upadhye, A.; Dyballa-Rukes, N.; McNamara, C.A.; Altschmied, J. Regulation of transcription factors by reactive oxygen species and nitric oxide in vascular physiology and pathology. Antioxid. Redox Signal. 2017, 26, 679–699. [Google Scholar] [CrossRef] [PubMed]
- Milkovic, L.; Cipak Gasparovic, A.; Cindric, M.; Mouthuy, P.A.; Zarkovic, N. Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells 2019, 8, 793. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.L. Self-sustained regulation or self-perpetuating dysregulation: ROS-dependent HIF-YAP-Notch signaling as a double-edged sword on stem cell physiology and tumorigenesis. Front. Cell Dev. Biol. 2022, 10, 862791. [Google Scholar] [CrossRef]
- Bertero, E.; Maack, C. Calcium signaling and reactive oxygen species in mitochondria. Circ. Res. 2018, 122, 1460–1478. [Google Scholar] [CrossRef]
- De Nicolo, B.; Cataldi-Stagetti, E.; Diquigiovanni, C.; Bonora, E. Calcium and reactive oxygen species signaling interplays in cardiac physiology and pathologies. Antioxidants 2023, 12, 353. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119041. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, B.; Cao, J.; Wang, Y.; Xiao, H.; Zhu, Y.; Zhang, H. ROS fine-tunes the function and fate of immune cells. Int. Immunopharmacol. 2023, 119, 110069. [Google Scholar] [CrossRef]
- Morris, G.; Gevezova, M.; Sarafian, V.; Maes, M. Redox regulation of the immune response. Cell. Mol. Immunol. 2022, 19, 1079–1101. [Google Scholar] [CrossRef] [PubMed]
- Asehnoune, K.; Strassheim, D.; Mitra, S.; Kim, J.Y.; Abraham, E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J. Immunol. 2004, 172, 2522–2529. [Google Scholar] [CrossRef]
- Pushpakumar, S.; Ren, L.; Kundu, S.; Gamon, A.; Tyagi, S.C.; Sen, U. Toll-like receptor 4 deficiency reduces oxidative stress and macrophage mediated inflammation in hypertensive kidney. Sci. Rep. 2017, 7, 6349. [Google Scholar] [CrossRef]
- Montégut, L.; López-Otín, C.; Kroemer, G. Aging and cancer. Mol. Cancer 2024, 23, 106. [Google Scholar] [CrossRef] [PubMed]
- Hahm, J.Y.; Park, J.; Jang, E.S.; Chi, S.W. 8-Oxoguanine: From oxidative damage to epigenetic and epitranscriptional modification. Exp. Mol. Med. 2022, 54, 1626–1642. [Google Scholar] [CrossRef]
- Liu, B.; Yip RKh Zhou, Z. Chromatin remodeling, DNA damage repair and aging. Curr. Genom. 2012, 13, 533–547. [Google Scholar] [CrossRef]
- Yu, C.; Asadian, S.; Tigano, M. Molecular and cellular consequences of mitochondrial DNA double-stranded breaks. Hum. Mol. Genet. 2024, 33, R12–R18. [Google Scholar] [CrossRef]
- Srivastava, S. The Mitochondrial Basis of Aging and Age-Related Disorders. Genes 2017, 8, 398. [Google Scholar] [CrossRef]
- Lin, J.; Epel, E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res. Rev. 2022, 73, 101507. [Google Scholar] [CrossRef]
- von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 2002, 27, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.P.; Fouquerel, E.; Opresko, P.L. The impact of oxidative DNA damage and stress on telomere homeostasis. Mech. Ageing Dev. 2019, 177, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Tomaska, L.; Nosek, J.; Kar, A.; Willcox, S.; Griffith, J.D. A new view of the T-loop junction: Implications for self-primed telomere extension, expansion of disease-related nucleotide repeat blocks, and telomere evolution. Front. Genet. 2019, 10, 792. [Google Scholar] [CrossRef]
- Alanazi, A.F.R.; Parkinson, G.N.; Haider, S. Structural motifs at the telomeres and their role in regulatory pathways. Biochemistry 2024, 63, 827–842. [Google Scholar] [CrossRef]
- Cuanalo-Contreras, K.; Schulz, J.; Mukherjee, A.; Park, K.W.; Armijo, E.; Soto, C. Extensive accumulation of misfolded protein aggregates during natural aging and senescence. Front. Aging Neurosci. 2023, 14, 1090109. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Liu, M.; Zhang, Y.; Zhou, H.; Wang, Y.; Xu, Z.X. Telomere-related DNA damage response pathways in cancer therapy: Prospective targets. Front. Pharmacol. 2024, 15, 1379166. [Google Scholar] [CrossRef] [PubMed]
- Lévy, E.; El Banna, N.; Baïlle, D.; Heneman-Masurel, A.; Truchet, S.; Rezaei, H.; Huang, M.-E.; Béringue, V.; Martin, D.; Vernis, L. Causative links between protein aggregation and oxidative stress: A review. Int. J. Mol. Sci. 2019, 20, 3896. [Google Scholar] [CrossRef] [PubMed]
- Guang, M.H.Z.; Kavanagh, E.L.; Dunne, L.P.; Dowling, P.; Zhang, L.; Lindsay, S.; Bazou, D.; Goh, C.Y.; Hanley, C.; Bianchi, G.; et al. Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers 2019, 11, 66. [Google Scholar] [CrossRef]
- Leonardi, G.C.; Accardi, G.; Monastero, R.; Nicoletti, F.; Libra, M. Ageing: From inflammation to cancer. Immun. Ageing 2018, 15, 1. [Google Scholar] [CrossRef]
- Hou, C.; Wang, Z.; Lu, X. Impact of immunosenescence and inflammaging on the effects of immune checkpoint inhibitors. Cancer Pathog. Ther. 2023, 2, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Serrano, M.; Blasco, M.A. The common biology of cancer and ageing. Nature 2007, 448, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Aman, Y.; Schmauck-Medina, T.; Hansen, M.; Morimoto, R.I.; Simon, A.K.; Bjedov, I.; Palikaras, K.; Simonsen, A.; Johansen, T.; Tavernarakis, N.; et al. Autophagy in healthy aging and disease. Nat. Aging 2021, 1, 634–650. [Google Scholar] [CrossRef]
- Kozakiewicz, M.; Kornatowski, M.; Krzywińska, O.; Kędziora-Kornatowska, K. Changes in the blood antioxidant defense of advanced age people. Clin. Interv. Aging 2019, 14, 763–771. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E.; Liew, W.P.; Sulaiman Rahman, H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162. [Google Scholar] [CrossRef]
- Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 2013, 75, 685–705. [Google Scholar] [CrossRef] [PubMed]
- Calcinotto, A.; Kohli, J.; Zagato, E.; Pellegrini, L.; Demaria, M.; Alimonti, A. Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev. 2019, 99, 1047–1078. [Google Scholar] [CrossRef]
- Benz, C.C.; Yau, C. Ageing, oxidative stress and cancer: Paradigms in parallax. Nat. Rev. Cancer 2008, 8, 875–879. [Google Scholar] [CrossRef]
- Kontomanolis, E.N.; Koutras, A.; Syllaios, A.; Schizas, D.; Mastoraki, A.; Garmpis, N.; Diakosavvas, M.; Angelou, K.; Tsatsaris, G.; Pagkalos, A.; et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: A review. Anticancer Res. 2020, 40, 6009–6015. [Google Scholar] [CrossRef] [PubMed]
- Dakal, T.C.; Dhabhai, B.; Pant, A.; Moar, K.; Chaudhary, K.; Yadav, V.; Ranga, V.; Sharma, N.K.; Kumar, A.; Maurya, P.K.; et al. Oncogenes and tumor suppressor genes: Functions and roles in cancers. MedComm 2024, 5, e582. [Google Scholar] [CrossRef]
- Maynard, S.; Schurman, S.H.; Harboe, C.; de Souza-Pinto, N.C.; Bohr, V.A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009, 30, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Balakrishnan, K.; Kuang, Y.; Han, Y.; Fu, M.; Gandhi, V.; Peng, X. Reactive oxygen species (ROS) inducible DNA cross-linking agents and their effect on cancer cells and normal lymphocytes. J. Med. Chem. 2014, 57, 4498–4510. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhou, P.K. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 254. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Potlapalli, R.; Quan, H.; Chen, L.; Xie, Y.; Pouriyeh, S.; Sakib, N.; Liu, L.; Xie, Y. Exploring DNA damage and repair mechanisms: A review with computational insights. BioTech 2024, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Kirtonia, A.; Sethi, G.; Garg, M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell. Mol. Life Sci. 2020, 77, 4459–4483. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Arfin, S.; Jha, N.K.; Jha, S.K.; Kesari, K.K.; Ruokolainen, J.; Roychoudhury, S.; Rathi, B.; Kumar, D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants 2021, 10, 642. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun. Signal. 2024, 22, 7. [Google Scholar] [CrossRef]
- Najafi, M.; Farhood, B.; Mortezaee, K. Cancer stem cells (CSCs) in cancer progression and therapy. J. Cell. Physiol. 2019, 234, 8381–8395. [Google Scholar] [CrossRef]
- Li, K.; Deng, Z.; Lei, C.; Ding, X.; Li, J.; Wang, C. The Role of Oxidative Stress in Tumorigenesis and Progression. Cells 2024, 13, 441. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Biagioni, A.; Peri, S.; Versienti, G.; Fiorillo, C.; Becatti, M.; Magnelli, L.; Papucci, L. Gastric Cancer Vascularization and the Contribution of Reactive Oxygen Species. Biomolecules 2023, 13, 886. [Google Scholar] [CrossRef] [PubMed]
- Ushio-Fukai, M.; Nakamura, Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008, 266, 37–52. [Google Scholar] [CrossRef]
- Xia, C.; Meng, Q.; Liu, L.Z.; Rojanasakul, Y.; Wang, X.R.; Jiang, B.H. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 2007, 67, 10823–10830. [Google Scholar] [CrossRef]
- Kuczynski, E.A.; Vermeulen, P.B.; Pezzella, F.; Kerbel, R.S.; Reynolds, A.R. Vessel co-option in cancer. Nat. Rev. Clin. Oncol. 2019, 16, 469–493. [Google Scholar] [CrossRef] [PubMed]
- Farahzadi, R.; Valipour, B.; Fathi, E.; Pirmoradi, S.; Molavi, O.; Montazersaheb, S.; Sanaat, Z. Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells. Stem Cell Res. Ther. 2023, 14, 342. [Google Scholar] [CrossRef]
- Mori, K.; Uchida, T.; Yoshie, T.; Mizote, Y.; Ishikawa, F.; Katsuyama, M.; Shibanuma, M. A mitochondrial ROS pathway controls matrix metalloproteinase 9 levels and invasive properties in RAS-activated cancer cells. FEBS J. 2019, 286, 459–478. [Google Scholar] [CrossRef]
- Cisneros, B.; García-Aguirre, I.; Unzueta, J.; Arrieta-Cruz, I.; González-Morales, O.; Domínguez-Larrieta, J.M.; Tamez-González, A.; Leyva-Gómez, G.; Magaña, J.J. Immune system modulation in aging: Molecular mechanisms and therapeutic targets. Front. Immunol. 2022, 13, 1059173. [Google Scholar] [CrossRef]
- Cannizzo, E.S.; Clement, C.C.; Sahu, R.; Follo, C.; Santambrogio, L. Oxidative stress, inflamm-aging and immunosenescence. J. Proteom. 2011, 74, 2313–2323. [Google Scholar] [CrossRef]
- Pangrazzi, L.; Meryk, A.; Naismith, E.; Koziel, R.; Lair, J.; Krismer, M.; Trieb, K.; Grubeck-Loebenstein, B. “Inflamm-aging” influences immune cell survival factors in human bone marrow. Eur. J. Immunol. 2017, 47, 481–492. [Google Scholar] [CrossRef]
- Olivier, C.; Oliver, L.; Lalier, L.; Vallette, F.M. Drug Resistance in Glioblastoma: The Two Faces of Oxidative Stress. Front. Mol. Biosci. 2021, 7, 620677. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, T.; Dong, Q.; Nice, E.C.; Huang, C.; Wei, Y. Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 2013, 4, e537. [Google Scholar] [CrossRef] [PubMed]
- Bigarella, C.L.; Liang, R.; Ghaffari, S. Stem cells and the impact of ROS signaling. Development 2014, 141, 4206–4218. [Google Scholar] [CrossRef]
- Movahed, Z.G.; Yarani, R.; Mohammadi, P.; Mansouri, K. Sustained oxidative stress instigates differentiation of cancer stem cells into tumor endothelial cells: Pentose phosphate pathway, reactive oxygen species and autophagy crosstalk. Biomed. Pharmacother. 2021, 139, 111643. [Google Scholar] [CrossRef]
- Najafi, M.; Mortezaee, K.; Majidpoor, J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019, 234, 116781. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ma, S.; Xu, R.; Wei, Y.; Zhang, J.; Zuo, T.; Wang, Z.; Deng, H.; Yang, N.; Shen, Q. Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J. Control. Release 2021, 334, 21–33. [Google Scholar] [CrossRef]
- Teng, M.W.; Ngiow, S.F.; Ribas, A.; Smyth, M.J. Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Res. 2015, 75, 2139–2145. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, L.; Sun, H.; Shen, Y.; Hu, D.; Wu, W.; Wang, Y.; Qian, C.; Sun, M. Fluorine assembly nanocluster breaks the shackles of immunosuppression to turn the cold tumor hot. Proc. Natl. Acad. Sci. USA 2020, 117, 32962–32969. [Google Scholar] [CrossRef]
- Deng, H.; Yang, W.; Zhou, Z.; Tian, R.; Lin, L.; Ma, Y.; Song, J.; Chen, X. Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death. Nat. Commun. 2020, 11, 4951. [Google Scholar] [CrossRef]
- Marino, P.; Pepe, G.; Basilicata, M.G.; Vestuto, V.; Marzocco, S.; Autore, G.; Procino, A.; Gomez-Monterrey, I.M.; Manfra, M.; Campiglia, P. Potential Role of Natural Antioxidant Products in Oncological Diseases. Antioxidants 2023, 12, 704. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Geicu, O.I.; Bilteanu, L.; Serban, A.I. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur. J. Med. Chem. 2022, 232, 114175. [Google Scholar] [CrossRef] [PubMed]
- Ferencík, M.; Ebringer, L. Modulatory effects of selenium and zinc on the immune system. Folia Microbiol. 2003, 48, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.A. Effects of dietary antioxidants on the immune function of middle-aged adults. Proc. Nutr. Soc. 1999, 58, 79–84. [Google Scholar] [CrossRef]
- Bendich, A. Physiological role of antioxidants in the immune system. J. Dairy Sci. 1993, 76, 2789–2794. [Google Scholar] [CrossRef]
- Key, T.J.; Schatzkin, A.; Willett, W.C.; Allen, N.E.; Spencer, E.A.; Travis, R.C. Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004, 7, 187–200. [Google Scholar] [CrossRef]
- Turati, F.; Rossi, M.; Pelucchi, C.; Levi, F.; La Vecchia, C. Fruit and vegetables and cancer risk: A review of southern European studies. Br. J. Nutr. 2015, 113 (Suppl. 2), S102–S110. [Google Scholar] [CrossRef]
- Klein, E.A.; Thompson, I.M., Jr.; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; et al. Vitamin E and the risk of prostate cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011, 306, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Olsson, M.E.; Andersson, C.S.; Oredsson, S.; Berglund, R.H.; Gustavsson, K.E. Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries. J. Agric. Food Chem. 2006, 54, 1248–1255. [Google Scholar] [CrossRef]
- Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M.; et al. Medicinal Plants in the Prevention and Treatment of Colon Cancer. Oxidative Med. Cell. Longev. 2019, 2019, 2075614. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef]
- Patra, S.; Pradhan, B.; Nayak, R.; Behera, C.; Rout, L.; Jena, M.; Efferth, T.; Bhutia, S.K. Chemotherapeutic efficacy of curcumin and resveratrol against cancer: Chemoprevention, chemoprotection, drug synergism and clinical pharmacokinetics. Semin. Cancer Biol. 2021, 73, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Insaf, A.; Hasan, N.; Sugandhi, V.V.; Shrestha, D.; Paudel, K.R.; Jha, S.K.; Hansbro, P.M.; Dua, K.; Devkota, H.P.; et al. Exploring the Remarkable Chemotherapeutic Potential of Polyphenolic Antioxidants in Battling Various Forms of Cancer. Molecules 2023, 28, 3475. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.; Salas-Salvadó, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fitó, M.; Hu, F.B.; Arós, F.; et al. Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1752–1760, Erratum in: JAMA Intern. Med. 2018, 178, 1731–1732. [Google Scholar] [CrossRef] [PubMed]
- Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 1994, 330, 1029–1035. [Google Scholar] [CrossRef]
- Rock, C.L.; Natarajan, L.; Pu, M.; Thomson, C.A.; Flatt, S.W.; Caan, B.J.; Gold, E.B.; Al-Delaimy, W.K.; Newman, V.A.; Hajek, R.A.; et al. Longitudinal biological exposure to carotenoids is associated with breast cancer-free survival in the Women’s Healthy Eating and Living Study. Cancer Epidemiol. Biomark. Prev. 2009, 18, 486–494. [Google Scholar] [CrossRef]
- Romney, S.L.; Ho, G.Y.; Palan, P.R.; Basu, J.; Kadish, A.S.; Klein, S.; Mikhail, M.; Hagan, R.J.; Chang, C.J.; Burk, R.D. Effects of beta-carotene and other factors on outcome of cervical dysplasia and human papillomavirus infection. Gynecol. Oncol. 1997, 65, 483–492. [Google Scholar] [CrossRef]
- Manetta, A.; Schubbert, T.; Chapman, J.; Schell, M.J.; Peng, Y.M.; Liao, S.Y.; Meyskens, F.J., Jr. beta-Carotene treatment of cervical intraepithelial neoplasia: A phase II study. Cancer Epidemiol. Biomark. Prev. 1996, 5, 929–932. [Google Scholar]
- Green, A.; Williams, G.; Neale, R.; Hart, V.; Leslie, D.; Parsons, P.; Marks, G.C.; Gaffney, P.; Battistutta, D.; Frost, C.; et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: A randomised controlled trial. Lancet 1999, 354, 723–729. [Google Scholar] [CrossRef]
- Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L., Jr.; Valanis, B.; Williams, J.H., Jr.; et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J. Natl. Cancer Inst. 1996, 88, 1550–1559. [Google Scholar] [CrossRef]
- Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Meyskens, F.L., Jr.; Omenn, G.S.; Valanis, B.; Williams, J.H., Jr. The Beta-Carotene and Retinol Efficacy Trial: Incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping beta-carotene and retinol supplements. J. Natl. Cancer Inst. 2004, 96, 1743–1750. [Google Scholar] [CrossRef]
- Carotene and Retinol Efficacy Trial (CARET). Available online: https://clinicaltrials.gov/ct2/show/NCT00712647 (accessed on 19 July 2024).
- Greenberg, E.R.; Baron, J.A.; Stevens, M.M.; Stukel, T.A.; Mandel, J.S.; Spencer, S.K.; Elias, P.M.; Nicholas, L.; Nierenberg, D.N.; Bayrd, G.; et al. The Skin Cancer Prevention Study: Design of a clinical trial of beta-carotene among persons at high risk for nonmelanoma skin cancer. Control. Clin. Trials 1989, 10, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Frieling, U.M.; Schaumberg, D.A.; Kupper, T.S.; Muntwyler, J.; Hennekens, C.H. A randomized, 12-year primary-prevention trial of beta carotene supplementation for nonmelanoma skin cancer in the physician’s health study. Arch. Dermatol. 2000, 136, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Popat, R.; Plesner, T.; Davies, F.; Cook, G.; Cook, M.; Elliott, P.; Jacobson, E.; Gumbleton, T.; Oakervee, H.; Cavenagh, J. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br. J. Haematol. 2013, 160, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Paller, C.J.; Zhou, X.C.; Heath, E.I.; Taplin, M.E.; Mayer, T.; Stein, M.N.; Bubley, G.J.; Pili, R.; Hudson, T.; Kakarla, R.; et al. Muscadine Grape Skin Extract (MPX) in Men with Biochemically Recurrent Prostate Cancer: A Randomized, Multicenter, Placebo-Controlled Clinical Trial. Clin. Cancer Res. 2018, 24, 306–315. [Google Scholar] [CrossRef]
- Paller, C.J.; Rudek, M.A.; Zhou, X.C.; Wagner, W.D.; Hudson, T.S.; Anders, N.; Hammers, H.J.; Dowling, D.; King, S.; Antonarakis, E.S.; et al. A phase I study of muscadine grape skin extract in men with biochemically recurrent prostate cancer: Safety, tolerability, and dose determination. Prostate 2015, 75, 1518–1525. [Google Scholar] [CrossRef]
- Winterbourn, C.C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 2014, 1840, 730–738. [Google Scholar] [CrossRef]
- Van de Bittner, G.C.; Dubikovskaya, E.A.; Bertozzi, C.R.; Chang, C.J. In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc. Natl. Acad. Sci. USA 2010, 107, 21316–21321. [Google Scholar] [CrossRef]
- Duanghathaipornsuk, S.; Farrell, E.J.; Alba-Rubio, A.C.; Zelenay, P.; Kim, D.S. Detection technologies for reactive oxygen species: Fluorescence and electrochemical methods and their applications. Biosensors 2021, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Towner, R.A.; Smith, N.; Saunders, D.; Lupu, F.; Silasi-Mansat, R.; West, M.; Ramirez, D.C.; Gomez-Mejiba, S.E.; Bonini, M.G.; Mason, R.P.; et al. In vivo detection of free radicals using molecular MRI and immuno-spin trapping in a mouse model for amyotrophic lateral sclerosis. Free Radic. Biol. Med. 2013, 63, 351–360. [Google Scholar] [CrossRef]
- Berliner, L.J. (Ed.) In Vivo EPR (ESR); Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Caia, G.L.; Efimova, O.V.; Velayutham, M.; El-Mahdy, M.A.; Abdelghany, T.M.; Kesselring, E.; Petryakov, S.; Sun, Z.; Samouilov, A.; Zweier, J.L. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging. J. Magn. Reson. 2012, 216, 21–27. [Google Scholar] [CrossRef]
- Hou, C.; Hsieh, C.-J.; Li, S.; Lee, H.; Graham, T.J.; Xu, K.; Weng, C.-C.; Doot, R.K.; Chu, W.; Chakraborty, S.K.; et al. Development of a positron emission tomography radiotracer for imaging elevated levels of superoxide in neuroinflammation. ACS Chem. Neurosci. 2018, 9, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, H.E.; Witney, T.H. Latest advances in imaging oxidative stress in cancer. J. Nucl. Med. 2021, 62, 1506–1510. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, M.; Okazawa, H.; Nakamoto, Y.; Yoneda, M. PET imaging for oxidative stress in neurodegenerative disorders associated with mitochondrial dysfunction. Antioxidants 2020, 9, 861. [Google Scholar] [CrossRef] [PubMed]
- Tsakanova, G.; Arakelova, E.; Ayvazyan, V.; Ayvazyan, A.; Tatikyan, S.; Aroutiounian, R.; Dalyan, Y.; Haroutiunian, S.; Tsakanov, V.; Arakelyan, A. Two-photon microscopy imaging of oxidative stress in human living erythrocytes. Biomed. Opt. Express 2017, 8, 5834–5846. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Bridle, K.R.; Jayachandran, A.; Thomas, J.A.; Zhang, W.; Yuan, J.; Xu, Z.P.; Crawford, D.H.G.; Liang, X.; et al. Two-photon dual imaging platform for in vivo monitoring cellular oxidative stress in liver injury. Sci. Rep. 2017, 7, 45374. [Google Scholar] [CrossRef]
- Calvo-Rodriguez, M.; Kharitonova, E.K.; Snyder, A.C.; Hou, S.S.; Sanchez-Mico, M.V.; Das, S.; Fan, Z.; Shirani, H.; Nilsson, K.P.R.; Serrano-Pozo, A.; et al. Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid β aggregates in vivo in a mouse model of Alzheimer’s disease. Mol. Neurodegener. 2024, 19, 6. [Google Scholar] [CrossRef]
- Ripanti, F.; Fasolato, C.; Mazzarda, F.; Palleschi, S.; Ceccarini, M.; Li, C.; Bignami, M.; Bodo, E.; Bell, S.E.; Mazzei, F.; et al. Advanced Raman spectroscopy detection of oxidative damage in nucleic acid bases: Probing chemical changes and intermolecular interactions in guanosine at ultralow concentration. Anal. Chem. 2021, 93, 10825–10833. [Google Scholar] [CrossRef]
- Surmacki, J.M.; Quiros-Gonzalez, I.; Bohndiek, S.E. Evaluation of label-free confocal Raman microspectroscopy for monitoring oxidative stress in vitro in live human cancer cells. Antioxidants 2022, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Godin, A.G.; Lounis, B.; Cognet, L. Super-resolution microscopy approaches for live cell imaging. Biophys. J. 2014, 107, 1777–1784. [Google Scholar] [CrossRef]
- Wu, K.; El Zowalaty, A.E.; Sayin, V.I.; Papagiannakopoulos, T. The pleiotropic functions of reactive oxygen species in cancer. Nat. Cancer 2024, 5, 384–399. [Google Scholar] [CrossRef]
- Jiang, W.; Liang, M.; Lei, Q.; Li, G.; Wu, S. The current status of photodynamic therapy in cancer treatment. Cancers 2023, 15, 585. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.K.W.; Sehgal, C.M. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med. Biol. 2015, 41, 905–928. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, C.; Zhu, W.; Li, X.; Chen, T.; Liu, Q.; Zhou, S.; Zhang, T.-C.; Ma, W. Chemotherapeutic drugs induce oxidative stress associated with DNA repair and metabolism modulation. Life Sci. 2022, 289, 120242. [Google Scholar] [CrossRef] [PubMed]
- Padi, S.K.R.; Chauhan, S.S.; Singh, N. ROS Induced by Chemo- and Targeted Therapy Promote Apoptosis in Cancer Cells. In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects; Springer Nature: Singapore, 2022; pp. 583–598. [Google Scholar] [CrossRef]
- Kciuk, M.; Gielecińska, A.; Mujwar, S.; Kołat, D.; Kałuzińska-Kołat, Ż.; Celik, I.; Kontek, R. Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cells 2023, 12, 659. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- de Vries, G.; Rosas-Plaza, X.; van Vugt, M.A.T.M.; Gietema, J.A.; de Jong, S. Testicular cancer: Determinants of cisplatin sensitivity and novel therapeutic opportunities. Cancer Treat. Rev. 2020, 88, 102054. [Google Scholar] [CrossRef]
- Kleih, M.; Böpple, K.; Dong, M.; Gaißler, A.; Heine, S.; Olayioye, M.A.; Aulitzky, W.E.; Essmann, F. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 2019, 10, 851. [Google Scholar] [CrossRef]
- Taber, A.; Christensen, E.; Lamy, P.; Nordentoft, I.; Prip, F.; Lindskrog, S.V.; Birkenkamp-Demtröder, K.; Okholm, T.L.H.; Knudsen, M.; Pedersen, J.S.; et al. Molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis. Nat. Commun. 2020, 11, 4858. [Google Scholar] [CrossRef]
- Wang, G.; Reed, E.; Li, Q.Q. Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer (Review). Oncol. Rep. 2004, 12, 955–965. [Google Scholar] [CrossRef]
- Helfenstein, S.; Riesterer, O.; Meier, U.R.; Papachristofilou, A.; Kasenda, B.; Pless, M.; Rothschild, S.I. 3-weekly or weekly cisplatin concurrently with radiotherapy for patients with squamous cell carcinoma of the head and neck—A multicentre, retrospective analysis. Radiat. Oncol. 2019, 14, 32. [Google Scholar] [CrossRef]
- Abu Samaan, T.M.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 2019, 9, 789. [Google Scholar] [CrossRef] [PubMed]
- Baird, R.D.; Tan, D.S.P.; Kaye, S.B. Weekly paclitaxel in the treatment of recurrent ovarian cancer. Nat. Rev. Clin. Oncol. 2010, 7, 575–582. [Google Scholar] [CrossRef] [PubMed]
- von Eiff, D.; Bozorgmehr, F.; Chung, I.; Bernhardt, D.; Rieken, S.; Liersch, S.; Muley, T.; Kobinger, S.; Thomas, M.; Christopoulos, P.; et al. Paclitaxel for treatment of advanced small cell lung cancer (SCLC): A retrospective study of 185 patients. J. Thorac. Dis. 2020, 12, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, J.; Hu, Y.; Lu, W.; Pelicano, H.; Huang, P. Novel action of paclitaxel against cancer cells: Bystander effect mediated by reactive oxygen species. Cancer Res. 2007, 67, 3512–3517. [Google Scholar] [CrossRef]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic therapy for the treatment and diagnosis of cancer-A Review of the current clinical status. Front. Chem. 2021, 9, 686303. [Google Scholar] [CrossRef]
- Mehta, N.H.; Shah, H.A.; D’Amico, R.S. Sonodynamic therapy and sonosensitizers for glioma treatment: A systematic qualitative review. World Neurosurg. 2023, 178, 60–68. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kitahara, S.; Kusuda, K.; Okamoto, J.; Horise, Y.; Masamune, K.; Muragaki, Y. Current landscape of sonodynamic therapy for treating cancer. Cancers 2021, 13, 6184. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.; Pompei, F.; Lee, E.E.; Wilson, R. Cancer suppression at old age. Cancer Res. 2008, 68, 4465–4478. [Google Scholar] [CrossRef]
- Ledford, H. Why cancer risk declines sharply in old age. Nature 2024, 631, 261–262. [Google Scholar] [CrossRef]
- Esme, H.; Cemek, M.; Sezer, M.; Saglam, H.; Demir, A.; Melek, H.; Unlu, M. High levels of oxidative stress in patients with advanced lung cancer. Respirology 2008, 13, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef] [PubMed]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, K.; Loridas, S. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int. J. Environ. Res. Public Health 2013, 10, 3886–3907. [Google Scholar] [CrossRef]
- Lawless, M.W.; O’Byrne, K.J.; Gray, S.G. Oxidative stress induced lung cancer and COPD: Opportunities for epigenetic therapy. J. Cell. Mol. Med. 2009, 13, 2800–2821. [Google Scholar] [CrossRef]
- Ferraro, M.; Di Vincenzo, S.; Lazzara, V.; Pinto, P.; Patella, B.; Inguanta, R.; Bruno, A.; Pace, E. Formoterol exerts anti-cancer effects modulating oxidative stress and epithelial-mesenchymal transition processes in cigarette smoke extract exposed lung adenocarcinoma cells. Int. J. Mol. Sci. 2023, 24, 16088. [Google Scholar] [CrossRef]
- Gęgotek, A.; Nikliński, J.; Žarković, N.; Žarković, K.; Waeg, G.; Łuczaj, W.; Charkiewicz, R.; Skrzydlewska, E. Lipid mediators involved in the oxidative stress and antioxidant defence of human lung cancer cells. Redox Biol. 2016, 9, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, E.; Fermoselle, C.; Mateu-Jimenez, M.; Sánchez-Font, A.; Pijuan, L.; Gea, J.; Curull, V. Oxidative stress and inflammation in the normal airways and blood of patients with lung cancer and COPD. Free Radic. Biol. Med. 2013, 65, 859–871. [Google Scholar] [CrossRef]
- Kotsopoulos, J. Menopausal hormones: Definitive evidence for breast cancer. Lancet 2019, 394, 1116–1118. [Google Scholar] [CrossRef]
- Jezierska-Drutel, A.; Rosenzweig, S.A.; Neumann, C.A. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res. 2013, 119, 107–125. [Google Scholar] [CrossRef]
- Sastre-Serra, J.; Valle, A.; Company, M.M.; Garau, I.; Oliver, J.; Roca, P. Estrogen down-regulates uncoupling proteins and increases oxidative stress in breast cancer. Free Radic. Biol. Med. 2010, 48, 506–512. [Google Scholar] [CrossRef]
- Nadal-Serrano, M.; Sastre-Serra, J.; Pons, D.G.; Miró, A.M.; Oliver, J.; Roca, P. The ERalpha/ERbeta ratio determines oxidative stress in breast cancer cell lines in response to 17beta-estradiol. J. Cell. Biochem. 2012, 113, 3178–3185. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Chatterjee, A.; Ronghe, A.M.; Bhat, N.K.; Bhat, H.K. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer. BMC Cancer 2013, 13, 253. [Google Scholar] [CrossRef]
- Singh, B.; Bhat, N.K.; Bhat, H.K. Partial inhibition of estrogen-induced mammary carcinogenesis in rats by tamoxifen: Balance between oxidant stress and estrogen responsiveness. PLoS ONE 2011, 6, e25125. [Google Scholar] [CrossRef]
- Smolarek, A.K.; Suh, N. Chemopreventive activity of vitamin E in breast cancer: A focus on γ- and δ-tocopherol. Nutrients 2011, 3, 962–986. [Google Scholar] [CrossRef] [PubMed]
- Mahalingaiah, P.K.S.; Ponnusamy, L.; Singh, K.P. Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells. Breast Cancer Res. Treat. 2015, 153, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhuang, J.; Zhang, Q.; Zhao, X.; Chen, G.; Han, S.; Hu, B.; Wu, W.; Han, S. Aging characteristics of colorectal cancer based on gut microbiota. Cancer Med. 2023, 12, 17822–17834. [Google Scholar] [CrossRef]
- Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Al Kattar, S.; Bou-Assi, T.; Jurjus, R.; Damiani, P.; Leone, A.; et al. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants. Anticancer Res. 2017, 37, 4759–4766. [Google Scholar] [CrossRef]
- Pettan-Brewer, C.; Morton, J.; Mangalindan, R.; Ladiges, W. Curcumin suppresses intestinal polyps in APC Min mice fed a high fat diet. Pathobiol. Aging Age-Relat. Dis. 2011, 1, 7013. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Kanbe, T.; Harada, K.; Yashima, K.; Nozaka, K.; Tanida, O.; Kohno, M.; Mukoyama, T.; Nishimuki, E.; Kojo, H.; et al. Aberrant expression of selenoproteins in the progression of colorectal cancer. Cancer Lett. 2008, 259, 218–230. [Google Scholar] [CrossRef]
- Kavec, M.J.; Urbanova, M.; Makovicky, P.; Opattová, A.; Tomasova, K.; Kroupa, M.; Kostovcikova, K.; Siskova, A.; Navvabi, N.; Schneiderova, M.; et al. Oxidative damage in sporadic colorectal cancer: Molecular mapping of base excision repair glycosylases MUTYH and hOGG1 in colorectal cancer patients. Int. J. Mol. Sci. 2022, 23, 5704. [Google Scholar] [CrossRef]
- Lamaudière, M.T.F.; Arasaradnam, R.; Weedall, G.D.; Morozov, I.Y. The colorectal cancer Microbiota alter their transcriptome to adapt to the acidity, reactive oxygen species, and metabolite availability of gut microenvironments. mSphere 2023, 8, e0062722. [Google Scholar] [CrossRef] [PubMed]
- Udensi, U.K.; Tchounwou, P.B. Oxidative stress in prostate hyperplasia and carcinogenesis. J. Exp. Clin. Cancer Res. 2016, 35, 139. [Google Scholar] [CrossRef]
- Biesiadecki, M.; Mołoń, M.; Balawender, K.; Kobylińska, Z.; Galiniak, S. Shedding light on the shadows: Oxidative stress and its pivotal role in prostate cancer progression. Front. Oncol. 2024, 14, 1393078. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, Q.; Chen, X.; Tong, S.; Sun, J.; Lv, R.; Wang, S.; Gou, Y.; Tan, L.; Xu, J.; et al. LanCL1 protects prostate cancer cells from oxidative stress via suppression of JNK pathway. Cell Death Dis. 2018, 9, 197. [Google Scholar] [CrossRef]
- Fu, Y.; Chung, F.L. Oxidative stress and hepatocarcinogenesis. Hepatoma Res. 2018, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, M.R.; Orlicky, D.J.; Prigge, J.R.; Krishna, P.; Talago, E.A.; Cavigli, I.R.; Eriksson, S.; Miller, C.G.; Kundert, J.A.; Sayin, V.I.; et al. TrxR1, Gsr, and oxidative stress determine hepatocellular carcinoma malignancy. Proc. Natl. Acad. Sci. USA 2019, 116, 11408–11417. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, C.; Li, L.; Zhang, H.; Zha, W.; Ma, L.; Chen, L.; Gan, J. The role of oxidative stress in the development and therapeutic intervention of hepatocellular carcinoma. Curr. Cancer Drug Targets 2023, 23, 792–804. [Google Scholar] [CrossRef]
- Huang, P.S.; Wang, C.S.; Yeh, C.T.; Lin, K.H. Roles of thyroid hormone-associated microRNAs affecting oxidative stress in human hepatocellular carcinoma. Int. J. Mol. Sci. 2019, 20, 5220. [Google Scholar] [CrossRef]
- Takaki, A.; Yamamoto, K. Control of oxidative stress in hepatocellular carcinoma: Helpful or harmful? World J. Hepatol. 2015, 7, 968–979. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, L.; Duan, J.; Qin, S.; Jiang, J.; Chen, H.; Wang, K.; Liu, R.; Yuan, M.; Tang, X.; et al. Oxidative stress promotes liver cancer metastasis via RNF25-mediated E-cadherin protein degradation. Adv. Sci. 2024, 11, e2306929. [Google Scholar] [CrossRef]
- Liu, H.-M.; Cheng, M.-Y.; Xun, M.-H.; Zhao, Z.-W.; Zhang, Y.; Tang, W.; Cheng, J.; Ni, J.; Wang, W. Possible mechanisms of oxidative stress-induced skin cellular senescence, inflammation, and cancer and the therapeutic potential of plant polyphenols. Int. J. Mol. Sci. 2023, 24, 3755. [Google Scholar] [CrossRef]
- Pizzimenti, S.; Ribero, S.; Cucci, M.A.; Grattarola, M.; Monge, C.; Dianzani, C.; Barrera, G.; Muzio, G. Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants 2021, 10, 1942. [Google Scholar] [CrossRef] [PubMed]
- Brand, R.M.; Wipf, P.; Durham, A.; Epperly, M.W.; Greenberger, J.S.; Falo, L.D., Jr. Targeting Mitochondrial Oxidative Stress to Mitigate UV-Induced Skin Damage. Front. Pharmacol. 2018, 9, 920. [Google Scholar] [CrossRef] [PubMed]
- Denat, L.; Kadekaro, A.L.; Marrot, L.; Leachman, S.A.; Abdel-Malek, Z.A. Melanocytes as instigators and victims of oxidative stress. J. Investig. Dermatol. 2014, 134, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Bisevac, J.P.; Djukic, M.; Stanojevic, I.; Stevanovic, I.; Mijuskovic, Z.; Djuric, A.; Gobeljic, B.; Banovic, T.; Vojvodic, D. Association between oxidative stress and melanoma progression. J. Med. Biochem. 2018, 37, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Karampinis, E.; Nechalioti, P.-M.; Georgopoulou, K.E.; Goniotakis, G.; Schulze, A.V.R.; Zafiriou, E.; Kouretas, D. Systemic oxidative stress parameters in skin cancer patients and patients with benign lesions. Stresses 2023, 3, 785–812. [Google Scholar] [CrossRef]
- Krueger, A.; Mohamed, A.; Kolka, C.M.; Stoll, T.; Zaugg, J.; Linedale, R.; Morrison, M.; Soyer, H.P.; Hugenholtz, P.; Frazer, I.H.; et al. Skin cancer-associated S. aureus strains can induce DNA damage in human keratinocytes by downregulating DNA repair and promoting oxidative stress. Cancers 2022, 14, 2143. [Google Scholar] [CrossRef]
- Poljsak, B. Strategies for reducing or preventing the generation of oxidative stress. Oxidative Med. Cell. Longev. 2011, 2011, 194586. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K. N-acetylcysteine: A review of clinical usefulness (an old drug with new tricks). J. Nutr. Metab. 2021, 2021, 9949453. [Google Scholar] [CrossRef]
- Smaga, I.; Frankowska, M.; Filip, M. N-acetylcysteine as a new prominent approach for treating psychiatric disorders. Br. J. Pharmacol. 2021, 178, 2569–2594. [Google Scholar] [CrossRef]
- Garrido-Maraver, J. Clinical applications of coenzyme Q10. Front. Biosci. 2014, 19, 619. [Google Scholar] [CrossRef] [PubMed]
- Gredilla, R.; Barja, G. Minireview: The role of oxidative stress in relation to caloric restriction and longevity. Endocrinology 2005, 146, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Strilbytska, O.; Klishch, S.; Storey, K.B.; Koliada, A.; Lushchak, O. Intermittent fasting and longevity: From animal models to implication for humans. Ageing Res. Rev. 2024, 96, 102274. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Cederbaum, A.I. Alcohol, oxidative stress, and free radical damage. Alcohol Res. Health 2003, 27, 277–284. [Google Scholar] [PubMed]
- Lee, B.J.; Egi, Y.; van Leyen, K.; Lo, E.H.; Arai, K. Edaravone, a free radical scavenger, protects components of the neurovascular unit against oxidative stress in vitro. Brain Res. 2010, 1307, 22–27. [Google Scholar] [CrossRef]
- Maragakis, N.J.; de Carvalho, M.; Weiss, M.D. Therapeutic targeting of ALS pathways: Refocusing an incomplete picture. Ann. Clin. Transl. Neurol. 2023, 10, 1948–1971. [Google Scholar] [CrossRef]
- Duranti, E.; Cordani, N.; Villa, C. Edaravone: A novel possible drug for cancer treatment? Int. J. Mol. Sci. 2024, 25, 1633. [Google Scholar] [CrossRef]
- Konaté, M.M.; Antony, S.; Doroshow, J.H. Inhibiting the activity of NADPH oxidase in cancer. Antioxid. Redox. Signal 2020, 33, 435–454. [Google Scholar] [CrossRef]
- Zhang, Z.; Ghosh, A.; Connolly, P.J.; King, P.; Wilde, T.; Wang, J.; Dong, Y.; Li, X.; Liao, D.; Chen, H.; et al. Gut-restricted selective cyclooxygenase-2 (COX-2) inhibitors for chemoprevention of colorectal cancer. J. Med. Chem. 2021, 64, 11570–11596. [Google Scholar] [CrossRef]
- Orafaie, A.; Matin, M.M.; Sadeghian, H. The importance of 15-lipoxygenase inhibitors in cancer treatment. Cancer Metastasis Rev. 2018, 37, 397–408. [Google Scholar] [CrossRef]
- Reis, J.; Gorgulla, C.; Massari, M.; Marchese, S.; Valente, S.; Noce, B.; Basile, L.; Törner, R.; Cox, H., 3rd; Viennet, T.; et al. Targeting ROS production through inhibition of NADPH oxidases. Nat. Chem. Biol. 2023, 19, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Kurzhagen, J.T.; Noel, S.; Lee, K.; Sadasivam, M.; Gharaie, S.; Ankireddy, A.; Lee, S.A.; Newman-Rivera, A.; Gong, J.; Arend, L.J.; et al. T cell Nrf2/Keap1 gene editing using CRISPR/Cas9 and experimental kidney ischemia-reperfusion injury. Antioxid. Redox Signal. 2023, 38, 959–973. [Google Scholar] [CrossRef] [PubMed]
- Ekman, F.K.; Ojala, D.S.; Adil, M.M.; Lopez, P.A.; Schaffer, D.V.; Gaj, T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol. Ther. Nucleic Acids 2019, 17, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Guo, M.; Yi, L.; Liu, Y.; Li, Z.; Ma, Y.; Zhang, G.; Liu, Y.; Bu, H.; Song, X.; et al. The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther. 2020, 27, 157–169. [Google Scholar] [CrossRef]
- Rahman, M.U.; Bilal, M.; Shah, J.A.; Kaushik, A.; Teissedre, P.L.; Kujawska, M. CRISPR-Cas9-based technology and its relevance to gene editing in Parkinson’s disease. Pharmaceutics 2022, 14, 1252. [Google Scholar] [CrossRef]
- Shan, H.; Fei, T. CRISPR screening in cardiovascular research. Front. Cell Dev. Biol. 2023, 11, 1175849. [Google Scholar] [CrossRef] [PubMed]
- Mirgayazova, R.; Khadiullina, R.; Chasov, V.; Mingaleeva, R.; Miftakhova, R.; Rizvanov, A.; Bulatov, E. Therapeutic editing of the TP53 gene: Is CRISPR/Cas9 an option? Genes 2020, 11, 704. [Google Scholar] [CrossRef]
- Lin, C.H.; Vu, J.P.; Yang, C.Y.; Sirisawad, M.; Chen, C.T.; Dao, H.; Liu, J.; Ma, X.; Pan, C.; Cefalu, J.; et al. Glutamate-cysteine ligase catalytic subunit as a therapeutic target in acute myeloid leukemia and solid tumors. Am. J. Cancer Res. 2021, 11, 2911–2927. [Google Scholar]
- Li, J.M.; Newburger, P.E.; Gounis, M.J.; Dargon, P.; Zhang, X.; Messina, L.M. Local arterial nanoparticle delivery of siRNA for NOX2 knockdown to prevent restenosis in an atherosclerotic rat model. Gene Ther. 2010, 17, 1279–1287. [Google Scholar] [CrossRef]
- Koenig, O.; Walker, T.; Perle, N.; Zech, A.; Neumann, B.; Schlensak, C.; Wendel, H.-P.; Nolte, A. New aspects of gene-silencing for the treatment of cardiovascular diseases. Pharmaceuticals 2013, 6, 881–914. [Google Scholar] [CrossRef]
- Ma, M.W.; Wang, J.; Zhang, Q.; Wang, R.; Dhandapani, K.M.; Vadlamudi, R.K.; Brann, D.W. NADPH oxidase in brain injury and neurodegenerative disorders. Mol. Neurodegener. 2017, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zhao, M.W.; Li, X.X.; Yu, W.Z.; Bian, Z.M. siRNA targeting mammalian target of rapamycin (mTOR) attenuates experimental proliferative vitreoretinopathy. Curr. Eye Res. 2007, 32, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, J.; Jin, N.; Zhang, G.; Xi, Y.; Liu, H. SiRNA targeting mTOR effectively prevents the proliferation and migration of human lens epithelial cells. PLoS ONE 2016, 11, e0167349. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Gilbert, J.W.; Rivera Flores, I.V.; Belgrad, J.; Ferguson, C.; Dogan, E.O.; Wightman, N.; Mocarski, K.; Echeverria, D.; Summers, A.; et al. RNAi-mediated silencing of SOD1 profoundly extends survival and functional outcomes in ALS mice. bioRxiv 2024. [Google Scholar] [CrossRef]
- Iannitti, T.; Scarrott, J.M.; Likhite, S.; Coldicott, I.R.; Lewis, K.E.; Heath, P.R.; Higginbottom, A.; Myszczynska, M.A.; Milo, M.; Hautbergue, G.M.; et al. Translating SOD1 gene silencing toward the clinic: A highly efficacious, off-target-free, and biomarker-supported strategy for fALS. Mol. Ther. Nucleic Acids 2018, 12, 75–88. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Liao, Y.; Zhu, C.; Zou, Z. GPX4, ferroptosis, and diseases. Biomed. Pharmacother. 2024, 174, 116512. [Google Scholar] [CrossRef]
- Sun, S.; Shen, J.; Jiang, J.; Wang, F.; Min, J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct. Target. Ther. 2023, 8, 372. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Li, Q.; Sun, H.; Wang, H. Pharmacological inhibition of ferroptosis as a therapeutic target for neurodegenerative diseases and strokes. Adv. Sci. 2023, 10, e2300325. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Kostov, R.V.; Kazantsev, A.G. The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J. 2018, 285, 3576–3590. [Google Scholar] [CrossRef]
- Kunst, C.; Schmid, S.; Michalski, M.; Tümen, D.; Buttenschön, J.; Müller, M.; Gülow, K. The influence of gut Microbiota on oxidative stress and the immune system. Biomedicines 2023, 11, 1388. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.-S.; Kim, Y.; Jeong, Y.; Kim, J.-E.; Paek, N.-S.; Kang, C.-H. Antioxidant and probiotic properties of lactobacilli and bifidobacteria of human origins. Biotechnol. Bioprocess Eng. 2020, 25, 421–430. [Google Scholar] [CrossRef]
- Virk, M.S.; Virk, M.A.; He, Y.; Tufail, T.; Gul, M.; Qayum, A.; Rehman, A.; Rashid, A.; Ekumah, J.-N.; Han, X.; et al. The anti-inflammatory and curative exponent of probiotics: A comprehensive and authentic ingredient for the sustained functioning of major human organs. Nutrients 2024, 16, 546. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.L.; Erickson, J.M.; Lloyd, B.B.; Slavin, J.L. Health effects and sources of prebiotic dietary fiber. Curr. Dev. Nutr. 2018, 2, nzy005. [Google Scholar] [CrossRef] [PubMed]
- Nance, S.A.; Duncan, A.V.; Gwathmey, T.M.; Hairston, K.G. Soluble dietary fiber in obesity-associated inflammation and oxidative stress in African American women. FASEB J. 2017, 31, 434.2. [Google Scholar] [CrossRef]
- Sánchez, D.; Quiñones, M.; Moulay, L.; Muguerza, B.; Miguel, M.; Aleixandre, A. Soluble fiber-enriched diets improve inflammation and oxidative stress biomarkers in Zucker fatty rats. Pharmacol. Res. 2011, 64, 31–35. [Google Scholar] [CrossRef]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. [Google Scholar] [CrossRef]
NCT Number | Study Title | Conditions | Phases |
---|---|---|---|
NCT02891538 | Chemopreventive Effects of Epigallocatechin Gallate (EGCG) in Colorectal Cancer (CRC) Patients | Colon Cancer | EARLY PHASE1 |
NCT05932511 | Topical Ascorbic Acid for Treatment of Squamous Cell Skin Cancer | Squamous Cell Cancer; Squamous Cell Carcinoma; Skin Cancer; Non-melanoma Skin Cancer | EARLY PHASE1 |
NCT05985278 | Clinical Application of Lutetium [177Lu]-Catalase in Tumor Radionuclide Therapy | Advanced Malignant Neoplasm | EARLY PHASE1 |
NCT01752491 | A Phase I Trial of High-Dose Ascorbate in Glioblastoma Multiforme | Glioblastoma; GBM; Glioblastoma Multiforme | PHASE1 |
NCT01852890 | Gemcitabine, Ascorbate, Radiation Therapy for Pancreatic Cancer | Pancreatic Neoplasms | PHASE1 |
NCT03278925 | Defined Green Tea Catechin Extract in Preventing Liver Cancer in Participants With Cirrhosis | Cirrhosis | PHASE1 |
NCT03602235 | High Dose Ascorbic Acid for Plasma Cell Disorders | Multiple Myeloma | PHASE1 |
NCT04900792 | A Safety Study of Pharmacologic Ascorbate and Ferumoxytol in Addition to Standard of Care Chemoradiation in Glioblastoma | Glioblastoma; Glioblastoma Multiforme | PHASE1 |
NCT04952129 | Optimal Selenium for Bowel Polyps (OSCAR) | Colorectal Adenoma | PHASE1 |
NCT05081479 | A Study of N-Acetylcysteine (N-AC)in People Receiving CAR T cell Therapy for Lymphoma | Lymphoma | PHASE1 |
NCT04046094 | Intravenous (IV) Vitamin C With Chemotherapy for Cisplatin Ineligible Bladder Cancer Patients | Bladder Cancer | PHASE1 PHASE2 |
NCT05123365 | An Optimal Dose Finding Study of N-Acetylcysteine in Patients With Myeloproliferative Neoplasms | Myeloproliferative Neoplasm; MPN; Essential Thrombocythemia; Polycythemia Vera; Myelofibrosis | PHASE1 PHASE2 |
NCT05363631 | Seleno-L Methionine (SLM)-Axitinib-Pembrolizumab | Clear Cell Renal Cell Carcinoma; Clear Cell Renal Cell Carcinoma Metastatic | PHASE1 PHASE2 |
NCT05721872 | Efficacy, Tolerability and Safety of Intravenous D-VC With ATO in Patients With Advanced/Metastatic Colorectal Cancer | Colorectal Cancer; Metastatic Colorectal Cancer | PHASE1 PHASE2 |
NCT01871454 | Safety of Pentoxifylline and Vitamin E With Stereotactic Ablative Radiotherapy (SABR) in Non-small Cell Lung Cancers | Non-small Cell Lung Cancers | PHASE2 |
NCT02344355 | A Phase 2 Trial of High-Dose Ascorbate in Glioblastoma Multiforme | Glioblastoma Multiforme | PHASE2 |
NCT02705300 | Side Effects to FOLFOXIRI + Tocotrienol/Placebo as First Line Treatment of Metastatic Colorectal Cancer | Colorectal Cancer | PHASE2 |
NCT02905578 | A Phase 2 Trial of High-dose Ascorbate for Pancreatic Cancer (PACMAN 2.1) | Pancreatic Neoplasms; Cancer of Pancreas; Cancer of the Pancreas; Neoplasms, Pancreatic; Pancreas Cancer; Pancreas Neoplasms; Adenocarcinoma | PHASE2 |
NCT02905591 | A Phase 2 Study Adding Ascorbate to Chemotherapy and Radiation Therapy for NSCLC | Carcinoma, Non-Small-Cell Lung; Non-Small Cell Lung Cancer; Nonsmall Cell Lung Cancer; Non-Small-Cell Lung Carcinoma; NSCLC | PHASE2 |
NCT03418038 | Ascorbic Acid and Chemotherapy for the Treatment of Relapsed or Refractory Lymphoma, CCUS, and Chronic Myelomonocytic Leukemia | Clonal Cytopenia of Undetermined Significance; High Grade B-Cell Lymphoma With MYC and BCL2 or BCL6 Rearrangements; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Lymphoma; Chronic Myelomonocytic Leukemia | PHASE2 |
NCT03476330 | Quercetin Chemoprevention for Squamous Cell Carcinoma in Patients With Fanconi Anemia | Fanconi Anemia; Squamous Cell Carcinoma | PHASE2 |
NCT04033107 | High Dose Vitamin C Combined With Metformin in the Treatment of Malignant Tumors | Hepatocellular Cancer; Pancreatic Cancer; Gastric Cancer; Colorectal Cancer | PHASE2 |
NCT04175470 | Bevacizumab and Tocotrienol in Recurrent Ovarian Cancer | Ovarian Cancer Recurrent | PHASE2 |
NCT04245865 | Tocotrienol and Bevacizumab in Metastatic Colorectal Cancer | Colorectal Cancer Metastatic | PHASE2 |
NCT04801511 | Preoperative IMRT With Concurrent High-dose Vitamin C and mFOLFOX6 in Locally Advanced Rectal Cancer | Rectal Cancer | PHASE2 |
NCT05724329 | Neoadjuvant Tislelizumab in Combination With Dasatinib and Quercetin in Resectable HNSCC (COIS-01) | Head and Neck Squamous Cell Carcinomas | PHASE2 |
NCT06087237 | The Efficacy of Using Pentoxifylline in Patients Undergoing Breast Cancer Surgery | Post-Surgical Complication; Breast Cancer Surgery | PHASE2 |
NCT06176339 | Assessing the Clinical Utility of Adding Pentoxifylline to Neoadjuvant Chemotherapy Protocols in Breast Cancer Patients” | Breast Cancer | PHASE2 |
NCT06355037 | Dasatinib Combined With Quercetin to Reverse Chemo Resistance in Triple Negative Breast Cancer | Triple-negative Breast Cancer | PHASE2 |
NCT06398405 | A Phase II Clinical Study of Epigallocatechin-3-gallate in Patients With Esophageal Squamous Cancer | Esophageal Cancer; Dysphagia, Esophageal; Epigallocatechin Gallate | PHASE2 |
NCT06115408 | Evaluation of Using Dienogest and N-Acetyl Cysteine on the Volume of Uterine Leiomyoma | Uterine Leiomyoma | PHASE2 PHASE3 |
NCT05364008 | FRIEND: Fibroids and Unexplained Infertility Treatment With Epigallocatechin Gallate; A Natural CompounD in Green Tea | Uterine Leiomyoma | PHASE3 |
NCT05448365 | Vitamin D, Epigallocatechin Gallate, D-chiro-inositol and Vitamin B6 in Uterine Fibroid | Uterine Fibroids; D-chiro-inositol; Inositol; Epigallocatechin Gallate; Vitamin D; Vitamin B6 | PHASE3 |
NCT05502900 | Adjuvant Melatonin for Uveal Melanoma | Uveal Melanoma; Uveal Melanoma, Posterior, Medium/Large Size; Eye Cancer, Intraocular Melanoma | PHASE3 |
NCT05631041 | Effect of Silymarin in Metastatic Colorectal Cancer Patients | Metastatic Colorectal Cancer | PHASE3 |
Antioxidants | Conditions | Dosage and Additional Substances | Results |
---|---|---|---|
Phytosterols | Breast cancer | 920 g/week of extra virgin olive oil | 62% decrease in the risk of malignant breast cancer [114] |
30 g/day of mixed nuts | Non-significant decrease in the risk of breast cancer [114] | ||
Beta-carotene | Lung cancer | 20 mg/day | Inverse association between dietary intake and the risk of lung cancer; higher mortality among recipients of beta carotene [115] |
20 mg + 50 mg/day of alpha-tocopherol | |||
Breast cancer | Daily intake of 5 vegetable servings, 454 g of vegetable juice or vegetable equivalents, 3 fruit servings, 30 g fiber, and 15–20% energy intake from fat | 21% decrease in the risk of malignant breast cancer [116] | |
Cervical intraepithelial neoplasia (CIN) | 30 mg/day | Non-significant effect [117] | |
30 mg/day | Response rate of 70% at 6 months and 43% at 12 months [118] | ||
Basal-cell carcinoma (BCC) Squamous-cell carcinoma (SCC) | 30 mg/day + and a sun protection factor 15+ sunscreen | Slightly lower incidence for BCC (not significant); Slightly higher incidence of squamous-cell carcinoma (SCC) (not significant) [119] | |
15 mg + 0.3 g vitamin C | |||
30 mg/day | |||
Lung cancer | 30 mg + 25,000 IU retinil palmitate | Lack of chemopreventive benefit and increase of lung cancer incidence and mortality [120,121,122] | |
Non-melanoma (NMSC) skin cancer | 50 mg/day | No effect on the incidence of NMSC [123] | |
50 mg on alternate days | No effect on the incidence of the first NMSC, including BCC and SCC, prevention [124] | ||
Resveratrol | Multiple myeloma (MM) | 5 g/day | Minimal efficacy in patients with relapsed/refractory MM; Poorly tolerated side effects [125] |
Prostate cancer | Curcumin 0.1 g/day; resveratrol 30 mg/day; catechins 0.1 g/day; fresh broccoli sprouts equivalent to 2 g/day | Non-significant increase in the slope of PSA [126] | |
Muscadine Grape Skin Extract (MPX) | Prostate cancer | 4 g/day of MPX, 0.5 g/day of MPX (1.2 mg of ellagic acid, 9.2 μg of quercetin, and 4.4 μg of trans-resveratrol) | No significant difference in PSA Doubling Time [127] |
1.2 mg of ellagic acid, 9.2 μg of quercetin, and 4.4 μg of trans-resveratrol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Carlo, E.; Sorrentino, C. Oxidative Stress and Age-Related Tumors. Antioxidants 2024, 13, 1109. https://doi.org/10.3390/antiox13091109
Di Carlo E, Sorrentino C. Oxidative Stress and Age-Related Tumors. Antioxidants. 2024; 13(9):1109. https://doi.org/10.3390/antiox13091109
Chicago/Turabian StyleDi Carlo, Emma, and Carlo Sorrentino. 2024. "Oxidative Stress and Age-Related Tumors" Antioxidants 13, no. 9: 1109. https://doi.org/10.3390/antiox13091109
APA StyleDi Carlo, E., & Sorrentino, C. (2024). Oxidative Stress and Age-Related Tumors. Antioxidants, 13(9), 1109. https://doi.org/10.3390/antiox13091109