Chemical and Biological Mechanisms Relevant to the Rescue of MG-132-Treated Neurons by Cysteine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. NMR Measurements
2.3. MS Measurements
2.4. Proteasome Inhibition Assay
2.5. LUHMES Cell Culture
2.6. Fluorescence Imaging
2.7. Quantification of Viability and Neurite Area
2.8. TempOSeq Sample Preparation
2.9. Amino Acid Analysis
2.10. Determination of Cell Volume
2.11. Data Analysis
3. Results and Discussion
3.1. Prevention of Proteasome Inhibition by High L-Cysteine Concentrations
3.2. Prevention of Cell Death and Neurite Loss by Thiols, Despite a Deregulated Transcriptome
3.3. Reaction of MG-132 with L-Cysteine
3.4. Dependence of Reaction Kinetics on L-Cysteine Concentrations
3.5. Reversible Depletion of MG-132 by Glutathione
3.6. Reaction of MG-132 with N-Acetyl-Cysteine to an Unstable Product
3.7. Re-Activation of the Proteasome by L-Cysteine After MG-132 Inhibition
3.8. Prevention of Canonical MG-132-Induced Cell Stress Responses by Thiols
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATF4 | Activating transcription factor 4 |
bp | Base pair |
Cys | Cysteine |
CPM | Counts per million |
dBcAMP | Dibutyryl cyclic adenosine monophosphate |
d | Diameter |
DEG | Differentially expressed genes |
DGE | Differential gene expression |
dx | Day x of differentiation |
em | Emission |
ex | Excitation |
FGF | Fibroblast growth factor |
GDNF | Recombinant human glial cell-derived neurotrophic factor |
GSH | Glutathione |
L-Cys | L-Cysteine |
LC-MS | Liquid chromatography–mass spectrometry |
MS | Mass spectrometry |
NA | Neurite area |
NAC | N-acetyl-cysteine |
NMR | Nuclear magnetic resonance |
NRF2 | Nuclear factor erythroid 2-related factor 2 |
ns | Not significant |
PCA | Principal component analysis |
PC# | Principle component # |
PLO | Poly-L-ornithine hydrobromide |
UPS | Ubiquitin-proteasome system |
V | Viability |
VCSA | Virtual cell soma area |
VCSs | Virtual cellular structures |
References
- Gutbier, S.; Spreng, A.S.; Delp, J.; Schildknecht, S.; Karreman, C.; Suciu, I.; Brunner, T.; Groettrup, M.; Leist, M. Prevention of neuronal apoptosis by astrocytes through thiol-mediated stress response modulation and accelerated recovery from proteotoxic stress. Cell Death Differ. 2018, 25, 2101–2117. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Rumble, J.L.; Gleixner, A.M.; Unnithan, A.S.; Pulugulla, S.H.; Posimo, J.M.; Choi, H.J.; Crum, T.S.; Pant, D.B.; Leak, R.K. N-Acetyl cysteine blunts proteotoxicity in a heat shock protein-dependent manner. Neuroscience 2013, 255, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Yamamuro-Tanabe, A.; Oshima, Y.; Iyama, T.; Ishimaru, Y.; Yoshioka, Y. Proteasome inhibitors induce apoptosis by superoxide anion generation via NADPH oxidase 5 in human neuroblastoma SH-SY5Y cells. J. Pharmacol. Sci. 2024, 155, 52–62. [Google Scholar] [CrossRef]
- Heinemann, S.D.; Posimo, J.M.; Mason, D.M.; Hutchison, D.F.; Leak, R.K. Synergistic stress exacerbation in hippocampal neurons: Evidence favoring the dual-hit hypothesis of neurodegeneration. Hippocampus 2016, 26, 980–994. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Anand, P.; Kuang, A.; Akhtar, F.; Scofield, V.L. N-Acetylcysteine in Combination with IGF-1 Enhances Neuroprotection against Proteasome Dysfunction-Induced Neurotoxicity in SH-SY5Y Cells. Park. Dis. 2016, 2016, 6564212. [Google Scholar] [CrossRef]
- Gleixner, A.M.; Hutchison, D.F.; Sannino, S.; Bhatia, T.N.; Leak, L.C.; Flaherty, P.T.; Wipf, P.; Brodsky, J.L.; Leak, R.K. N-Acetyl-l-Cysteine Protects Astrocytes against Proteotoxicity without Recourse to Glutathione. Mol. Pharmacol. 2017, 92, 564–575. [Google Scholar] [CrossRef]
- Zhou, Z.; Kerk, S.; Meng Lim, T. Endogenous dopamine (DA) renders dopaminergic cells vulnerable to challenge of proteasome inhibitor MG132. Free Radic. Res. 2008, 42, 456–466. [Google Scholar] [CrossRef]
- Suraweera, A.; Münch, C.; Hanssum, A.; Bertolotti, A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 2012, 48, 242–253. [Google Scholar] [CrossRef]
- Bi, M.; Du, X.; Jiao, Q.; Chen, X.; Jiang, H. Expanding the role of proteasome homeostasis in Parkinson’s disease: Beyond protein breakdown. Cell Death Dis. 2021, 12, 154. [Google Scholar] [CrossRef]
- Hough, R.; Pratt, G.; Rechsteiner, M. Purification of two high molecular weight proteases from rabbit reticulocyte lysate. J. Biol. Chem. 1987, 262, 8303–8313. [Google Scholar] [CrossRef]
- Waxman, L.; Fagan, J.M.; Goldberg, A.L. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J. Biol. Chem. 1987, 262, 2451–2457. [Google Scholar] [CrossRef] [PubMed]
- Dantuma, N.P.; Bott, L.C. The ubiquitin-proteasome system in neurodegenerative diseases: Precipitating factor, yet part of the solution. Front. Mol. Neurosci. 2014, 7, 70. [Google Scholar] [CrossRef]
- McNaught, K.S.; Belizaire, R.; Jenner, P.; Olanow, C.W.; Isacson, O. Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci. Lett. 2002, 326, 155–158. [Google Scholar] [CrossRef] [PubMed]
- McNaught, K.S.; Olanow, C.W. Proteasome inhibitor-induced model of Parkinson’s disease. Ann. Neurol. 2006, 60, 243–247. [Google Scholar] [CrossRef]
- McNaught, K.S.; Björklund, L.M.; Belizaire, R.; Isacson, O.; Jenner, P.; Olanow, C.W. Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 2002, 13, 1437–1441. [Google Scholar] [CrossRef]
- McNaught, K.S.; Perl, D.P.; Brownell, A.L.; Olanow, C.W. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann. Neurol. 2004, 56, 149–162. [Google Scholar] [CrossRef]
- Kisselev, A.F. Site-Specific Proteasome Inhibitors. Biomolecules 2021, 12, 54. [Google Scholar] [CrossRef]
- Lee, D.H.; Goldberg, A.L. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J. Biol. Chem. 1996, 271, 27280–27284. [Google Scholar] [CrossRef]
- Lee, D.H.; Goldberg, A.L. Proteasome inhibitors: Valuable new tools for cell biologists. Trends Cell Biol. 1998, 8, 397–403. [Google Scholar] [CrossRef]
- Kisselev, A.F.; Goldberg, A.L. Proteasome inhibitors: From research tools to drug candidates. Chem. Biol. 2001, 8, 739–758. [Google Scholar] [CrossRef]
- Dringen, R.; Pfeiffer, B.; Hamprecht, B. Synthesis of the antioxidant glutathione in neurons: Supply by astrocytes of CysGly as precursor for neuronal glutathione. J. Neurosci. 1999, 19, 562–569. [Google Scholar] [CrossRef]
- Unnithan, A.S.; Choi, H.J.; Titler, A.M.; Posimo, J.M.; Leak, R.K. Rescue from a two hit, high-throughput model of neurodegeneration with N-acetyl cysteine. Neurochem. Int. 2012, 61, 356–368. [Google Scholar] [CrossRef]
- Brüll, M.; Spreng, A.S.; Gutbier, S.; Loser, D.; Krebs, A.; Reich, M.; Kraushaar, U.; Britschgi, M.; Patsch, C.; Leist, M. Incorporation of stem cell-derived astrocytes into neuronal organoids to allow neuro-glial interactions in toxicological studies. Altex 2020, 37, 409–428. [Google Scholar] [CrossRef]
- Scholz, D.; Pöltl, D.; Genewsky, A.; Weng, M.; Waldmann, T.; Schildknecht, S.; Leist, M. Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J. Neurochem. 2011, 119, 957–971. [Google Scholar] [CrossRef]
- Schildknecht, S.; Pöltl, D.; Nagel, D.M.; Matt, F.; Scholz, D.; Lotharius, J.; Schmieg, N.; Salvo-Vargas, A.; Leist, M. Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells. Toxicol. Appl. Pharmacol. 2009, 241, 23–35. [Google Scholar] [CrossRef]
- Pöltl, D.; Schildknecht, S.; Karreman, C.; Leist, M. Uncoupling of ATP-depletion and cell death in human dopaminergic neurons. Neurotoxicology 2012, 33, 769–779. [Google Scholar] [CrossRef]
- Devos, D.; Moreau, C.; Devedjian, J.C.; Kluza, J.; Petrault, M.; Laloux, C.; Jonneaux, A.; Ryckewaert, G.; Garçon, G.; Rouaix, N.; et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid. Redox Signal. 2014, 21, 195–210. [Google Scholar] [CrossRef]
- Efremova, L.; Schildknecht, S.; Adam, M.; Pape, R.; Gutbier, S.; Hanf, B.; Bürkle, A.; Leist, M. Prevention of the degeneration of human dopaminergic neurons in an astrocyte co-culture system allowing endogenous drug metabolism. Br. J. Pharmacol. 2015, 172, 4119–4132. [Google Scholar] [CrossRef]
- Höllerhage, M.; Moebius, C.; Melms, J.; Chiu, W.H.; Goebel, J.N.; Chakroun, T.; Koeglsperger, T.; Oertel, W.H.; Rösler, T.W.; Bickle, M.; et al. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Sci. Rep. 2017, 7, 11469. [Google Scholar] [CrossRef]
- Harris, G.; Eschment, M.; Orozco, S.P.; McCaffery, J.M.; Maclennan, R.; Severin, D.; Leist, M.; Kleensang, A.; Pamies, D.; Maertens, A.; et al. Toxicity, recovery, and resilience in a 3D dopaminergic neuronal in vitro model exposed to rotenone. Arch. Toxicol. 2018, 92, 2587–2606. [Google Scholar] [CrossRef]
- Ückert, A.K.; Rütschlin, S.; Gutbier, S.; Wörz, N.C.; Miah, M.R.; Martins, A.C.; Hauer, I.; Holzer, A.K.; Meyburg, B.; Mix, A.K.; et al. Identification of the bacterial metabolite aerugine as potential trigger of human dopaminergic neurodegeneration. Environ. Int. 2023, 180, 108229. [Google Scholar] [CrossRef]
- Gutbier, S.; Kyriakou, S.; Schildknecht, S.; Ückert, A.K.; Brüll, M.; Lewis, F.; Dickens, D.; Pearson, L.; Elson, J.L.; Michel, S.; et al. Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants. Arch. Toxicol. 2020, 94, 3105–3123. [Google Scholar] [CrossRef]
- Suciu, I.; Delp, J.; Gutbier, S.; Ückert, A.K.; Spreng, A.S.; Eberhard, P.; Karreman, C.; Schreiber, F.; Madjar, K.; Rahnenführer, J.; et al. Dynamic Metabolic and Transcriptional Responses of Proteasome-Inhibited Neurons. Antioxidants 2023, 12, 164. [Google Scholar] [CrossRef]
- Ali, N.; Sane, M.S.; Tang, H.; Compher, J.; McLaughlin, Q.; Jones, C.D.; Maffi, S.K. 6-hydroxydopamine affects multiple pathways to induce cytotoxicity in differentiated LUHMES dopaminergic neurons. Neurochem. Int. 2023, 170, 105608. [Google Scholar] [CrossRef]
- Baeken, M.W.; Schwarz, M.; Kern, A.; Moosmann, B.; Hajieva, P.; Behl, C. The selective degradation of sirtuins via macroautophagy in the MPP(+) model of Parkinson’s disease is promoted by conserved oxidation sites. Cell Death Discov. 2021, 7, 286. [Google Scholar] [CrossRef]
- Łuczkowska, K.; Taryma-Leśniak, O.; Bińkowski, J.; Sokołowska, K.E.; Strapagiel, D.; Jarczak, J.; Paczkowska, E.; Machaliński, B.; Wojdacz, T.K. Long-Term Treatment with Bortezomib Induces Specific Methylation Changes in Differentiated Neuronal Cells. Cancers 2022, 14, 3402. [Google Scholar] [CrossRef]
- Liu, X.; Yu, H.; Wang, L.; Huang, Z.; Haq, F.; Teng, L.; Jin, M.; Ding, B. Recent Advances on Designs and Applications of Hydrogel Adhesives. Adv. Mater. Interfaces 2022, 9, 2101038. [Google Scholar] [CrossRef]
- Zeng, J.; Davies, M.J. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins. Chem. Res. Toxicol. 2005, 18, 1232–1241. [Google Scholar] [CrossRef]
- Aboshi, T.; Narita, K.; Katsumi, N.; Ohta, T.; Murayama, T. Removal of C9-aldehydes and -alcohols from melon juice via cysteine addition. J. Sci. Food Agric. 2022, 102, 6131–6137. [Google Scholar] [CrossRef]
- Yamashita, K.; Noguchi, M.; Mizukoshi, A.; Yanagisawa, Y. Acetaldehyde removal from indoor air through chemical absorption using L-cysteine. Int. J. Environ. Res. Public Health 2010, 7, 3489–3498. [Google Scholar] [CrossRef]
- Baert, J.J.; De Clippeleer, J.; Jaskula-Goiris, B.; Van Opstaele, F.; De Rouck, G.; Aerts, G.; De Cooman, L. Further Elucidation of Beer Flavor Instability: The Potential Role of Cysteine-Bound Aldehydes. J. Am. Soc. Brew. Chem. 2015, 73, 243–252. [Google Scholar] [CrossRef]
- Gernat, D.C.; Brouwer, E.; Ottens, M. Aldehydes as Wort Off-Flavours in Alcohol-Free Beers—Origin and Control. Food Bioprocess Technol. 2020, 13, 195–216. [Google Scholar] [CrossRef]
- Johnson, M.; Song, R.; Li, Y.; Milne, C.; Lyu, J.; Lara-Sáez, I.; A, S.; Wang, W. Hyaluronic Acid/Chondroitin Sulfate-Based Dynamic Thiol-Aldehyde Addition Hydrogel: An Injectable, Self-Healing, On-Demand Dissolution Wound Dressing. Materials 2024, 17, 3003. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Gan, Y.; Zhang, Y.; Ouyang, B.; Tu, B.; Zhang, C.; Zhong, X.; Bao, C.; Yang, Y.; Lin, Q.; et al. Adaptable to Mechanically Stable Hydrogels Based on the Dynamic Covalent Cross-Linking of Thiol-Aldehyde Addition. ACS Macro Lett. 2019, 8, 310–314. [Google Scholar] [CrossRef]
- Hua, Y.; Gan, Y.; Li, P.; Song, L.; Shi, C.; Bao, C.; Yang, Y.; Zhou, Q.; Lin, Q.; Zhu, L. Moldable and Removable Wound Dressing Based on Dynamic Covalent Cross-Linking of Thiol-Aldehyde Addition. ACS Biomater. Sci. Eng. 2019, 5, 4048–4053. [Google Scholar] [CrossRef]
- Tanaka, F.; Mase, N.; Barbas, C.F., 3rd. Determination of cysteine concentration by fluorescence increase: Reaction of cysteine with a fluorogenic aldehyde. Chem. Commun. 2004, 15, 1762–1763. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Shen, L.; Deng, W.; Liu, H.; Ge, S.; Yan, M.; Song, X. An aldehyde group-based P-acid probe for selective fluorescence turn-on sensing of cysteine and homocysteine. Biosens. Bioelectron. 2016, 80, 17–23. [Google Scholar] [CrossRef]
- Basler, M.; Groettrup, M. Immunoproteasome-specific inhibitors and their application. Methods Mol. Biol. 2012, 832, 391–401. [Google Scholar] [CrossRef]
- Schildknecht, S.; Karreman, C.; Pöltl, D.; Efrémova, L.; Kullmann, C.; Gutbier, S.; Krug, A.; Scholz, D.; Gerding, H.R.; Leist, M. Generation of genetically-modified human differentiated cells for toxicological tests and the study of neurodegenerative diseases. Altex 2013, 30, 427–444. [Google Scholar] [CrossRef]
- Krug, A.K.; Balmer, N.V.; Matt, F.; Schönenberger, F.; Merhof, D.; Leist, M. Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch. Toxicol. 2013, 87, 2215–2231. [Google Scholar] [CrossRef]
- Stiegler, N.V.; Krug, A.K.; Matt, F.; Leist, M. Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol. Sci. 2011, 121, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Delp, J.; Gutbier, S.; Cerff, M.; Zasada, C.; Niedenführ, S.; Zhao, L.; Smirnova, L.; Hartung, T.; Borlinghaus, H.; Schreiber, F.; et al. Stage-specific metabolic features of differentiating neurons: Implications for toxicant sensitivity. Toxicol. Appl. Pharmacol. 2018, 354, 64–80. [Google Scholar] [CrossRef] [PubMed]
- House, J.S.; Grimm, F.A.; Jima, D.D.; Zhou, Y.H.; Rusyn, I.; Wright, F.A. A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics. Front. Genet. 2017, 8, 168. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Renner, N.; Schöb, F.; Pape, R.; Suciu, I.; Spreng, A.S.; Ückert, A.K.; Cöllen, E.; Bovio, F.; Chilian, B.; Bauer, J.; et al. Modeling ferroptosis in human dopaminergic neurons: Pitfalls and opportunities for neurodegeneration research. Redox Biol. 2024, 73, 103165. [Google Scholar] [CrossRef]
- Tong, Z.B.; Kim, H.; El Touny, L.; Simeonov, A.; Gerhold, D. LUHMES Dopaminergic Neurons Are Uniquely Susceptible to Ferroptosis. Neurotox. Res. 2022, 40, 1526–1536. [Google Scholar] [CrossRef]
- Stipanuk, M.H.; Dominy, J.E., Jr.; Lee, J.I.; Coloso, R.M. Mammalian cysteine metabolism: New insights into regulation of cysteine metabolism. J. Nutr. 2006, 136, 1652s–1659s. [Google Scholar] [CrossRef]
- Triguero, A.; Barber, T.; García, C.; Puertes, I.R.; Sastre, J.; Viña, J.R. Liver intracellular L-cysteine concentration is maintained after inhibition of the trans-sulfuration pathway by propargylglycine in rats. Br. J. Nutr. 1997, 78, 823–831. [Google Scholar] [CrossRef]
- Kästle, M.; Woschee, E.; Grune, T. Histone deacetylase 6 (HDAC6) plays a crucial role in p38MAPK-dependent induction of heme oxygenase-1 (HO-1) in response to proteasome inhibition. Free Radic. Biol. Med. 2012, 53, 2092–2101. [Google Scholar] [CrossRef]
- Nerini-Molteni, S.; Ferrarini, M.; Cozza, S.; Caligaris-Cappio, F.; Sitia, R. Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib. Br. J. Haematol. 2008, 141, 494–503. [Google Scholar] [CrossRef]
- Rutkowski, D.T.; Kaufman, R.J. A trip to the ER: Coping with stress. Trends Cell Biol. 2004, 14, 20–28. [Google Scholar] [CrossRef]
- Carta, G.; van der Stel, W.; Scuric, E.W.J.; Capinha, L.; Delp, J.; Bennekou, S.H.; Forsby, A.; Walker, P.; Leist, M.; van de Water, B.; et al. Transcriptional landscape of mitochondrial electron transport chain inhibition in renal cells. Cell Biol. Toxicol. 2023, 39, 3031–3059. [Google Scholar] [CrossRef]
- Kalkavan, H.; Chen, M.J.; Crawford, J.C.; Quarato, G.; Fitzgerald, P.; Tait, S.W.G.; Goding, C.R.; Green, D.R. Sublethal cytochrome c release generates drug-tolerant persister cells. Cell 2022, 185, 3356–3374.e22. [Google Scholar] [CrossRef]
- Mei, J.M.; Niu, C.S. How does conserved dopamine neurotrophic factor protect against and rescue neurodegeneration of PC12 cells? Neural Regen. Res. 2017, 12, 1145–1151. [Google Scholar] [CrossRef]
- Reimer, L.; Vesterager, L.B.; Betzer, C.; Zheng, J.; Nielsen, L.D.; Kofoed, R.H.; Lassen, L.B.; Bølcho, U.; Paludan, S.R.; Fog, K.; et al. Inflammation kinase PKR phosphorylates α-synuclein and causes α-synuclein-dependent cell death. Neurobiol. Dis. 2018, 115, 17–28. [Google Scholar] [CrossRef]
- La Cognata, V.; Maugeri, G.; D’Amico, A.G.; Saccone, S.; Federico, C.; Cavallaro, S.; D’Agata, V. Differential expression of PARK2 splice isoforms in an in vitro model of dopaminergic-like neurons exposed to toxic insults mimicking Parkinson’s disease. J. Cell. Biochem. 2018, 119, 1062–1073. [Google Scholar] [CrossRef]
- Kuang, X.L.; Liu, Y.; Chang, Y.; Zhou, J.; Zhang, H.; Li, Y.; Qu, J.; Wu, S. Inhibition of store-operated calcium entry by sub-lethal levels of proteasome inhibition is associated with STIM1/STIM2 degradation. Cell Calcium 2016, 59, 172–180. [Google Scholar] [CrossRef]
- Nam, Y.J.; Lee, D.H.; Lee, M.S.; Lee, C.S. K(ATP) channel block prevents proteasome inhibitor-induced apoptosis in differentiated PC12 cells. Eur. J. Pharmacol. 2015, 764, 582–591. [Google Scholar] [CrossRef]
- Zou, H.; Limpert, A.S.; Zou, J.; Dembo, A.; Lee, P.S.; Grant, D.; Ardecky, R.; Pinkerton, A.B.; Magnuson, G.K.; Goldman, M.E.; et al. Benzodiazepinone derivatives protect against endoplasmic reticulum stress-mediated cell death in human neuronal cell lines. ACS Chem. Neurosci. 2015, 6, 464–475. [Google Scholar] [CrossRef]
- Trippier, P.C.; Zhao, K.T.; Fox, S.G.; Schiefer, I.T.; Benmohamed, R.; Moran, J.; Kirsch, D.R.; Morimoto, R.I.; Silverman, R.B. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis. ACS Chem. Neurosci. 2014, 5, 823–829. [Google Scholar] [CrossRef]
- Wójcik, S.; Spodnik, J.H.; Spodnik, E.; Dziewiątkowski, J.; Moryś, J. Nigrostriatal pathway degeneration in rats after intraperitoneal administration of proteasome inhibitor MG-132. Folia Neuropathol. 2014, 52, 41–55. [Google Scholar] [CrossRef]
- Bang, Y.; Kang, B.Y.; Choi, H.J. Preconditioning stimulus of proteasome inhibitor enhances aggresome formation and autophagy in differentiated SH-SY5Y cells. Neurosci. Lett. 2014, 566, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Titler, A.M.; Posimo, J.M.; Leak, R.K. Astrocyte plasticity revealed by adaptations to severe proteotoxic stress. Cell Tissue Res. 2013, 352, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Romero-Granados, R.; Fontán-Lozano, Á.; Aguilar-Montilla, F.J.; Carrión, Á.M. Postnatal proteasome inhibition induces neurodegeneration and cognitive deficiencies in adult mice: A new model of neurodevelopment syndrome. PLoS ONE 2011, 6, e28927. [Google Scholar] [CrossRef] [PubMed]
- van Eersel, J.; Ke, Y.D.; Gladbach, A.; Bi, M.; Götz, J.; Kril, J.J.; Ittner, L.M. Cytoplasmic accumulation and aggregation of TDP-43 upon proteasome inhibition in cultured neurons. PLoS ONE 2011, 6, e22850. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Li, X.; Li, C.; Zhu, W.; Jankovic, J.; Le, W. Proteasome inhibition modeling nigral neuron degeneration in Parkinson’s disease. J. Neurochem. 2010, 115, 188–199. [Google Scholar] [CrossRef]
- Sado, M.; Yamasaki, Y.; Iwanaga, T.; Onaka, Y.; Ibuki, T.; Nishihara, S.; Mizuguchi, H.; Momota, H.; Kishibuchi, R.; Hashimoto, T.; et al. Protective effect against Parkinson’s disease-related insults through the activation of XBP1. Brain Res. 2009, 1257, 16–24. [Google Scholar] [CrossRef]
- Zafar, K.S.; Inayat-Hussain, S.H.; Ross, D. A comparative study of proteasomal inhibition and apoptosis induced in N27 mesencephalic cells by dopamine and MG132. J. Neurochem. 2007, 102, 913–921. [Google Scholar] [CrossRef]
- Sun, F.; Anantharam, V.; Zhang, D.; Latchoumycandane, C.; Kanthasamy, A.; Kanthasamy, A.G. Proteasome inhibitor MG-132 induces dopaminergic degeneration in cell culture and animal models. Neurotoxicology 2006, 27, 807–815. [Google Scholar] [CrossRef]
- Sawada, H.; Kohno, R.; Kihara, T.; Izumi, Y.; Sakka, N.; Ibi, M.; Nakanishi, M.; Nakamizo, T.; Yamakawa, K.; Shibasaki, H.; et al. Proteasome mediates dopaminergic neuronal degeneration, and its inhibition causes alpha-synuclein inclusions. J. Biol. Chem. 2004, 279, 10710–10719. [Google Scholar] [CrossRef]
- Maharjan, S.; Oku, M.; Tsuda, M.; Hoseki, J.; Sakai, Y. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition. Sci. Rep. 2014, 4, 5896. [Google Scholar] [CrossRef]
- Kuusisto, E.; Suuronen, T.; Salminen, A. Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem. Biophys. Res. Commun. 2001, 280, 223–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ückert, A.-K.; Suciu, I.; Land, A.; Spreng, A.-S.; Welte, H.; Herzog, D.; Basler, M.; Leist, M. Chemical and Biological Mechanisms Relevant to the Rescue of MG-132-Treated Neurons by Cysteine. Antioxidants 2025, 14, 128. https://doi.org/10.3390/antiox14020128
Ückert A-K, Suciu I, Land A, Spreng A-S, Welte H, Herzog D, Basler M, Leist M. Chemical and Biological Mechanisms Relevant to the Rescue of MG-132-Treated Neurons by Cysteine. Antioxidants. 2025; 14(2):128. https://doi.org/10.3390/antiox14020128
Chicago/Turabian StyleÜckert, Anna-Katharina, Ilinca Suciu, Anja Land, Anna-Sophie Spreng, Hannah Welte, Doreen Herzog, Michael Basler, and Marcel Leist. 2025. "Chemical and Biological Mechanisms Relevant to the Rescue of MG-132-Treated Neurons by Cysteine" Antioxidants 14, no. 2: 128. https://doi.org/10.3390/antiox14020128
APA StyleÜckert, A.-K., Suciu, I., Land, A., Spreng, A.-S., Welte, H., Herzog, D., Basler, M., & Leist, M. (2025). Chemical and Biological Mechanisms Relevant to the Rescue of MG-132-Treated Neurons by Cysteine. Antioxidants, 14(2), 128. https://doi.org/10.3390/antiox14020128