LDL-c/HDL-c Ratio and NADPH-Oxidase-2-Derived Oxidative Stress as Main Determinants of Microvascular Endothelial Function in Morbidly Obese Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Samples
2.2. Evaluation of Vascular Function in Isolated Human Small Arteries
2.3. Western Blot Analysis
2.4. Immunofluorescence Assays
2.5. Biochemical Measurements
2.6. Data Analysis
3. Results
3.1. Characteristics of Study Subjects
3.2. Impact of Obesity on Vascular Function
3.3. Endothelial Function and Lipid Profile in Obesity
3.4. Impact of Comorbidities on Endothelial Function in Obese Subjects
3.5. Clinical Characteristics Associated with Poor Endothelial Function
3.6. Gender Stratification of Association of LDL-c/HDL-c Ratio with Endothelial Function in Obese Subjects
3.7. Endothelial Vasodilation in Obese Subjects to BK Is Inversely Related to Vascular Expression of NADPH-Oxidase-2 (NOX2) and Superoxide Generation
3.8. Elevated LDL-c/HDL-c and NOX2 Expression Could Additively Contribute to Defective Vasodilation in Obese Subjects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO European Regional Obesity Report 2022; WHO Regional Office for Europe: Copenhagen, Denmark, 2022. Licence: CC BY-NC-SA 3.0 IGO. Available online: https://www.who.int/europe/publications/i/item/9789289057738 (accessed on 27 May 2024).
- Jha, S.; Mehendale, A.M. Increased Incidence of Obesity in Children and Adolescents Post-COVID-19 Pandemic: A Review Article. Cureus 2022, 14, e29348. [Google Scholar] [CrossRef] [PubMed]
- GBD 2015 Obesity Collaborators; Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Reaven, G.M. Insulin resistance: The link between obesity and cardiovascular disease. Med. Clin. N. Am. 2011, 95, 875–892. [Google Scholar] [CrossRef] [PubMed]
- Steyers, C.M., 3rd; Miller, F.J., Jr. Endothelial dysfunction in chronic inflammatory diseases. Int. J. Mol. Sci. 2014, 15, 11324–11349. [Google Scholar] [CrossRef] [PubMed]
- Azemi, A.K.; Siti-Sarah, A.R.; Mokhtar, S.S.; Rasool, A.H.G. Time-Restricted Feeding Improved Vascular Endothelial Function in a High-Fat Diet-Induced Obesity Rat Model. Vet. Sci. 2022, 9, 217. [Google Scholar] [CrossRef]
- Sousa, A.S.; Sponton, A.C.S.; Delbin, M.A. Perivascular adipose tissue and microvascular endothelial dysfunction in obese mice: Beneficial effects of aerobic exercise in adiponectin receptor (AdipoR1) and peNOSSer1177. Clin. Exp. Pharmacol. Physiol. 2021, 48, 1430–1440. [Google Scholar] [CrossRef]
- Bagi, Z.; Feher, A.; Cassuto, J. Microvascular responsiveness in obesity: Implications for therapeutic intervention. Br. J. Pharmacol. 2012, 165, 544–560. [Google Scholar] [CrossRef]
- Virdis, A.; Duranti, E.; Rossi, C.; Dell’Agnello, U.; Santini, E.; Anselmino, M.; Chiarugi, M.; Taddei, S.; Solini, A. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: Role of perivascular adipose tissue. Eur. Heart J. 2015, 36, 784–794. [Google Scholar] [CrossRef]
- Linton, M.F.; Yancey, P.G.; Tao, H.; Davies, S.S. HDL Function and Atherosclerosis: Reactive Dicarbonyls as Promising Targets of Therapy. Circ. Res. 2023, 132, 1521–1545. [Google Scholar] [CrossRef]
- Hermida, N.; Balligand, J.L. Low-density lipoprotein-cholesterol-induced endothelial dysfunction and oxidative stress: The role of statins. Antioxid. Redox Signal 2014, 20, 1216–1237. [Google Scholar] [CrossRef]
- de Giorgis, T.; Marcovecchio, M.L.; Di Giovanni, I.; Giannini, C.; Chiavaroli, V.; Chiarelli, F.; Mohn, A. Triglycerides-to-HDL ratio as a new marker of endothelial dysfunction in obese prepubertal children. Eur. J. Endocrinol. 2013, 170, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Mauricio, M.D.; Aldasoro, M.; Ortega, J.; Vila, J.M. Endothelial dysfunction in morbid obesity. Curr. Pharm. Des. 2013, 19, 5718–5729. [Google Scholar] [CrossRef] [PubMed]
- Schinzari, F.; Tesauro, M.; Cardillo, C. Vascular hyperpolarization in human physiology and cardiovascular risk conditions and disease. Acta Physiol. 2017, 219, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Durante, W.; Sowers, J.R. Endothelium-Derived Hyperpolarizing Factors: A Potential Therapeutic Target for Vascular Dysfunction in Obesity and Insulin Resistance. Diabetes 2016, 65, 2118–2120. [Google Scholar] [CrossRef] [PubMed]
- Haddock, R.E.; Grayson, T.H.; Morris, M.J.; Howitt, L.; Chadha, P.S.; Sandow, S.L. Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms. PLoS ONE 2011, 6, e16423. [Google Scholar] [CrossRef]
- Chadha, P.S.; Haddock, R.E.; Howitt, L.; Morris, M.J.; Murphy, T.V.; Grayson, T.H.; Sandow, S.L. Obesity up-regulates intermediate conductance calcium-activated potassium channels and myoendothelial gap junctions to maintain endothelial vasodilator function. J. Pharmacol. Exp. Ther. 2010, 335, 284–293. [Google Scholar] [CrossRef]
- Climent, B.; Moreno, L.; Martínez, P.; Contreras, C.; Sánchez, A.; Pérez-Vizcaíno, F.; García-Sacristán, A.; Rivera, L.; Prieto, D. Upregulation of SK3 and IK1 channels contributes to the enhanced endothelial calcium signaling and the preserved coronary relaxation in obese Zucker rats. PLoS ONE 2014, 9, e109432. [Google Scholar] [CrossRef]
- Davel, A.P.; Lu, Q.; Moss, M.E.; Rao, S.; Anwar, I.J.; DuPont, J.J.; Jaffe, I.Z. Sex-Specific Mechanisms of Resistance Vessel Endothelial Dysfunction Induced by Cardiometabolic Risk Factors. J. Am. Heart Assoc. 2018, 7, e007675. [Google Scholar] [CrossRef]
- Barton, M. Obesity and aging: Determinants of endothelial cell dysfunction and atherosclerosis. Pflugers Arch. 2010, 460, 825–837. [Google Scholar] [CrossRef]
- El Assar, M.; Angulo, J.; Rodríguez-Mañas, L. Oxidative stress and vascular inflammation in aging. Free Radic. Biol. Med. 2013, 65, 380–401. [Google Scholar] [CrossRef]
- Engin, A. Endothelial Dysfunction in Obesity. Adv. Exp. Med. Biol. 2017, 960, 345–379. [Google Scholar] [CrossRef]
- Du, J.; Fan, L.M.; Mai, A.; Li, J.M. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice. Br. J. Pharmacol. 2013, 170, 1064–1077. [Google Scholar] [CrossRef]
- Lassègue, B.; San Martín, A.; Griendling, K.K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 2012, 110, 1364–1390. [Google Scholar] [CrossRef]
- Guo, S.; Chen, X. The human Nox4: Gene, structure, physiological function and pathological significance. J. Drug Target. 2015, 23, 888–896. [Google Scholar] [CrossRef]
- Canugovi, C.; Stevenson, M.D.; Vendrov, A.E.; Hayami, T.; Robidoux, J.; Xiao, H.; Zhang, Y.Y.; Eitzman, D.T.; Runge, M.S.; Madamanchi, N.R. Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening. Redox Biol. 2019, 26, 101288. [Google Scholar] [CrossRef]
- Tang, X.; Wang, J.; Abboud, H.E.; Chen, Y.; Wang, J.J.; Zhang, S.X. Sustained Upregulation of Endothelial Nox4 Mediates Retinal Vascular Pathology in Type 1 Diabetes. Diabetes 2023, 72, 112–125. [Google Scholar] [CrossRef]
- Ray, R.; Murdoch, C.E.; Wang, M.; Santos, C.X.; Zhang, M.; Alom-Ruiz, S.; Anilkumar, N.; Ouattara, A.; Cave, A.C.; Walker, S.J.; et al. Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1368–1376. [Google Scholar] [CrossRef]
- Schröder, K.; Zhang, M.; Benkhoff, S.; Mieth, A.; Pliquett, R.; Kosowski, J.; Kruse, C.; Luedike, P.; Michaelis, U.R.; Weissmann, N.; et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ. Res. 2012, 110, 1217–1225. [Google Scholar] [CrossRef]
- El Assar, M.; Ruiz de Adana, J.C.; Angulo, J.; Pindado Martínez, M.L.; Hernández Matías, A.; Rodríguez-Mañas, L. Preserved endothelial function in human obesity in the absence of insulin resistance. J. Transl. Med. 2013, 11, 263. [Google Scholar] [CrossRef]
- El Assar, M.; Angulo, J.; Santos-Ruiz, M.; Ruiz de Adana, J.C.; Pindado, M.L.; Sánchez-Ferrer, A.; Hernández, A.; Rodríguez-Mañas, L. Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. J. Physiol. 2016, 594, 3045–3060. [Google Scholar] [CrossRef]
- El Assar, M.; García-Rojo, E.; Sevilleja-Ortiz, A.; Sánchez-Ferrer, A.; Fernández, A.; García-Gómez, B.; Romero-Otero, J.; Rodríguez-Mañas, L.; Angulo, J. Functional Role of STIM-1 and Orai1 in Human Microvascular Aging. Cells 2022, 11, 3675. [Google Scholar] [CrossRef]
- Angulo, J.; Fernández, A.; Sevilleja-Ortiz, A.; Sánchez-Ferrer, A.; Rodríguez-Mañas, L.; El Assar, M. Upregulation of Orai Channels Contributes to Aging-Related Vascular Alterations in Rat Coronary Arteries. Int. J. Mol. Sci. 2023, 24, 13402. [Google Scholar] [CrossRef]
- Angulo, J.; El Assar, M.; Sevilleja-Ortiz, A.; Fernández, A.; Sánchez-Ferrer, A.; Romero-Otero, J.; Martínez-Salamanca, J.I.; La Fuente, J.M.; Rodríguez-Mañas, L. Short-term pharmacological activation of Nrf2 ameliorates vascular dysfunction in aged rats and in pathological human vasculature. A potential target for therapeutic intervention. Redox Biol. 2019, 26, 101271. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Sarabi, M.; Vessby, B.; Millgård, J.; Lind, L. Endothelium-dependent vasodilation is related to the fatty acid composition of serum lipids in healthy subjects. Atherosclerosis 2001, 156, 349–355. [Google Scholar] [CrossRef]
- Steer, P.; Hulthe, J.; Miligård, J.; Sarabi, D.M.; Basu, S.; Vessby, B.; Lind, L. Endothelial vasodilatory function is predicted by circulating apolipoprotein B and HDL in healthy humans. Lipids 2002, 37, 1135–1140. [Google Scholar] [CrossRef]
- Chan, N.N.; Colhoun, H.M.; Vallance, P. Cardiovascular risk factors as determinants of endothelium-dependent and endothelium-independent vascular reactivity in the general population. J. Am. Coll. Cardiol. 2001, 38, 1814–1820. [Google Scholar] [CrossRef]
- Sugiura, T.; Dohi, Y.; Yamashita, S.; Yamamoto, K.; Wakamatsu, Y.; Tanaka, S.; Kimura, G. Impact of lipid profile and high blood pressure on endothelial damage. J. Clin. Lipidol. 2011, 5, 460–466. [Google Scholar] [CrossRef]
- Lupattelli, G.; Marchesi, S.; Lombardini, R.; Siepi, D.; Bagaglia, F.; Pirro, M.; Ciuffetti, G.; Schillaci, G.; Mannarino, E. Mechanisms of high-density lipoprotein cholesterol effects on the endothelial function in hyperlipemia. Metabolism 2003, 52, 1191–1195. [Google Scholar] [CrossRef]
- Pereira, E.C.; Bertolami, M.C.; Faludi, A.A.; Salem, M.; Bersch, D.; Abdalla, D.S. Effects of simvastatin and L-arginine on vasodilation, nitric oxide metabolites and endogenous NOS inhibitors in hypercholesterolemic subjects. Free Radic. Res. 2003, 37, 529–536. [Google Scholar] [CrossRef]
- Mercuro, G.; Vitale, C.; Fini, M.; Zoncu, S.; Leonardo, F.; Rosano, G.M. Lipid profiles and endothelial function with low-dose hormone replacement therapy in postmenopausal women at risk for coronary artery disease: A randomized trial. Int. J. Cardiol. 2003, 89, 257–265. [Google Scholar] [CrossRef]
- Schnell, G.B.; Robertson, A.; Houston, D.; Malley, L.; Anderson, T.J. Impaired brachial artery endothelial function is not predicted by elevated triglycerides. J. Am. Coll. Cardiol. 1999, 33, 2038–2043. [Google Scholar] [CrossRef]
- Virdis, A.; Masi, S.; Colucci, R.; Chiriacò, M.; Uliana, M.; Puxeddu, I.; Bernardini, N.; Blandizzi, C.; Taddei, S. Microvascular Endothelial Dysfunction in Patients with Obesity. Curr. Hypertens. Rep. 2019, 21, 32. [Google Scholar] [CrossRef]
- Scicchitano, P.; Cortese, F.; Gesualdo, M.; De Palo, M.; Massari, F.; Giordano, P.; Ciccone, M.M. The role of endothelial dysfunction and oxidative stress in cerebrovascular diseases. Free Radic. Res. 2019, 53, 579–595. [Google Scholar] [CrossRef]
- Lynch, C.M.; Kinzenbaw, D.A.; Chen, X.; Zhan, S.; Mezzetti, E.; Filosa, J.; Ergul, A.; Faulkner, J.L.; Faraci, F.M.; Didion, S.P. Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity. Stroke 2013, 44, 3195–3201. [Google Scholar] [CrossRef]
- Muñoz, M.; López-Oliva, M.E.; Rodríguez, C.; Martínez, M.P.; Sáenz-Medina, J.; Sánchez, A.; Climent, B.; Benedito, S.; García-Sacristán, A.; Rivera, L.; et al. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Redox Biol. 2020, 28, 101330. [Google Scholar] [CrossRef]
- Adu-Gyamfi, M.; Goettsch, C.; Kamhieh-Milz, J.; Chen, L.; Pfefferkorn, A.M.; Hofmann, A.; Brunssen, C.; Müller, G.; Walther, T.; Ashraf, M.I.; et al. The Role of NOX2-Derived Reactive Oxygen Species in the Induction of Endothelin-Converting Enzyme-1 by Angiotensin II. Antioxidants 2024, 13, 500. [Google Scholar] [CrossRef]
- Kwon, O.S.; Noh, S.G.; Park, S.H.; Andtbacka, R.H.I.; Hyngstrom, J.R.; Richardson, R.S. Ageing and endothelium-mediated vascular dysfunction: The role of the NADPH oxidases. J. Physiol. 2023, 601, 451–467. [Google Scholar] [CrossRef]
- Ismaeel, A.; Brumberg, R.S.; Kirk, J.S.; Papoutsi, E.; Farmer, P.J.; Bohannon, W.T.; Smith, R.S.; Eidson, J.L.; Sawicki, I.; Koutakis, P. Oxidative Stress and Arterial Dysfunction in Peripheral Artery Disease. Antioxidants 2018, 7, 145. [Google Scholar] [CrossRef]
- Loffredo, L.; Martino, F.; Carnevale, R.; Pignatelli, P.; Catasca, E.; Perri, L.; Calabrese, C.M.; Palumbo, M.M.; Baratta, F.; Del Ben, M.; et al. Obesity and hypercholesterolemia are associated with NOX2 generated oxidative stress and arterial dysfunction. J. Pediatr. 2012, 161, 1004–1009. [Google Scholar] [CrossRef]
- Lozhkin, A.; Vendrov, A.E.; Pan, H.; Wickline, S.A.; Madamanchi, N.R.; Runge, M.S. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. J. Mol. Cell Cardiol. 2017, 102, 10–21. [Google Scholar] [CrossRef]
- Jiang, F.; Lim, H.K.; Morris, M.J.; Prior, L.; Velkoska, E.; Wu, X.; Dusting, G.J. Systemic upregulation of NADPH oxidase in diet-induced obesity in rats. Redox Rep. 2011, 16, 223–229. [Google Scholar] [CrossRef]
- Alves, J.V.; da Costa, R.M.; Awata, W.M.C.; Bruder-Nascimento, A.; Singh, S.; Tostes, R.C.; Bruder-Nascimento, T. NADPH oxidase 4-derived hydrogen peroxide counterbalances testosterone-induced endothelial dysfunction and migration. Am. J. Physiol. Endocrinol. Metab. 2024, 327, E1–E12. [Google Scholar] [CrossRef]
- Brendel, H.; Shahid, A.; Hofmann, A.; Mittag, J.; Bornstein, S.R.; Morawietz, H.; Brunssen, C. NADPH oxidase 4 mediates the protective effects of physical activity against obesity-induced vascular dysfunction. Cardiovasc. Res. 2020, 116, 1767–1778. [Google Scholar] [CrossRef]
- Knock, G.A. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic. Biol. Med. 2019, 145, 385–427. [Google Scholar] [CrossRef]
- Bretón-Romero, R.; Lamas, S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol. 2014, 2, 529–534. [Google Scholar] [CrossRef]
- Diaba-Nuhoho, P.; Mittag, J.; Brunssen, C.; Morawietz, H.; Brendel, H. The Vascular Function of Resistance Arteries Depends on NADPH Oxidase 4 and Is Exacerbated by Perivascular Adipose Tissue. Antioxidants 2024, 13, 503. [Google Scholar] [CrossRef]
- Xie, Y.; Nishijima, Y.; Zinkevich, N.S.; Korishettar, A.; Fang, J.; Mathison, A.J.; Zimmermann, M.T.; Wilcox, D.A.; Gutterman, D.D.; Shen, Y.; et al. NADPH oxidase 4 contributes to TRPV4-mediated endothelium-dependent vasodilation in human arterioles by regulating protein phosphorylation of TRPV4 channels. Basic. Res. Cardiol. 2022, 117, 24. [Google Scholar] [CrossRef]
- Matsuda, Y.; Hirata, K.; Inoue, N.; Suematsu, M.; Kawashima, S.; Akita, H.; Yokoyama, M. High density lipoprotein reverses inhibitory effect of oxidized low density lipoprotein on endothelium-dependent arterial relaxation. Circ. Res. 1993, 72, 1103–1109. [Google Scholar] [CrossRef]
- Perségol, L.; Vergès, B.; Gambert, P.; Duvillard, L. Inability of HDL from abdominally obese subjects to counteract the inhibitory effect of oxidized LDL on vasorelaxation. J. Lipid Res. 2007, 48, 1396–1401. [Google Scholar] [CrossRef]
- Perségol, L.; Brindisi, M.C.; Rageot, D.; Pais de Barros, J.P.; Monier, S.; Vergès, B.; Duvillard, L. Oxidation-induced loss of the ability of HDL to counteract the inhibitory effect of oxidized LDL on vasorelaxation. Heart Vessels 2015, 30, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Jiang, J.Y.; Xu, Z.; Kroeger, E.A.; Lee, S.S.; Liu, H.; Shen, H.; Zhang, M.; Minuk, G.Y.; Choy, P.C.; et al. Change in lipid profile and impairment of endothelium-dependent relaxation of blood vessels in rats after bile duct ligation. Life Sci. 2003, 73, 12531263. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Mohler, E.R., 3rd; Hsieh, E.; Osman, H.; Hashemi, S.M.; Davies, P.F.; Rothblat, G.H.; Wilensky, R.L.; Levitan, I. Hypercholesterolemia suppresses inwardly rectifying K+ channels in aortic endothelium in vitro and in vivo. Circ. Res. 2006, 98, 1064–1071. [Google Scholar] [CrossRef]
Variable | Control | Obese | p Value |
---|---|---|---|
n | 14 | 51 | |
Age (years) | 57.4 ± 3.3 | 44.8 ± 1.5 | 0.0012 |
Female sex (%) | 8 (57.1) | 33 (64.7) | 0.7559 |
Weight (kg) | 71.5 ± 2.3 | 122.2 ± 3.5 | <0.0001 |
Height (m) | 1.63 ± 0.02 | 1.65 ± 0.01 | 0.3154 |
BMI (kg/m2) | 26.8 ± 0.5 | 44.6 ± 1.1 | <0.0001 |
Diabetes (%) | 1 (7.1) | 18 (35.3) | 0.0496 |
Dislipidemia (%) | 6 (42.9) | 25 (49.0) | 0.7681 |
Hypertension (%) | 6 (42.9) | 28 (54.9) | 0.5489 |
Sleep apnea (%) | 0 (0.0) | 19 (37.2) | 0.0063 |
Liver steatosis (%) | 4 (28.6) | 31 (60.8) | 0.0393 |
Smoking history (%) | 3 (21.4) | 7 (13.7) | 0.4384 |
Coronary disease (%) | 1 (7.1) | 1 (2.0) | 0.3870 |
Insulin (UI/mL) | 14.4 ± 3.1 | 24.1 ± 2.3 | 0.0121 |
Glucose (mg/dL) | 93.6 ± 5.6 | 102.1 ± 5.3 | 0.2584 |
HOMA-IR | 3.57 ± 0.86 | 6.33 ± 0.73 | 0.0207 |
HbA1C (%) | 5.61 ± 0.11 | 5.81 ± 0.16 | 0.9086 |
Triglycerides (mg/dL) | 116.9 ± 17.8 | 119.4 ± 8.3 | 0.7019 |
Total cholesterol (mg/dL) | 181.1 ± 8.4 | 177.9 ± 5.3 | 0.5093 |
HDL-c (mg/dL) | 53.2 ± 5.0 | 52.1 ± 2.5 | 0.9528 |
LDL-c (mg/dL) | 103.6 ± 10.7 | 104.0 ± 4.6 | 0.9843 |
LDL-c/HDL-c | 2.25 ± 0.37 | 2.17 ± 0.13 | 0.7139 |
AST (U/L) | 23.5 ± 3.1 | 21.8 ± 1.5 | 0.4167 |
ALT (U/L) | 23.1 ± 3.9 | 28.6 ± 2.9 | 0.1508 |
Control (n = 14) | Obese (n = 51) | |||
---|---|---|---|---|
Variable | r | p Value | r | p Value |
Age (years) | −0.0806 | 0.7845 | 0.0000 | 0.9629 |
BMI (kg/m2) | −0.2304 | 0.4280 | 0.1140 | 0.4248 |
HOMA-IR | −0.6111 | 0.0202 | 0.0001 | 0.9325 |
HbA1C (%) | 0.1615 | 0.5808 | 0.0574 | 0.6905 |
Triglycerides (mg/dL) | −0.2093 | 0.4728 | −0.0510 | 0.7229 |
Total cholesterol (mg/dL) | 0.1371 | 0.6397 | −0.2278 | 0.1077 |
HDL-c (mg/dL) | 0.0469 | 0.8746 | 0.2524 | 0.0739 |
LDL-c (mg/dL) | 0.1487 | 0.6117 | −0.4074 | 0.0030 |
LDL-c/HDL-c | −0.0387 | 0.8948 | −0.5102 | 0.0001 |
AST (U/L) | −0.0900 | 0.7602 | 0.0922 | 0.5190 |
ALT (U/L) | −0.3507 | 0.2188 | 0.1221 | 0.3933 |
Diabetes | Hypertension | Liver Steatosis | Sleep Apnea | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yes (18) | No (33) | p | Yes (28) | No (23) | p | Yes (31) | No (20) | p | Yes (19) | No (32) | p | ||
BK | pEC50 | 7.53 ± 0.19 | 7.38 ± 0.24 | 0.6101 | 7.55 ± 0.22 | 7.30 ± 0.26 | 0.5386 | 7.64 ± 0.18 | 7.11 ± 0.31 | 0.1850 | 7.43 ± 0.21 | 7.45 ± 0.28 | 0.9545 |
Emax (%) | 78.1 ± 3.5 | 73.7 ± 3.5 | 0.6663 | 79.2 ± 2.8 | 70.6 ± 4.6 | 0.1773 | 76.7 ± 2.9 | 72.9 ± 5.0 | 0.6859 | 73.2 ± 4.2 | 76.4 ± 3.3 | 0.5686 | |
BK L-NAME +INDO | pEC50 | 6.85 ± 0.31 | 6.92 ± 0.20 | 0.8196 | 7.00 ± 0.22 | 6.77 ± 0.26 | 0.4713 | 7.01 ± 0.23 | 6.71 ± 0.25 | 0.4475 | 6.84 ± 0.27 | 6.93 ± 0.22 | 0.6746 |
Emax (%) | 71.1 ± 5.3 | 70.2 ± 3.2 | 0.7900 | 73.2 ± 3.4 | 67.4 ± 4.6 | 0.4835 | 70.6 ± 3.5 | 70.3 ± 4.7 | 0.8730 | 68.8 ± 4.5 | 71.5 ± 3.6 | 0.5095 | |
BK KCl +INDO | pEC50 | 5.26 ± 0.31 | 5.16 ± 0.20 | 0.9284 | 5.24 ± 0.25 | 5.14 ± 0.22 | 1.0000 | 5.40 ± 0.24 | 4.87 ± 0.20 | 0.3257 | 5.22 ± 0.27 | 5.18 ± 0.21 | 0.9909 |
Emax (%) | 29.2 ± 7.2 | 29.3 ± 5.6 | 0.4564 | 27.7 ± 6.2 | 31.0 ± 6.4 | 0.6170 | 34.1 ± 6.3 | 21.9 ± 5.3 | 0.4460 | 29.0 ± 6.9 | 29.4 ± 5.8 | 0.9922 |
Variable | T2 + T3 pEC50 BK > 7.29 | T1 pEC50 BK < 7.29 | p Value |
---|---|---|---|
n | 34 | 17 | |
Age (years) | 45.2 ± 2.1 | 43.9 ± 2.0 | 0.5291 |
Female sex (%) | 21 (61.8) | 12 (70.6) | 0.7568 |
Weight (kg) | 124.6 ± 4.5 | 117.2 ± 5.3 | 0.4132 |
Height (cm) | 166.1 ± 1.3 | 163.7 ± 2.0 | 0.2419 |
BMI (kg/m2) | 45.1 ± 1.5 | 43.4 ± 1.2 | 0.9566 |
Diabetes (%) | 12 (35.3) | 6 (35.3) | 1.0000 |
Dislipidemia (%) | 17 (50.0) | 8 (47.1) | 1.0000 |
Hypertension (%) | 20 (58.8) | 8 (47.1) | 0.5529 |
Sleep apnea (%) | 13 (38.2) | 6 (35.3) | 1.0000 |
Liver steatosis (%) | 24 (70.6) | 7 (41.2) | 0.0676 |
Smoking history (%) | 3 (8.8) | 4 (23.5) | 0.2033 |
Coronary disease (%) | 0 (0.0) | 1 (5.9) | 0.3333 |
Insulin (UI/mL) | 23.8 ± 2.7 | 24.6 ± 4.1 | 0.6313 |
Glucose (mg/dL) | 99.0 ± 4.0 | 108.2 ± 13.9 | 0.6451 |
HOMA-IR | 5.95 ± 0.75 | 7.08 ± 1.62 | 0.7627 |
HbA1C (%) | 5.85 ± 0.23 | 5.74 ± 0.12 | 0.5145 |
Triglycerides (mg/dL) | 116.4 ± 11.4 | 125.3 ± 10.2 | 0.2951 |
Total cholesterol (mg/dL) | 172.1 ± 5.7 | 189.4 ± 11.0 | 0.1234 |
HDL-c (mg/dL) | 55.2 ± 3.4 | 45.9 ± 2.8 | 0.0293 |
LDL-c (mg/dL) | 95.7 ± 5.3 | 120.6 ± 7.3 | 0.0066 |
LDL-c/HDL-c | 1.88 ± 0.13 | 2.77 ± 0.23 | 0.0013 |
AST (U/L) | 22.7 ± 1.9 | 19.9 ± 2.5 | 0.2420 |
ALT (U/L) | 30.9 ± 3.9 | 24.1 ± 3.4 | 0.1802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.; La Fuente, J.M.; Fernández, A.; Ruano, P.; Angulo, J. LDL-c/HDL-c Ratio and NADPH-Oxidase-2-Derived Oxidative Stress as Main Determinants of Microvascular Endothelial Function in Morbidly Obese Subjects. Antioxidants 2024, 13, 1139. https://doi.org/10.3390/antiox13091139
Santos J, La Fuente JM, Fernández A, Ruano P, Angulo J. LDL-c/HDL-c Ratio and NADPH-Oxidase-2-Derived Oxidative Stress as Main Determinants of Microvascular Endothelial Function in Morbidly Obese Subjects. Antioxidants. 2024; 13(9):1139. https://doi.org/10.3390/antiox13091139
Chicago/Turabian StyleSantos, Jorge, José M. La Fuente, Argentina Fernández, Paula Ruano, and Javier Angulo. 2024. "LDL-c/HDL-c Ratio and NADPH-Oxidase-2-Derived Oxidative Stress as Main Determinants of Microvascular Endothelial Function in Morbidly Obese Subjects" Antioxidants 13, no. 9: 1139. https://doi.org/10.3390/antiox13091139
APA StyleSantos, J., La Fuente, J. M., Fernández, A., Ruano, P., & Angulo, J. (2024). LDL-c/HDL-c Ratio and NADPH-Oxidase-2-Derived Oxidative Stress as Main Determinants of Microvascular Endothelial Function in Morbidly Obese Subjects. Antioxidants, 13(9), 1139. https://doi.org/10.3390/antiox13091139