Preliminary Effects of American Elderberry Juice on Cognitive Functioning in Mild Cognitive Impairment Patients: A Secondary Analysis of Cognitive Composite Scores in a Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Procedure
2.3. Measures
2.3.1. Mini-Mental State Exam
2.3.2. Hopkins Verbal Learning Test
2.3.3. Rey–Osterrieth Complex Figure Test
2.3.4. Anagrams
2.3.5. Visuospatial Problem Solving
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. MLM Results
4. Discussion
4.1. Clinical Implications
4.2. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luis, C.A.; Loewenstein, D.A.; Acevedo, A.; Barker, W.W.; Duara, R. Mild cognitive impairment: Directions for future research. Neurology 2003, 61, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, T.; Fusser, F.; Schroder, J.; Pantel, J. Pharmacological Treatment of Mild Cognitive Impairment as a Prodromal Syndrome of Alzheimer s Disease. Curr. Neuropharmacol. 2013, 11, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Ofek, I.; Goldhar, J.; Sharon, N. Anti-Escherichia Coli Adhesin Activity of Cranberry and Blueberry Juices; Springer: New York, NY, USA, 1996; pp. 179–183. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Anthocyanins and other flavonoids. Nat. Prod. Rep. 2001, 18, 310–333. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Tapiero, H.; Tew, K.; Ba, G.N.; Mathe, G. Polyphenols: Do they play a role in the prevention of human pathologies? Biomed. Pharmacother. 2002, 56, 200–207. [Google Scholar] [CrossRef]
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Kelsey, N.; Hulick, W.; Winter, A.; Ross, E.; Linseman, D. Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress. Nutr. Neurosci. 2011, 14, 249–259. [Google Scholar] [CrossRef]
- Murkovic, M.; Abuja, P.; Bergmann, A.; Zirngast, A.; Adam, U.; Winklhofer-Roob, B.; Toplak, H. Effects of elderberry juice on fasting and postprandial serum lipids and low-density lipoprotein oxidation in healthy volunteers: A randomized, double-blind, placebo-controlled study. Eur. J. Clin. Nutr. 2004, 58, 244–249. [Google Scholar] [CrossRef]
- Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food—A review. J. Funct. Foods 2015, 18, 941–958. [Google Scholar] [CrossRef]
- Curtis, A.F.; Musich, M.; Costa, A.N.; Gonzales, J.; Gonzales, H.; Ferguson, B.J.; Kille, B.; Thomas, A.L.; Wei, X.; Liu, P.; et al. Feasibility and Preliminary Efficacy of American Elderberry Juice for Improving Cognition and Inflammation in Patients with Mild Cognitive Impairment. Int. J. Mol. Sci. 2024, 25, 4352. [Google Scholar] [CrossRef] [PubMed]
- Crichton, G.E.; Bryan, J.; Murphy, K.J. Dietary antioxidants, cognitive function and dementia--a systematic review. Plant Foods Hum. Nutr. 2013, 68, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.; Salo, I.; Plaza, M.; Björck, I. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross-over study in healthy older adults. PLoS ONE 2017, 12, e0188173. [Google Scholar] [CrossRef]
- Krikorian, R.; Nash, T.A.; Shidler, M.D.; Shukitt-Hale, B.; Joseph, J.A. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br. J. Nutr. 2010, 103, 730–734. [Google Scholar] [CrossRef]
- Krikorian, R.; Shidler, M.D.; Nash, T.A.; Kalt, W.; Vinqvist-Tymchuk, M.R.; Shukitt-Hale, B.; Joseph, J.A. Blueberry supplementation improves memory in older adults. J. Agric. Food Chem. 2010, 58, 3996–4000. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Smith, S.J.; Pouchieu, C.; Pourtau, L.; Gaudout, D.; Pallet, V.; Drummond, P.D. Effects of a polyphenol-rich grape and blueberry extract (Memophenol™) on cognitive function in older adults with mild cognitive impairment: A randomized, double-blind, placebo-controlled study. Front. Psychol. 2023, 14, 1144231. [Google Scholar] [CrossRef]
- Langbaum, J.B.; Hendrix, S.B.; Ayutyanont, N.; Chen, K.; Fleisher, A.S.; Shah, R.C.; Barnes, L.L.; Bennett, D.A.; Tariot, P.N.; Reiman, E.M. An empirically derived composite cognitive test score with improved power to track and evaluate treatments for preclinical Alzheimer’s disease. Alzheimers Dement. 2014, 10, 666–674. [Google Scholar] [CrossRef]
- Crane, P.K.; Narasimhalu, K.; Gibbons, L.E.; Pedraza, O.; Mehta, K.M.; Tang, Y.; Manly, J.J.; Reed, B.R.; Mungas, D.M. Composite scores for executive function items: Demographic heterogeneity and relationships with quantitative magnetic resonance imaging. J. Int. Neuropsychol. Soc. 2008, 14, 746–759. [Google Scholar] [CrossRef]
- Riordan, H. Constructing composites to optimise cognitive outcomes. J. Clin. Stud. 2017, 9, 40–45. [Google Scholar]
- Andrade, C. Z Scores, Standard Scores, and Composite Test Scores Explained. Indian. J. Psychol. Med. 2021, 43, 555–557. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J. The Hopkins Verbal Learning Test: Development of a new memory test with six equivalent forms. Clin. Neuropsychol. 1991, 5, 125–142. [Google Scholar] [CrossRef]
- Rey, A. L’examen psychologique dans les cas d’encéphalopathie traumatique. (Les problems). [The psychological examination in cases of traumatic encepholopathy. Problems]. Arch. Psychol. 1941, 28, 215–285. [Google Scholar]
- Alexander, J.K.; Hillier, A.; Smith, R.M.; Tivarus, M.E.; Beversdorf, D.Q. Beta-adrenergic modulation of cognitive flexibility during stress. J. Cogn. Neurosci. 2007, 19, 468–478. [Google Scholar] [CrossRef]
- Kumar, D.; Kumari, S. Problem solving as a function of creativity and personality. Psychol. Stud. 1988, 33, 157–161. [Google Scholar]
- Miller, L.A.; Tippett, L.J. Effects of focal brain lesions on visual problem-solving. Neuropsychologia 1996, 34, 387–398. [Google Scholar] [CrossRef]
- Guilford, J.P. The Nature of Human Intelligence; McGraw-Hill: New York City, NY, USA, 1967. [Google Scholar]
- Beversdorf, D.Q.; Ferguson, J.L.; Hillier, A.; Sharma, U.K.; Nagaraja, H.N.; Bornstein, R.A.; Scharre, D.W. Problem solving ability in patients with mild cognitive impairment. Cogn. Behav. Neurol. 2007, 20, 44–47. [Google Scholar] [CrossRef]
- Woltz, D.J.; Was, C.A. Availability of related long-term memory during and after attention focus in working memory. Mem. Cogn. 2006, 34, 668–684. [Google Scholar] [CrossRef]
- Crane, P.K.; Carle, A.; Gibbons, L.E.; Insel, P.; Mackin, R.S.; Gross, A.; Jones, R.N.; Mukherjee, S.; Curtis, S.M.; Harvey, D.; et al. Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging Behav. 2012, 6, 502–516. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: http://www.R-project.org/ (accessed on 22 August 2022).
- Muth, C.; Bales, K.L.; Hinde, K.; Maninger, N.; Mendoza, S.P.; Ferrer, E. Alternative models for small samples in psychological research: Applying linear mixed effects models and generalized estimating equations to repeated measures data. Educ. Psychol. Meas. 2016, 76, 64–87. [Google Scholar] [CrossRef] [PubMed]
- McNeish, D. Small sample methods for multilevel modeling: A colloquial elucidation of REML and the Kenward-Roger correction. Multivar. Behav. Res. 2017, 52, 661–670. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Correll, J.; Mellinger, C.; Pedersen, E.J. Flexible approaches for estimating partial eta squared in mixed-effects models with crossed random factors. Behav. Res. Methods 2022, 54, 1626–1642. [Google Scholar] [CrossRef]
- Jacobs, D.M.; Thomas, R.G.; Salmon, D.P.; Jin, S.; Feldman, H.H.; Cotman, C.W.; Baker, L.D.; Alzheimer’s Disease Cooperative Study, E.S.G.; Alzheimer’s Disease Neuroimaging, I. Development of a novel cognitive composite outcome to assess therapeutic effects of exercise in the EXERT trial for adults with MCI: The ADAS-Cog-Exec. Alzheimers Dement. 2020, 6, e12059. [Google Scholar] [CrossRef]
- Vandierendonck, A. A comparison of methods to combine speed and accuracy measures of performance: A rejoinder on the binning procedure. Behav. Res. Methods 2017, 49, 653–673. [Google Scholar] [CrossRef]
- Sartori, A.C.; Vance, D.E.; Slater, L.Z.; Crowe, M. The impact of inflammation on cognitive function in older adults: Implications for health care practice and research. J. Neurosci. Nurs. 2012, 44, 206. [Google Scholar]
- Tangestani Fard, M.; Stough, C. A review and hypothesized model of the mechanisms that underpin the relationship between inflammation and cognition in the elderly. Front. Aging Neurosci. 2019, 11, 56. [Google Scholar]
- Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 2015, 16, 358–372. [Google Scholar] [CrossRef]
- Pacheco, S.M.; Soares, M.S.P.; Gutierres, J.M.; Gerzson, M.F.B.; Carvalho, F.B.; Azambuja, J.H.; Schetinger, M.R.C.; Stefanello, F.M.; Spanevello, R.M. Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer’s type. J. Nutr. Biochem. 2018, 56, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Leber, A.B.; Turk-Browne, N.B.; Chun, M.M. Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proc. Natl. Acad. Sci. USA 2008, 105, 13592–13597. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, C.; Napolitano, M.; Tedesco, I.; Moccia, S.; Milito, A.; Russo, G.L. Neuroprotective Role of Natural Polyphenols. Curr. Top. Med. Chem. 2016, 16, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P.; Vauzour, D.; Rendeiro, C. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects. Arch. Biochem. Biophys. 2009, 492, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P. Flavonoids: Modulators of brain function? Br. J. Nutr. 2008, 99 (Suppl. S1), ES60–ES77. [Google Scholar] [CrossRef]
- Zhuang, L.; Yang, Y.; Gao, J. Cognitive assessment tools for mild cognitive impairment screening. J. Neurol. 2021, 268, 1615–1622. [Google Scholar] [CrossRef]
- Fekete, M.; Lehoczki, A.; Tarantini, S.; Fazekas-Pongor, V.; Csipo, T.; Csizmadia, Z.; Varga, J.T. Improving Cognitive Function with Nutritional Supplements in Aging: A Comprehensive Narrative Review of Clinical Studies Investigating the Effects of Vitamins, Minerals, Antioxidants, and Other Dietary Supplements. Nutrients 2023, 15, 5116. [Google Scholar] [CrossRef]
- Schram, M.T.; Euser, S.M.; de Craen, A.J.; Witteman, J.C.; Frolich, M.; Hofman, A.; Jolles, J.; Breteler, M.M.; Westendorp, R.G. Systemic markers of inflammation and cognitive decline in old age. J. Am. Geriatr. Soc. 2007, 55, 708–716. [Google Scholar] [CrossRef]
- Ownby, R.L. Neuroinflammation and cognitive aging. Curr. Psychiatry Rep. 2010, 12, 39–45. [Google Scholar] [CrossRef]
- Head, E. Oxidative damage and cognitive dysfunction: Antioxidant treatments to promote healthy brain aging. Neurochem. Res. 2009, 34, 670–678. [Google Scholar] [CrossRef]
- Rauhala, E.; Johansson, J.; Karrasch, M.; Eskola, O.; Tolvanen, T.; Parkkola, R.; Virtanen, K.A.; Rinne, J.O. Change in brain amyloid load and cognition in patients with amnestic mild cognitive impairment: A 3-year follow-up study. EJNMMI Res. 2022, 12, 55. [Google Scholar] [CrossRef]
- Cheatham, C.L.; Canipe III, L.G.; Millsap, G.; Stegall, J.M.; Chai, S.C.; Sheppard, K.W.; Lila, M.A. Six-month intervention with wild blueberries improved speed of processing in mild cognitive decline: A double-blind, placebo-controlled, randomized clinical trial. Nutr. Neurosci. 2023, 26, 1019–1033. [Google Scholar] [CrossRef] [PubMed]
- Kent, K.; Charlton, K.E.; Netzel, M.; Fanning, K. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: A systematic review. J. Hum. Nutr. Diet. 2017, 30, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Barbouti, A.; Goulas, V. Dietary Antioxidants in the Mediterranean Diet. Antioxidants 2021, 10, 1213. [Google Scholar] [CrossRef] [PubMed]
- Itsiopoulos, C.; Mayr, H.L.; Thomas, C.J. The anti-inflammatory effects of a Mediterranean diet: A review. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 415–422. [Google Scholar] [CrossRef]
Placebo-Control Condition (N = 13) | Elderberry Condition (N = 11) | Baseline Condition Comparisons | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline | 3-Month Follow-Up | 6-Month Follow-Up | Baseline | 3-Month Follow-Up | 6-Month Follow-Up | ||||||||
Variables | M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | p |
Global Cognition | 12.73 | 2.03 | 13.27 | 1.55 | 12.86 | 2.43 | 13.05 | 2.27 | 12.68 | 2.25 | 12.82 | 1.88 | 0.72 |
Visuospatial Construct Ability | 13.34 | 5.59 | 13.43 | 4.58 | 12.56 | 6.26 | 14.26 | 4.43 | 13.92 | 5.02 | 13.40 | 4.33 | 0.67 |
Cognitive Flexibility Total Correct | 2.86 | 2.37 | 4.79 | 2.55 | 4.43 | 2.62 | 4.84 | 3.97 | 4.09 | 4.51 | 4.91 | 3.72 | 0.14 |
Cognitive Flexibility Latency | 22.91 | 26.85 | 23.89 | 17.05 | 30.21 | 20.94 | 29.89 | 18.12 | 22.11 | 15.08 | 18.57 | 9.68 | 0.47 |
Cognitive Flexibility RCS | 0.15 | 0.21 | 0.22 | 0.11 | 0.18 | 0.19 | 0.14 | 0.15 | 0.23 | 0.43 | 0.37 | 0.26 | 0.85 |
Memory | 1.98 | 2.04 | 2.10 | 1.69 | 1.62 | 1.75 | 1.20 | 2.16 | 1.24 | 1.72 | 0.62 | 1.78 | 0.38 |
Condition | Time | Condition × Time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | b | SE | t | p | b | SE | t | p | b | SE | t | p | η2 |
Global Cognition | 0.20 | 1.01 | 0.20 | 0.85 | −0.01 | 0.23 | −0.04 | 0.97 | −0.04 | 0.35 | −0.11 | 0.91 | 0.001 |
Visuospatial Construct Ability | 0.95 | 2.50 | 0.38 | 0.71 | −0.02 | 0.56 | −0.03 | 0.98 | −0.15 | 0.81 | −0.18 | 0.86 | 0.001 |
Cognitive Flexibility Total Correct | 2.11 | 1.96 | 1.073 | 0.29 | 0.55 | 0.29 | 1.89 | .07 | −0.62 | 0.44 | −1.43 | 0.16 | 0.02 |
Cognitive Flexibility Latency | 17.06 | 11.003 | 1.55 | 0.99 | 2.91 | 3.15 | 0.92 | 0.36 | −9.70 | 4.79 | −2.03 | 0.049 * | 0.077 |
Cognitive Flexibility RCS | −0.15 | 0.15 | −1.01 | 0.32 | 0.01 | 0.04 | 0.27 | 0.79 | 0.11 | 0.07 | 1.66 | 0.11 | 0.04 |
Memory | −0.67 | 2.33 | −0.29 | 0.77 | −0.13 | 0.20 | −0.63 | 0.54 | −0.14 | 0.30 | −0.47 | 0.64 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musich, M.; Curtis, A.F.; Ferguson, B.J.; Drysdale, D.; Thomas, A.L.; Greenlief, C.M.; Shenker, J.I.; Beversdorf, D.Q. Preliminary Effects of American Elderberry Juice on Cognitive Functioning in Mild Cognitive Impairment Patients: A Secondary Analysis of Cognitive Composite Scores in a Randomized Clinical Trial. Antioxidants 2025, 14, 131. https://doi.org/10.3390/antiox14020131
Musich M, Curtis AF, Ferguson BJ, Drysdale D, Thomas AL, Greenlief CM, Shenker JI, Beversdorf DQ. Preliminary Effects of American Elderberry Juice on Cognitive Functioning in Mild Cognitive Impairment Patients: A Secondary Analysis of Cognitive Composite Scores in a Randomized Clinical Trial. Antioxidants. 2025; 14(2):131. https://doi.org/10.3390/antiox14020131
Chicago/Turabian StyleMusich, Madison, Ashley F. Curtis, Bradley J. Ferguson, David Drysdale, Andrew L. Thomas, C. Michael Greenlief, Joel I. Shenker, and D. Q. Beversdorf. 2025. "Preliminary Effects of American Elderberry Juice on Cognitive Functioning in Mild Cognitive Impairment Patients: A Secondary Analysis of Cognitive Composite Scores in a Randomized Clinical Trial" Antioxidants 14, no. 2: 131. https://doi.org/10.3390/antiox14020131
APA StyleMusich, M., Curtis, A. F., Ferguson, B. J., Drysdale, D., Thomas, A. L., Greenlief, C. M., Shenker, J. I., & Beversdorf, D. Q. (2025). Preliminary Effects of American Elderberry Juice on Cognitive Functioning in Mild Cognitive Impairment Patients: A Secondary Analysis of Cognitive Composite Scores in a Randomized Clinical Trial. Antioxidants, 14(2), 131. https://doi.org/10.3390/antiox14020131