Macroporous Resin Recovery of Antioxidant Polyphenol Compounds from Red Onion (Allium cepa L.) Peel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemical Reagents
2.2. Preparation of Crude Extract (CE)
2.3. Total Phenolic Content (TPC)
2.4. Static Adsorption and Desorption
2.5. Single-Factor Experiments
2.6. Adsorption Kinetics
2.7. Determination of Desorption Activation Energy
2.8. HPLC Analysis
2.9. FT-IR and NMR Spectroscopy
2.10. Antioxidant Activity
2.10.1. ABTS Assay
2.10.2. DPPH Assay
2.10.3. FRAP Assay
2.11. Cell Culture and Cell Viability Analysis
2.12. Assessment of Nitric Oxide (NO) Synthesis
2.13. DCF-DA Assay
2.14. Statistical Analysis
3. Results and Discussion
3.1. Resin Screening
3.2. Single-Factor Experiment on the Adsorption and Desorption
3.2.1. Effect of Resin Amounts
3.2.2. Effect of pH
3.2.3. Effect of the Adsorption Temperature
3.2.4. Effect of Adsorption Time
3.2.5. Effect of the Ethanol Concentration
3.2.6. Effect of the Desorption Time
3.2.7. Effect of the Desorption Temperature
3.3. Desorption Activation Energy
3.4. Polyphenol Contents in the CE and MRE
3.5. Structural Characterizations
3.5.1. FT-IR
3.5.2. 1H-NMR Spectroscopy
3.6. Antioxidant Properties
3.7. In Vitro Anti-Inflammatory Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CE | Crude extract |
MRE | Macroporus resin-recovered extract |
STD | Standard |
References
- Chadorshabi, S.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red onion skin active ingredients, extraction and biological properties for functional food applications. Food Chem. 2022, 386, 132737. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, Y.-J.; Shin, Y. Comparative Analysis of Polyphenol Content and Antioxidant Activity of Different Parts of Five Onion Cultivars Harvested in Korea. Antioxidants 2024, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Obuotor, E.M.; Ola–Mudathir, K.F.; Wahab, A.A.; Moshood, A.I. Comparative Evaluation of Antioxidant Properties of Methanol Extracts of Allium cepa bulb, Allium cepa bulb peels and Allium fistulosum. Kragujev. J. Sci. 2018, 40, 131–141. [Google Scholar]
- Sharma, K.; Mahato, N.; Nile, S.H.; Lee, E.T.; Lee, Y.R. Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food Funct. 2016, 7, 3354–3369. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Singh, B.N.; Upadhyay, G. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chem. 2007, 102, 1389–1393. [Google Scholar] [CrossRef]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Terry, L.A.; Esteban, R.M. The impact of pasteurisation and sterilisation on bioactive compounds of onion by-products. Food Bioprocess Technol. 2013, 6, 1979–1989. [Google Scholar] [CrossRef]
- Ren, F.; Zhou, S. Phenolic components and health beneficial properties of onions. Agriculture 2021, 11, 872. [Google Scholar] [CrossRef]
- Constantin, O.E.; Milea, A.Ș.; Bolea, C.; Mihalcea, L.; Enachi, E.; Copolovici, D.M.; Copolovici, L.; Munteanu, F.; Bahrim, G.E.; Râpeanu, G. Onion (Allium cepa L.) peel extracts characterization by conventional and modern methods. Int. J. Food Eng. 2021, 17, 485–493. [Google Scholar] [CrossRef]
- Hammad, K.S.; Hefzalrahman, T.; Morsi, M.K.; Morsy, N.F.; Abd El-Salam, E.A. Optimization of ultrasound-and enzymatic-assisted extractions of polyphenols from dried red onion peels and evaluation of their antioxidant activities. Prep. Biochem. Biotechnol. 2024, 54, 247–259. [Google Scholar] [CrossRef]
- Hou, M.; Zhang, L. Adsorption/desorption characteristics and chromatographic purification of polyphenols from Vernonia patula (Dryand.) Merr. using macroporous adsorption resin. Ind. Crops Prod. 2021, 170, 113729. [Google Scholar] [CrossRef]
- Seif Zadeh, N.; Zeppa, G. Recovery and concentration of polyphenols from roasted hazelnut skin extract using macroporous resins. Foods 2022, 11, 1969. [Google Scholar] [CrossRef] [PubMed]
- Kuang, P.; Song, D.; Yuan, Q.; Yi, R.; Lv, X.; Liang, H. Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography. Food Chem. 2013, 136, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2002, 13, 105–113. [Google Scholar] [CrossRef]
- Elegami, A.A.; Bates, C.; Gray, A.I.; Mackay, S.P.; Skellern, G.G.; Waigh, R.D. Two very unusual macrocyclic flavonoids from the water lily Nymphaea lotus. Phytochemistry 2003, 63, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.-Z.; Wu, W.; Jiao, L.-L.; Yang, P.-F.; Guo, M.-Q. Analysis of flavonoids in lotus (Nelumbo nucifera) leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays. Molecules 2015, 20, 10553–10565. [Google Scholar] [CrossRef] [PubMed]
- Wan, P.; Sheng, Z.; Han, Q.; Zhao, Y.; Cheng, G.; Li, Y. Enrichment and purification of total flavonoids from Flos Populi extracts with macroporous resins and evaluation of antioxidant activities in vitro. J. Chromatogr. B 2014, 945, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Leyton, A.; Vergara-Salinas, J.; Pérez-Correa, J.; Lienqueo, M. Purification of phlorotannins from Macrocystis pyrifera using macroporous resins. Food Chem. 2017, 237, 312–319. [Google Scholar] [CrossRef]
- Park, J.J.; Lee, W.Y. Adsorption and desorption characteristics of a phenolic compound from Ecklonia cava on macroporous resin. Food Chem. 2021, 338, 128150. [Google Scholar] [CrossRef]
- Lin, L.; Zhao, H.; Dong, Y.; Yang, B.; Zhao, M. Macroporous resin purification behavior of phenolics and rosmarinic acid from Rabdosia serra (MAXIM.) HARA leaf. Food Chem. 2012, 130, 417–424. [Google Scholar] [CrossRef]
- Aalim, H.; Belwal, T.; Wang, Y.; Luo, Z.; Hu, J. Purification and identification of rice bran (Oryza sativa L.) phenolic compounds with in-vitro antioxidant and antidiabetic activity using macroporous resins. Int. J. Food Sci. Technol. 2019, 54, 715–722. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, H.; Shao, Q.; Bilia, A.R.; Wang, Y.; Zhao, X. Enrichment and purification of the bioactive flavonoids from flower of Abelmoschus manihot (L.) medic using macroporous resins. Molecules 2018, 23, 2649. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Kabra, A.; Hano, C. Enrichment in antioxidant flavonoids of stamen extracts from Nymphaea lotus L. using ultrasonic-assisted extraction and macroporous resin adsorption. Antioxidants 2020, 9, 576. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, S.; Huang, S.; Zhang, L.; Ge, Z.; Sun, L.; Zong, W. Purification of polyphenols from distiller’s grains by macroporous resin and analysis of the polyphenolic components. Molecules 2019, 24, 1284. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Tan, D.-C.; Bao, R.-J.; Sun, Q.; Xiao, K.-M.; Xu, Y.; Wang, J.-M.; Hua, Y. Purification and antioxidant activities of polyphenols from Boletus edulis Bull.: Fr. J. Food Meas. Charact. 2020, 14, 649–657. [Google Scholar] [CrossRef]
- Han, Y.; Wu, B.; Ma, C.; Lou, Z.; Wang, H. Adsorption/desorption behavior and purification process optimization of theaflavins on macroporous resin. J. Food Meas. Charact. 2024, 18, 7160–7171. [Google Scholar] [CrossRef]
- Santos, L.G.; Martins, V.G. Recovery of phenolic compounds from purple onion peel using bio-based solvents: Thermal degradation kinetics and color stability of anthocyanins. J. Food Process. Preserv. 2022, 46, e17161. [Google Scholar] [CrossRef]
- Vl, S. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Olawuyi, I.F.; Park, J.J.; Lee, W.Y. Effect of extraction conditions on ultrasonic-assisted extraction of polyphenolic compounds from okra (Abelmoschus esculentus L.) leaves. Food Sci. Preserv. 2020, 27, 476–486. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Lin, C.; Ma, Y.; Shi, J.; Liu, J.; Zhu, L.; Bian, Z. One-step enrichment of phenolics from Chaenomeles speciosa (Sweet) Nakai fruit using macroporous resin: Adsorption/desorption characteristics, process optimization and UPLC-QqQ-MS/MS-based quantification. Food Chem. 2024, 439, 138085. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, Q.; Chen, J.; Wang, L.; Anderson, G. Adsorption of naphthalene derivatives on hypercrosslinked polymeric adsorbents. Chemosphere 1999, 38, 2003–2011. [Google Scholar] [CrossRef]
- Jiao, X.; Zhang, X.; Zhang, Q.; Gao, N.; Li, B.; Meng, X. Optimation of enrichment and purification of polyphenols from blueberries (Vaccinium spp.) by macroporous resins XAD-7HP. Emir. J. Food Agric. 2017, 29, 581–588. [Google Scholar] [CrossRef]
- Rodrigues, N.d.R.; Mohammad, S.S.; Gao, C.; Ivone MJ Barbosa, M.; Gu, L.; Junior, J.L.B. Separation process characteristics of phenolic compounds from organic purple-fleshed sweet potatoes (Ipomoea batatas L.) leaves using macroporous resins. J. Food Process Eng. 2023, 46, e14365. [Google Scholar] [CrossRef]
- Samah, R.A.; Zainol, N.; Yee, P.L.; Pawing, C.M.; Abd-Aziz, S. Adsorption of vanillin using macroporous resin H103. Adsorpt. Sci. Technol. 2013, 31, 599–610. [Google Scholar] [CrossRef]
- Xi, L.; Mu, T.; Sun, H. Preparative purification of polyphenols from sweet potato (Ipomoea batatas L.) leaves by AB-8 macroporous resins. Food Chem. 2015, 172, 166–174. [Google Scholar] [CrossRef]
- Fu, Y.; Zu, Y.; Liu, W.; Hou, C.; Chen, L.; Li, S.; Shi, X.; Tong, M. Preparative separation of vitexin and isovitexin from pigeonpea extracts with macroporous resins. J. Chromatogr. A 2007, 1139, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, D.R.; Carle, R.; Stanley, R.A.; Saleh, Z.S. Pilot-scale resin adsorption as a means to recover and fractionate apple polyphenols. J. Agric. Food Chem. 2010, 58, 6787–6796. [Google Scholar] [CrossRef]
- Sun, L.; Guo, Y.; Fu, C.; Li, J.; Li, Z. Simultaneous separation and purification of total polyphenols, chlorogenic acid and phlorizin from thinned young apples. Food Chem. 2013, 136, 1022–1029. [Google Scholar] [CrossRef]
- Chang, X.-L.; Wang, D.; Chen, B.-Y.; Feng, Y.-M.; Wen, S.-H.; Zhan, P.-Y. Adsorption and desorption properties of macroporous resins for anthocyanins from the calyx extract of roselle (Hibiscus sabdariffa L.). J. Agric. Food Chem. 2012, 60, 2368–2376. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Qiang, T.; Ma, Y.; Ren, L.; Dai, T. Purification and characterization of hydrolysable tannins extracted from Coriaria nepalensis bark using macroporous resin and their application in gallic acid production. Ind. Crops Prod. 2021, 162, 113302. [Google Scholar] [CrossRef]
- Shen, D.; Labreche, F.; Wu, C.; Fan, G.; Li, T.; Dou, J.; Zhu, J. Ultrasound-assisted adsorption/desorption of jujube peel flavonoids using macroporous resins. Food Chem. 2022, 368, 130800. [Google Scholar] [CrossRef]
- Gökmen, V.; Serpen, A. Equilibrium and kinetic studies on the adsorption of dark colored compounds from apple juice using adsorbent resin. J. Food Eng. 2002, 53, 221–227. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, S.; Peng, M.; She, Z.; Yang, Q.; Huang, T. Adsorption and desorption characteristics of polyphenols from Eucommia ulmoides Oliv. leaves with macroporous resin and its inhibitory effect on α-amylase and α-glucosidase. Ann. Transl. Med. 2020, 8, 1004. [Google Scholar] [CrossRef]
- Singh, B.N.; Singh, B.; Singh, R.; Prakash, D.; Singh, D.; Sarma, B.; Upadhyay, G.; Singh, H. Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potent antioxidant and antimutagenic activities. Food Chem. Toxicol. 2009, 47, 1161–1167. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Gonzalez-Aguilar, G.A. Quantification of flavonoids, total phenols and antioxidant properties of onion skin: A comparative study of fifteen Indian cultivars. J. Food Sci. Technol. 2020, 57, 2423–2432. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guo, X.; Miao, Q.; Ji, X.; Liang, Y.; Tong, T. Deep eutectic solvent extraction of myricetin and antioxidant properties. RSC Adv. 2024, 14, 18126–18135. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, I.; Cavallini, D.; Giammarco, M.; Manetta, A.C.; Martuscelli, M.; Mammi, L.M.E.; Lanzoni, L.; Formigoni, A.; Vignola, G. Oxidative status of Marchigiana beef enriched in n-3 fatty acids and vitamin E, treated with a blend of oregano and rosemary essential oils. Front. Vet. Sci. 2021, 8, 662079. [Google Scholar] [CrossRef]
- Sebranek, J.; Sewalt, V.; Robbins, K.; Houser, T. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Sci. 2005, 69, 289–296. [Google Scholar] [CrossRef]
- Wang, C.; Tian, S.; Gao, Z.; Li, Z.; An, X.; Lu, Y.; Song, Y.; Zhao, Y. Preparation and characterization of chitosan-based antioxidant composite films containing onion skin ethanolic extracts. J. Food Meas. Charact. 2022, 16, 598–609. [Google Scholar] [CrossRef]
- Yong, H.; Wang, X.; Zhang, X.; Liu, Y.; Qin, Y.; Liu, J. Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocoll. 2019, 94, 93–104. [Google Scholar] [CrossRef]
- Uttayarat, P.; Chiangnoon, R.; Thongnopkoon, T.; Noiruksa, K.; Trakanrungsie, J.; Phattanaphakdee, W.; Chittasupho, C.; Athikomkulchai, S. Electron Beam Irradiation Cross-Linked Hydrogel Patches Loaded with Red Onion Peel Extract for Transdermal Drug Delivery: Formulation, Characterization, Cytocompatibility, and Skin Permeation. Gels 2023, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Abboud, Y.; Eddahbi, A.; El Bouari, A.; Aitenneite, H.; Brouzi, K.; Mouslim, J. Microwave-assisted approach for rapid and green phytosynthesis of silver nanoparticles using aqueous onion (Allium cepa) extract and their antibacterial activity. J. Nanostructure Chem. 2013, 3, 84. [Google Scholar] [CrossRef]
- Fares, M.M.; Radaydeh, S.K.; Masadeh, K.a.H. Bolaamphiphilic microstructural polyphenol flavonoids as sustainable high efficacy coating for aluminium surface in aqueous solution. Can. J. Chem. Eng. 2023, 101, 1387–1397. [Google Scholar] [CrossRef]
- Huerta-Madronal, M.; Caro-Leon, J.; Espinosa-Cano, E.; Aguilar, M.R.; Vázquez-Lasa, B. Chitosan–Rosmarinic acid conjugates with antioxidant, anti-inflammatory and photoprotective properties. Carbohydr. Polym. 2021, 273, 118619. [Google Scholar] [CrossRef]
- Patle, T.K.; Shrivas, K.; Kurrey, R.; Upadhyay, S.; Jangde, R.; Chauhan, R. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118717. [Google Scholar] [CrossRef]
- Yao, Y.; Xie, Y.; Hong, C.; Li, G.; Shen, H.; Ji, G. Development of a myricetin/hydroxypropyl-β-cyclodextrin inclusion complex: Preparation, characterization, and evaluation. Carbohydr. Polym. 2014, 110, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Lizcano-Delgado, Y.Y.; Martínez-Vázquez, O.T.; Cristiani-Urbina, E.; Morales-Barrera, L. Onion Peel: A Promising, Economical, and Eco-Friendly Alternative for the Removal of Divalent Cobalt from Aqueous Solutions. Processes 2024, 12, 1263. [Google Scholar] [CrossRef]
- Conca, S.; Gatto, V.; Samiolo, R.; Giovando, S.; Cassani, A.; Tarabra, E.; Beghetto, V. Characterisation and tanning effects of purified chestnut and sulfited quebracho extracts. Collagen Leather 2024, 6, 28. [Google Scholar] [CrossRef]
- Primikyri, A.; Mazzone, G.; Lekka, C.; Tzakos, A.G.; Russo, N.; Gerothanassis, I.P. Understanding zinc (II) chelation with quercetin and luteolin: A combined NMR and theoretical study. J. Phys. Chem. B 2015, 119, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Roginsky, V.; Lissi, E.A. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 2005, 92, 235–254. [Google Scholar] [CrossRef]
- Duan, Y.; Jin, D.-H.; Kim, H.-S.; Seong, J.-H.; Lee, Y.-G.; Kim, D.-S.; Chung, H.-S.; Jang, S.-H. Analysis of total phenol, flavonoid content and antioxidant activity of various extraction solvents extracts from onion (Allium cepa L.) peels. J. Korean Appl. Sci. Technol. 2015, 32, 418–426. [Google Scholar] [CrossRef]
- Assefa, A.D.; Jeong, Y.-J.; Kim, D.-J.; Jeon, Y.-A.; Lee, J.-R.; Ko, H.-C.; Baek, H.-J.; Sung, J.-S. Assessing phenolic content and antioxidant potential diversity in Allium plants using multivariate data analysis. Hortic. Environ. Biotechnol. 2018, 59, 759–773. [Google Scholar] [CrossRef]
- Jemia, M.B.; Tundis, R.; Maggio, A.; Rosselli, S.; Senatore, F.; Menichini, F.; Bruno, M.; Kchouk, M.; Loizzo, M.R. NMR-based quantification of rosmarinic and carnosic acids, GC–MS profile and bioactivity relevant to neurodegenerative disorders of Rosmarinus officinalis L. extracts. J. Funct. Foods 2013, 5, 1873–1882. [Google Scholar] [CrossRef]
- Santas, J.; Carbo, R.; Gordon, M.; Almajano, M. Comparison of the antioxidant activity of two Spanish onion varieties. Food Chem. 2008, 107, 1210–1216. [Google Scholar] [CrossRef]
- Lu, X.; Wang, J.; Al-Qadiri, H.M.; Ross, C.F.; Powers, J.R.; Tang, J.; Rasco, B.A. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 2011, 129, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Chomchan, R.; Puttarak, P.; Brantner, A.; Siripongvutikorn, S. Selenium-rich ricegrass juice improves antioxidant properties and nitric oxide inhibition in macrophage cells. Antioxidants 2018, 7, 57. [Google Scholar] [CrossRef]
- Rendra, E.; Riabov, V.; Mossel, D.M.; Sevastyanova, T.; Harmsen, M.C.; Kzhyshkowska, J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 2019, 224, 242–253. [Google Scholar] [CrossRef]
- Qiao, S.; Li, W.; Tsubouchi, R.; Haneda, M.; Murakami, K.; Takeuchi, F.; Nisimoto, Y.; Yoshino, M. Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264. 7 macrophages. Free Radic. Res. 2005, 39, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Hu, S.; Su, Z.; Wang, Q.; Meng, G.; Guo, T.; Zhang, J.; Gao, P. Myricetin attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Future Med. Chem. 2018, 10, 2253–2264. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Diao, P.; Shu, X.; Li, L.; Xiong, L. Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-induced RAW264. 7 cells: In vitro assessment and a theoretical model. BioMed Res. Int. 2019, 2019, 7039802. [Google Scholar] [CrossRef] [PubMed]
Resins | SP850 | XAD16N | XAD7HP | XAD2 |
---|---|---|---|---|
Physicochemical properties | ||||
Material | Styrene-divinylbenzene | Styrene-divinylbenzene | Acrylic | Styrene-divinylbenzene |
Polarity | Non-polar | Non-polar | Medium polarity | Non-polar |
Porosity (mL/g) | <1.2 | <0.55 | 0.5 | <0.65 |
Particle diameter (mm) | 0.25–0.85 | 0.56–0.71 | 0.56–0.71 | 0.25–0.84 |
Surface area (m2/g) | <1000 | 800 | 380 | <300 |
Average pore size (Å) | 38 | 200 | 300–400 | 90 |
Resins | SP850 | XAD16N | XAD7HP | XAD2 |
---|---|---|---|---|
Adsorption/desorption/recovery properties | ||||
Adsorption ratio (%) | 82.39 ± 0.95 a | 82.15 ± 0.24 a | 81.34 ± 0.61 a | 76.20 ± 0.24 b |
Desorption ratio (%) | 73.16 ± 1.18 ab | 72.34 ± 1.75 ab | 78.54 ± 1.35 a | 65.69 ± 7.8 b |
Recovery ratio (%) | 64.49 ± 0.53 b | 62.75 ± 0.43 c | 68.86 ± 0.9 a | 58.31 ± 1.41 d |
Rosmarinic Acid (mg/g) | Myricetin (mg/g) | Quercetin (mg/g) | TPC (mg GAE/g) | |
---|---|---|---|---|
CE | 54.26 ± 0.3 | 10.44 ± 0.31 | 16.4 ± 0.48 | 38.65 ± 1.50 |
MRE | 402.76 ± 15.1 | 69.88 ± 6.83 | 112.85 ± 2.46 | 188.52 ± 1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliya, K.; Cho, H.-S.; Olawuyi, I.F.; Park, J.-H.; Nam, J.-O.; Lee, W.-Y. Macroporous Resin Recovery of Antioxidant Polyphenol Compounds from Red Onion (Allium cepa L.) Peel. Antioxidants 2025, 14, 145. https://doi.org/10.3390/antiox14020145
Aliya K, Cho H-S, Olawuyi IF, Park J-H, Nam J-O, Lee W-Y. Macroporous Resin Recovery of Antioxidant Polyphenol Compounds from Red Onion (Allium cepa L.) Peel. Antioxidants. 2025; 14(2):145. https://doi.org/10.3390/antiox14020145
Chicago/Turabian StyleAliya, Khanafina, Ha-Seong Cho, Ibukunoluwa Fola Olawuyi, Ju-Hwi Park, Ju-Ock Nam, and Won-Young Lee. 2025. "Macroporous Resin Recovery of Antioxidant Polyphenol Compounds from Red Onion (Allium cepa L.) Peel" Antioxidants 14, no. 2: 145. https://doi.org/10.3390/antiox14020145
APA StyleAliya, K., Cho, H.-S., Olawuyi, I. F., Park, J.-H., Nam, J.-O., & Lee, W.-Y. (2025). Macroporous Resin Recovery of Antioxidant Polyphenol Compounds from Red Onion (Allium cepa L.) Peel. Antioxidants, 14(2), 145. https://doi.org/10.3390/antiox14020145