Do Lifestyle Interventions Mitigate the Oxidative Damage and Inflammation Induced by Obesity in the Testis?
Abstract
:1. Introduction
2. How Does Obesity Fuel Systemic Oxidative Stress?
2.1. The Co-Dependence Between Inflammation and Oxidative Stress
2.2. Altered Adipokine Levels Cause Oxidative Stress in Individuals with Obesity
2.3. Oxidative Phosphorylation, Fatty Acid Oxidation and Pentose Phosphate Pathway in Obesity-Induced Systemic Oxidative Stress
3. Oxidative Stress Impairs Spermatogenesis and Steroidogenesis
4. Improving Testicular Health by Reducing Oxidative Damage Through Lifestyle Choices
4.1. Nutritional Approaches Through Caloric Restriction
4.2. Physical Exercise
5. Long-Term Consequences of Childhood Obesity in Adult Reproductive Health and Strategies to Reverse Them
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowman-Busato, J.; Schreurs, L.; Halford, J.C.; Yumuk, V.; O’Malley, G.; Woodward, E.; De Cock, D.; Baker, J.L. Providing a common language for obesity: The European Association for the Study of Obesity obesity taxonomy. Int. J. Obes. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Statistics 2024: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Carrageta, D.F.; Oliveira, P.F.; Alves, M.G.; Monteiro, M.P. Obesity and male hypogonadism: Tales of a vicious cycle. Obes. Rev. 2019, 20, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Wu, W.; Tang, Q.; Qiao, S.; Chen, Y.; Chen, M.; Teng, M.; Lu, C.; Ding, H.; Xia, Y. The impact of BMI on sperm parameters and the metabolite changes of seminal plasma concomitantly. Oncotarget 2017, 8, 48619. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, A.O.; Wilde, N.; Gibson, M.; Parks, A.; Carrell, D.T.; Meikle, A.W. Male obesity and alteration in sperm parameters. Fertil. Steril. 2008, 90, 2222–2225. [Google Scholar] [CrossRef]
- Darand, M.; Salimi, Z.; Ghorbani, M.; Sadeghi, N.; Babaie, S.; Hosseinzadeh, M. Obesity is associated with quality of sperm parameters in men with infertility: A cross-sectional study. Reprod. Health 2023, 20, 134. [Google Scholar] [CrossRef]
- Aggerholm, A.S.; Thulstrup, A.M.; Toft, G.; Ramlau-Hansen, C.H.; Bonde, J.P. Is overweight a risk factor for reduced semen quality and altered serum sex hormone profile? Fertil. Steril. 2008, 90, 619–626. [Google Scholar] [CrossRef]
- Martini, A.C.; Tissera, A.; Estofán, D.; Molina, R.I.; Mangeaud, A.; de Cuneo, M.F.; Ruiz, R.D. Overweight and seminal quality: A study of 794 patients. Fertil. Steril. 2010, 94, 1739–1743. [Google Scholar] [CrossRef]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef]
- Codoñer-Franch, P.; Tavárez-Alonso, S.; Murria-Estal, R.; Megías-Vericat, J.; Tortajada-Girbés, M.; Alonso-Iglesias, E. Nitric oxide production is increased in severely obese children and related to markers of oxidative stress and inflammation. Atherosclerosis 2011, 215, 475–480. [Google Scholar] [CrossRef]
- Erdemir, F.; Atilgan, D.; Markoc, F.; Boztepe, O.; Suha-Parlaktas, B.; Sahin, S. The effect of diet induced obesity on testicular tissue and serum oxidative stress parameters. Actas Urol. Esp. 2012, 36, 153–159. [Google Scholar] [CrossRef]
- Mu, Y.; Yin, T.-L.; Zhang, Y.; Yang, J.; Wu, Y.-T. Diet-induced obesity impairs spermatogenesis: The critical role of NLRP3 in Sertoli cells. Inflamm. Regen. 2022, 42, 24. [Google Scholar] [CrossRef] [PubMed]
- Nasr, N.; Kahilo, K.A.; Sadek, K.M.; Abouzed, T.; Shawky, H.; Elsawy, H.; Shukry, M.; Dorghamm, D.A. Assessment the Relationship Between High-Fat Diet Feeding and Male Infertility in Albino Rats. Egypt. J. Vet. Sci. 2023, 54, 139–148. [Google Scholar]
- Wagner, H.; Cheng, J.W.; Ko, E.Y. Role of reactive oxygen species in male infertility: An updated review of literature. Arab J. Urol. 2018, 16, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Hedger, M.P.; Meinhardt, A. Cytokines and the immune-testicular axis. J. Reprod. Immunol. 2003, 58, 1–26. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Nogueira-Ferreira, R.; Amado, F.; Alves, M.G.; Ferreira, R.; Oliveira, P.F. Exploring the role of oxidative stress in sperm motility: A proteomic network approach. Antioxid. Redox Signal. 2022, 37, 501–520. [Google Scholar] [CrossRef]
- Griswold, M.D. 50 years of spermatogenesis: Sertoli cells and their interactions with germ cells. Biol. Reprod. 2018, 99, 87–100. [Google Scholar] [CrossRef]
- Flück, C.E.; Pandey, A.V. Testicular Steroidogenesis. In Endocrinology of the Testis and Male Reproduction; Simoni, M., Huhtaniemi, I.T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 343–371. [Google Scholar] [CrossRef]
- Chen, S.-R.; Liu, Y.-X. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reprod. Rev. 2015, 149, R159–R167. [Google Scholar] [CrossRef]
- Mruk, D.D.; Cheng, C.Y. The mammalian blood-testis barrier: Its biology and regulation. Endocr. Rev. 2015, 36, 564–591. [Google Scholar] [CrossRef]
- Alves, M.G.; Rato, L.; Carvalho, R.A.; Moreira, P.I.; Socorro, S.; Oliveira, P.F. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell. Mol. Life Sci. 2013, 70, 777–793. [Google Scholar] [CrossRef]
- Cardoso, A.; Alves, M.; Mathur, P.; Oliveira, P.; Cavaco, J.; Rato, L. Obesogens and male fertility. Obes. Rev. 2017, 18, 109–125. [Google Scholar] [CrossRef]
- Moreira, S.; Pereira, S.C.; Seco-Rovira, V.; Oliveira, P.F.; Alves, M.G.; Pereira, M.d.L. Pesticides and male fertility: A dangerous crosstalk. Metabolites 2021, 11, 799. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Andrade, D.; Guerra-Carvalho, B.; Carrageta, D.F.; Bernardino, R.L.; Braga, P.C.; Oliveira, P.F.; de Lourdes Pereira, M.; Alves, M.G. Exposure to toxicologically relevant atrazine concentrations impair the glycolytic function of mouse Sertoli cells through the downregulation of lactate dehydrogenase. Toxicol. Appl. Pharmacol. 2024, 486, 116929. [Google Scholar] [CrossRef] [PubMed]
- Dostalova, P.; Zatecka, E.; Dvorakova-Hortova, K. Of oestrogens and sperm: A review of the roles of oestrogens and oestrogen receptors in male reproduction. Int. J. Mol. Sci. 2017, 18, 904. [Google Scholar] [CrossRef]
- Casals-Casas, C.; Desvergne, B. Endocrine disruptors: From endocrine to metabolic disruption. Annu. Rev. Physiol. 2011, 73, 135–162. [Google Scholar] [CrossRef]
- Crisóstomo, L.; Rato, L.; Jarak, I.; Silva, B.M.; Raposo, J.F.; Batterham, R.L.; Oliveira, P.F.; Alves, M.G. A switch from high-fat to normal diet does not restore sperm quality but prevents metabolic syndrome. Reproduction 2019, 158, 377–387. [Google Scholar] [CrossRef]
- Yi, X.; Tang, D.; Cao, S.; Li, T.; Gao, H.; Ma, T.; Yao, T.; Li, J.; Chang, B. Effect of different exercise loads on testicular oxidative stress and reproductive function in obese male mice. Oxid. Med. Cell. Longev. 2020, 2020, 3071658. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A chronic low-grade inflammation and its markers. Cureus 2022, 14, e22711. [Google Scholar]
- Makki, K.; Froguel, P.; Wolowczuk, I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. Int. Sch. Res. Not. 2013, 2013, 139239. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Gavrilova, O.; Pack, S.; Jou, W.; Mullen, S.; Sumner, A.E.; Cushman, S.W.; Periwal, V. Hypertrophy and/or hyperplasia: Dynamics of adipose tissue growth. PLoS Comp. Biol. 2009, 5, e1000324. [Google Scholar] [CrossRef] [PubMed]
- Joe, A.W.; Yi, L.; Even, Y.; Vogl, A.W.; Rossi, F.M. Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 2009, 27, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Nwadozi, E.; Ng, A.; Strömberg, A.; Liu, H.-Y.; Olsson, K.; Gustafsson, T.; Haas, T.L. Leptin is a physiological regulator of skeletal muscle angiogenesis and is locally produced by PDGFRα and PDGFRβ expressing perivascular cells. Angiogenesis 2019, 22, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef]
- Trayhurn, P.; Beattie, J.H. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 2001, 60, 329–339. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and obesity: Role and clinical implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001, 7, 941–946. [Google Scholar] [CrossRef]
- Berg, A.H.; Combs, T.P.; Du, X.; Brownlee, M.; Scherer, P.E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 2001, 7, 947–953. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kamon, J.; Minokoshi, Y.A.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002, 8, 1288–1295. [Google Scholar] [CrossRef]
- Kumada, M.; Kihara, S.; Ouchi, N.; Kobayashi, H.; Okamoto, Y.; Ohashi, K.; Maeda, K.; Nagaretani, H.; Kishida, K.; Maeda, N. Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 2004, 109, 2046–2049. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, K.; Parker, J.L.; Ouchi, N.; Higuchi, A.; Vita, J.A.; Gokce, N.; Pedersen, A.A.; Kalthoff, C.; Tullin, S.; Sams, A. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 2010, 285, 6153–6160. [Google Scholar] [CrossRef] [PubMed]
- Van Stijn, C.M.; Kim, J.; Lusis, A.J.; Barish, G.D.; Tangirala, R.K. Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response. FASEB J. 2015, 29, 636–649. [Google Scholar] [CrossRef] [PubMed]
- Pretz, D.; Le Foll, C.; Rizwan, M.Z.; Lutz, T.A.; Tups, A. Hyperleptinemia as a contributing factor for the impairment of glucose intolerance in obesity. FASEB J. 2021, 35, e21216. [Google Scholar] [CrossRef]
- Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.-I.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 1999, 257, 79–83. [Google Scholar] [CrossRef]
- Scarpace, P.; Matheny, M.; Tümer, N.; Cheng, K.; Zhang, Y. Leptin resistance exacerbates diet-induced obesity and is associated with diminished maximal leptin signalling capacity in rats. Diabetologia 2005, 48, 1075–1083. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Portincasa, P.; Colina, I.; Gómez-Ambrosi, J. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in the metabolic syndrome. Sci. Rep. 2017, 7, 6619. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, M.; Zhang, J.; Chen, H.; Dong, L.Q.; Liu, F. DsbA-L alleviates endoplasmic reticulum stress–induced adiponectin downregulation. Diabetes 2010, 59, 2809–2816. [Google Scholar] [CrossRef]
- Tripathi, Y.B.; Pandey, V. Obesity and endoplasmic reticulum (ER) stresses. Front. Immunol. 2012, 3, 240. [Google Scholar] [CrossRef]
- Kabon, B.; Nagele, A.; Reddy, D.; Eagon, C.; Fleshman, J.W.; Sessler, D.I.; Kurz, A. Obesity decreases perioperative tissue oxygenation. J. Am. Soc. Anesthesiol. 2004, 100, 274–280. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, S.; Hu, H.; Zhou, Y.; Yan, Y.; Zong, H.; Wang, Y.; He, H.; Oh, Y.; Liu, C. Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response. Biochem. Biophys. Res. Commun. 2017, 493, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Zhang, Y.; Zhao, J.; Zhou, L.; Li, M. Endoplasmic reticulum stress: Bridging inflammation and obesity-associated adipose tissue. Front. Immunol. 2024, 15, 1381227. [Google Scholar] [CrossRef] [PubMed]
- Wueest, S.; Seelig, E.; Timper, K.; Lyngbaek, M.P.; Karstoft, K.; Donath, M.Y.; Ellingsgaard, H.; Konrad, D. IL-6 receptor blockade increases circulating adiponectin levels in people with obesity: An explanatory analysis. Metabolites 2021, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Hosogai, N.; Fukuhara, A.; Oshima, K.; Miyata, Y.; Tanaka, S.; Segawa, K.; Furukawa, S.; Tochino, Y.; Komuro, R.; Matsuda, M. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007, 56, 901–911. [Google Scholar] [CrossRef]
- Chen, B.; Lam, K.S.; Wang, Y.; Wu, D.; Lam, M.C.; Shen, J.; Wong, L.; Hoo, R.L.; Zhang, J.; Xu, A. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor-1 independent of reactive oxygen species in adipocytes. Biochem. Biophys. Res. Commun. 2006, 341, 549–556. [Google Scholar] [CrossRef]
- Kim, C.; Park, H.; Kawada, T.; Kim, J.H.; Lim, D.; Hubbard, N.; Kwon, B.; Erickson, K.; Yu, R. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int. J. Obes. 2006, 30, 1347–1355. [Google Scholar] [CrossRef]
- Kamei, N.; Tobe, K.; Suzuki, R.; Ohsugi, M.; Watanabe, T.; Kubota, N.; Ohtsuka-Kowatari, N.; Kumagai, K.; Sakamoto, K.; Kobayashi, M. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 2006, 281, 26602–26614. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Liu, Z.; Liu, Y.; Luo, M.; Chen, N.; Deng, X.; Luo, Y.; He, J.; Zhang, L. PAI-1 exacerbates white adipose tissue dysfunction and metabolic dysregulation in high fat diet-induced obesity. Front. Pharmacol. 2018, 9, 1087. [Google Scholar] [CrossRef]
- Wu, D.; Eeda, V.; Maria, Z.; Rawal, K.; Herlea-Pana, O.; Babu Undi, R.; Lim, H.-Y.; Wang, W. Targeting IRE1α improves insulin sensitivity and thermogenesis and suppresses metabolically active adipose tissue macrophages in obesity. bioRxiv 2024. [Google Scholar] [CrossRef]
- Le Magueresse-Battistoni, B.; Pernod, G.; Sigillo, F.; Kolodié, L.; Benahmed, M. Plasminogen activator inhibitor-1 is expressed in cultured rat Sertoli cells. Biol. Reprod. 1998, 59, 591–598. [Google Scholar] [CrossRef]
- Le Magueresse-Battistoni, B.; Pernod, G.; Kolodié, L.; Morera, A.-M.; Benahmed, M. Tumor necrosis factor-α regulates plasminogen activator inhibitor-1 in rat testicular peritubular cells. Endocrinology 1997, 138, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Niedowicz, D.M.; Daleke, D.L. The role of oxidative stress in diabetic complications. Cell Biochem. Biophys. 2005, 43, 289–330. [Google Scholar] [CrossRef] [PubMed]
- Anrather, J.; Racchumi, G.; Iadecola, C. NF-κB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J. Biol. Chem. 2006, 281, 5657–5667. [Google Scholar] [CrossRef] [PubMed]
- Hersek, İ.; Köroğlu, M.K.; Coskunlu, B.; Ertaş, B.; Şener, G.; Ercan, F. Apocynin ameliorates testicular toxicity in high-fat diet-fed rats by regulating oxidative stress. Clin. Exp. Health Sci. 2023, 13, 75–83. [Google Scholar] [CrossRef]
- Noureldein, M.; Nawfal, R.; Bitar, S.; Maxwell, S.S.; Khurana, I.; Kassouf, H.K.; Khuri, F.R.; El-Osta, A.; Eid, A.A. Intestinal microbiota regulates diabetes and cancer progression by IL-1β and NOX4 dependent signaling cascades. Cell. Mol. Life Sci. 2022, 79, 502. [Google Scholar] [CrossRef]
- Muñoz, M.; López-Oliva, M.E.; Rodríguez, C.; Martínez, M.P.; Sáenz-Medina, J.; Sánchez, A.; Climent, B.; Benedito, S.; García-Sacristán, A.; Rivera, L. Differential contribution of Nox1, Nox2 and Nox4 to kidney vascular oxidative stress and endothelial dysfunction in obesity. Redox Biol. 2020, 28, 101330. [Google Scholar] [CrossRef]
- Fortuno, A.; Bidegain, J.; Baltanas, A.; Moreno, M.U.; Montero, L.; Landecho, M.F.; Beloqui, O.; Diez, J.; Zalba, G. Is leptin involved in phagocytic NADPH oxidase overactivity in obesity? Potential clinical implications. J. Hypertens. 2010, 28, 1944–1950. [Google Scholar] [CrossRef]
- Jiang, F.; Lim, H.K.; Morris, M.J.; Prior, L.; Velkoska, E.; Wu, X.; Dusting, G.J. Systemic upregulation of NADPH oxidase in diet-induced obesity in rats. Redox Rep. 2011, 16, 223–229. [Google Scholar] [CrossRef]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2017, 114, 1752–1761. [Google Scholar] [CrossRef]
- Krause, K.-H. Tissue distribution and putative physiological function of NOX family NADPH oxidases. Jpn. J. Infect. Dis. 2004, 57, S28–S29. [Google Scholar]
- Sabeur, K.; Ball, B. Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction 2007, 134, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Lalrinzuali, S.; Khushboo, M.; Dinata, R.; Bhanushree, B.; Nisa, N.; Bidanchi, R.M.; Laskar, S.-A.; Manikandan, B.; Abinash, G.; Pori, B. Long-term consumption of fermented pork fat-based diets differing in calorie, fat content, and fatty acid levels mediates oxidative stress, inflammation, redox imbalance, germ cell apoptosis, disruption of steroidogenesis, and testicular dysfunction in Wistar rats. Environ. Sci. Pollut. Res. 2023, 30, 52446–52471. [Google Scholar]
- Takamura, T.; Misu, H.; Matsuzawa-Nagata, N.; Sakurai, M.; Ota, T.; Shimizu, A.; Kurita, S.; Takeshita, Y.; Ando, H.; Honda, M. Obesity upregulates genes involved in oxidative phosphorylation in livers of diabetic patients. Obesity 2008, 16, 2601–2609. [Google Scholar] [CrossRef]
- Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Grüning, N.M.; Krüger, A.; Tauqeer Alam, M. The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 2015, 90, 927–963. [Google Scholar] [CrossRef]
- Fransen, M.; Lismont, C.; Walton, P. The peroxisome-mitochondria connection: How and why? Int. J. Mol. Sci. 2017, 18, 1126. [Google Scholar] [CrossRef]
- Ding, L.; Sun, W.; Balaz, M.; He, A.; Klug, M.; Wieland, S.; Caiazzo, R.; Raverdy, V.; Pattou, F.; Lefebvre, P. Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nat. Metab. 2021, 3, 1648–1661. [Google Scholar] [CrossRef]
- Kleiboeker, B.; Lodhi, I.J. Peroxisomal regulation of energy homeostasis: Effect on obesity and related metabolic disorders. Mol. Metab. 2022, 65, 101577. [Google Scholar] [CrossRef]
- Buchner, D.A.; Yazbek, S.N.; Solinas, P.; Burrage, L.C.; Morgan, M.G.; Hoppel, C.L.; Nadeau, J.H. Increased mitochondrial oxidative phosphorylation in the liver is associated with obesity and insulin resistance. Obesity 2011, 19, 917–924. [Google Scholar] [CrossRef]
- Pospisilik, J.A.; Knauf, C.; Joza, N.; Benit, P.; Orthofer, M.; Cani, P.D.; Ebersberger, I.; Nakashima, T.; Sarao, R.; Neely, G. Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 2007, 131, 476–491. [Google Scholar] [CrossRef]
- Suleiman, J.B.; Nna, V.U.; Zakaria, Z.; Othman, Z.A.; Bakar, A.B.A.; Mohamed, M. Obesity-induced testicular oxidative stress, inflammation and apoptosis: Protective and therapeutic effects of orlistat. Reprod. Toxicol. 2020, 95, 113–122. [Google Scholar] [CrossRef]
- Leisegang, K.; Henkel, R. The in vitro modulation of steroidogenesis by inflammatory cytokines and insulin in TM3 Leydig cells. Reprod. Biol. Endocrinol. 2018, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Sadasivam, M.; Ramatchandirin, B.; Balakrishnan, S.; Prahalathan, C. TNF-α-mediated suppression of Leydig cell steroidogenesis involves DAX-1. Inflamm. Res. 2015, 64, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.Y.; Park, J.H.; Ahn, R.S.; Im, S.Y.; Choi, H.-S.; Soh, J.; Mellon, S.H.; Lee, K. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol. Cell. Biol. 2004, 24, 2593–2604. [Google Scholar] [CrossRef] [PubMed]
- Song, K.-H.; Park, Y.-Y.; Park, K.C.; Hong, C.Y.; Park, J.H.; Shong, M.; Lee, K.; Choi, H.-S. The atypical orphan nuclear receptor DAX-1 interacts with orphan nuclear receptor Nur77 and represses its transactivation. Mol. Endocrinol. 2004, 18, 1929–1940. [Google Scholar] [CrossRef]
- Crawford, P.A.; Dorn, C.; Sadovsky, Y.; Milbrandt, J. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol. Cell. Biol. 1998, 18, 2949–2956. [Google Scholar] [CrossRef]
- Martin, L.J.; Boucher, N.; Brousseau, C.; Tremblay, J.J. The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol. Endocrinol. 2008, 22, 2021–2037. [Google Scholar] [CrossRef]
- Song, K.-H.; Park, J.-I.; Lee, M.-O.; Soh, J.; Lee, K.; Choi, H.-S. LH induces orphan nuclear receptor Nur77 gene expression in testicular Leydig cells. Endocrinology 2001, 142, 5116–5123. [Google Scholar] [CrossRef]
- Jeyasuria, P.; Ikeda, Y.; Jamin, S.P.; Zhao, L.; De Rooij, D.G.; Themmen, A.P.; Behringer, R.R.; Parker, K.L. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function. Mol. Endocrinol. 2004, 18, 1610–1619. [Google Scholar] [CrossRef]
- Haider, S.G. Cell biology of Leydig cells in the testis. Int. Rev. Cytol. 2004, 233, 181–241. [Google Scholar]
- Martin, L.J.; Tremblay, J.J. The nuclear receptors NUR77 and SF1 play additive roles with c-JUN through distinct elements on the mouse Star promoter. J. Mol. Endocrinol. 2009, 42, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Mellon, S.H. Multiple orphan nuclear receptors converge to regulate rat P450c17 gene transcription: Novel mechanisms for orphan nuclear receptor action. Mol. Endocrinol. 1997, 11, 891–904. [Google Scholar] [CrossRef] [PubMed]
- Dubé, C.; Bergeron, F.; Vaillant, M.-J.; Robert, N.M.; Brousseau, C.; Tremblay, J.J. The nuclear receptors SF1 and LRH1 are expressed in endometrial cancer cells and regulate steroidogenic gene transcription by cooperating with AP-1 factors. Cancer Lett. 2009, 275, 127–138. [Google Scholar] [CrossRef]
- Martin, L.J.; Tremblay, J.J. The human 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase type 2 promoter is a novel target for the immediate early orphan nuclear receptor Nur77 in steroidogenic cells. Endocrinology 2005, 146, 861–869. [Google Scholar] [CrossRef]
- Martin, L.J.; Taniguchi, H.; Robert, N.M.; Simard, J.; Tremblay, J.J.; Viger, R.S. GATA factors and the nuclear receptors, steroidogenic factor 1/liver receptor homolog 1, are key mutual partners in the regulation of the human 3β-hydroxysteroid dehydrogenase type 2 promoter. Mol. Endocrinol. 2005, 19, 2358–2370. [Google Scholar] [CrossRef]
- Karpova, T.; Ravichandiran, K.; Insisienmay, L.; Rice, D.; Agbor, V.; Heckert, L.L. Steroidogenic factor 1 differentially regulates fetal and adult leydig cell development in male mice. Biol. Reprod. 2015, 93, 83. [Google Scholar] [CrossRef]
- Rato, L.; Alves, M.; Dias, T.; Lopes, G.; Cavaco, J.; Socorro, S.; Oliveira, P. High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology 2013, 1, 495–504. [Google Scholar] [CrossRef]
- Rato, L.; Alves, M.; Dias, T.; Cavaco, J.; Oliveira, P.F. Testicular metabolic reprogramming in neonatal streptozotocin-induced type 2 diabetic rats impairs glycolytic flux and promotes glycogen synthesis. J. Diabetes Res. 2015, 2015, 973142. [Google Scholar] [CrossRef]
- Roth, M.Y.; Amory, J.K.; Page, S.T. Treatment of male infertility secondary to morbid obesity. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 415–419. [Google Scholar] [CrossRef]
- Santi, D.; Lotti, F.; Sparano, C.; Rastrelli, G.; Isidori, A.M.; Pivonello, R.; Barbonetti, A.; Salonia, A.; Minhas, S.; Krausz, C. Does an increase in adipose tissue ‘weight’ affect male fertility? A systematic review and meta-analysis based on semen analysis performed using the WHO 2010 criteria. Andrology 2024, 12, 123–136. [Google Scholar] [CrossRef]
- Olasore, H.S.A.; Oyedeji, T.A.; Olawale, M.O.; Ogundele, O.I.; Faleti, J.O.-O. Relationship between testosterone-estradiol ratio and some anthropometric and metabolic parameters among Nigerian men. Metab. Open 2023, 18, 100249. [Google Scholar] [CrossRef] [PubMed]
- Polari, L.; Yatkin, E.; Chacón, M.M.; Ahotupa, M.; Smeds, A.; Strauss, L.; Zhang, F.; Poutanen, M.; Saarinen, N.; Mäkelä, S. Weight gain and inflammation regulate aromatase expression in male adipose tissue, as evidenced by reporter gene activity. Mol. Cell. Endocrinol. 2015, 412, 123–130. [Google Scholar] [CrossRef]
- Wang, F.; Vihma, V.; Soronen, J.; Turpeinen, U.; Hämäläinen, E.; Savolainen-Peltonen, H.; Mikkola, T.S.; Naukkarinen, J.; Pietiläinen, K.H.; Jauhiainen, M. 17β-Estradiol and estradiol fatty acyl esters and estrogen-converting enzyme expression in adipose tissue in obese men and women. J. Clin. Endocrinol. Metab. 2013, 98, 4923–4931. [Google Scholar] [CrossRef] [PubMed]
- Vega, A.; Martinot, E.; Baptissart, M.; De Haze, A.; Saru, J.-P.; Baron, S.; Caira, F.; Schoonjans, K.; Lobaccaro, J.-M.A.; Volle, D.H. Identification of the link between the hypothalamo-pituitary axis and the testicular orphan nuclear receptor NR0B2 in adult male mice. Endocrinology 2015, 156, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Pelusi, C.; Fanelli, F.; Baccini, M.; Triggiani, V.; Bartolomeo, N.; Carbone, M.D.; De Pergola, G.; Di Dalmazi, G.; Pagotto, U.; Pasquali, R. Effect of clomiphene citrate treatment on the Sertoli cells of dysmetabolic obese men with low testosterone levels. Clin. Endocrinol. 2020, 92, 38–45. [Google Scholar] [CrossRef]
- Lardone, M.; Argandoña, F.; Flórez, M.; Parada-Bustamante, A.; Ebensperger, M.; Palma, C.; Piottante, A.; Castro, A. Overexpression of CYP19A1 aromatase in Leydig cells is associated with steroidogenic dysfunction in subjects with S ertoli cell-only syndrome. Andrology 2016, 5, 41–48. [Google Scholar] [CrossRef]
- Zhao, J.; Zhai, L.; Liu, Z.; Wu, S.; Xu, L. Leptin level and oxidative stress contribute to obesity-induced low testosterone in murine testicular tissue. Oxid. Med. Cell. Longev. 2014, 2014, 190945. [Google Scholar] [CrossRef]
- Tong, M.H.; Song, W.-C. Estrogen sulfotransferase: Discrete and androgen-dependent expression in the male reproductive tract and demonstration of an in vivo function in the mouse epididymis. Endocrinology 2002, 143, 3144–3151. [Google Scholar] [CrossRef]
- Garbacz, W.G.; Jiang, M.; Xu, M.; Yamauchi, J.; Dong, H.H.; Xie, W. Sex-and tissue-specific role of estrogen sulfotransferase in energy homeostasis and insulin sensitivity. Endocrinology 2017, 158, 4093–4104. [Google Scholar] [CrossRef]
- Nazmeen, A.; Chen, G.; Maiti, S. Dependence between estrogen sulfotransferase (SULT1E1) and nuclear transcription factor Nrf-2 regulations via oxidative stress in breast cancer. Mol. Biol. Rep. 2020, 47, 4691–4698. [Google Scholar] [CrossRef]
- Ahima, R.S.; Stanley, T.L.; Khor, V.K.; Zanni, M.V.; Grinspoon, S.K. Estrogen sulfotransferase is expressed in subcutaneous adipose tissue of obese humans in association with TNF-α and SOCS3. J. Clin. Endocrinol. Metab. 2011, 96, E1153–E1158. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; He, J.; Shi, X.; Stefanovic-Racic, M.; Xu, M.; O’Doherty, R.M.; Garcia-Ocana, A.; Xie, W. Sex-specific effect of estrogen sulfotransferase on mouse models of type 2 diabetes. Diabetes 2012, 61, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Del Punta, K.; Charreau, E.H.; Pignataro, O.P. Nitric oxide inhibits Leydig cell steroidogenesis. Endocrinology 1996, 137, 5337–5343. [Google Scholar] [CrossRef]
- Balercia, G.; Moretti, S.; Vignini, A.; Magagnini, M.; Mantero, F.; Boscaro, M.; Ricciardo-Lamonica, G.; Mazzanti, L. Role of nitric oxide concentrations on human sperm motility. J. Androl. 2004, 25, 245–249. [Google Scholar] [CrossRef]
- Uribe, P.; Boguen, R.; Treulen, F.; Sanchez, R.; Villegas, J. Peroxynitrite-mediated nitrosative stress decreases motility and mitochondrial membrane potential in human spermatozoa. Mol. Hum. Reprod.. 2015, 21, 237–243. [Google Scholar] [CrossRef]
- Choubey, M.; Ranjan, A.; Bora, P.S.; Baltazar, F.; Krishna, A. Direct actions of adiponectin on changes in reproductive, metabolic, and anti-oxidative enzymes status in the testis of adult mice. Gen. Comp. Endocrinol. 2019, 279, 1–11. [Google Scholar] [CrossRef]
- Choubey, M.; Ranjan, A.; Bora, P.S.; Krishna, A. Protective role of adiponectin against testicular impairment in high-fat diet/streptozotocin-induced type 2 diabetic mice. Biochimie 2020, 168, 41–52. [Google Scholar] [CrossRef]
- Bjursell, M.; Ahnmark, A.; Bohlooly-Y, M.; William-Olsson, L.; Rhedin, M.; Peng, X.-R.; Ploj, K.; Gerdin, A.-K.; Arnerup, G.; Elmgren, A. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes 2007, 56, 583–593. [Google Scholar] [CrossRef]
- Tu, W.; Wang, H.; Li, S.; Liu, Q.; Sha, H. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis. 2019, 10, 637. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukherjee, S. Testicular germ cell apoptosis and sperm defects in mice upon long-term high fat diet feeding. J. Cell. Physiol. 2018, 233, 6896–6909. [Google Scholar] [CrossRef]
- Chung, J.-Y.; Chen, H.; Zirkin, B. Sirt1 and Nrf2: Regulation of Leydig cell oxidant/antioxidant intracellular environment and steroid formation. Biol. Reprod. 2021, 105, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Mai, Z.; Zhou, Y.; Gao, X.; Yu, B. Low NRF2 mRNA expression in spermatozoa from men with low sperm motility. Tohoku J. Exp. Med. 2012, 228, 259–266. [Google Scholar] [CrossRef]
- Kumar, T.R.; Doreswamy, K.; Shrilatha, B. Oxidative stress associated DNA damage in testis of mice: Induction of abnormal sperms and effects on fertility. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2002, 513, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sharma, R.K.; Sikka, S.C.; Thomas, A.J., Jr.; Falcone, T.; Agarwal, A. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil. Steril. 2003, 80, 531–535. [Google Scholar] [CrossRef]
- Carrageta, D.F.; Guerra-Carvalho, B.; Sousa, M.; Barros, A.; Oliveira, P.F.; Monteiro, M.P.; Alves, M.G. Mitochondrial activation and reactive oxygen-species overproduction during sperm capacitation are independent of glucose stimuli. Antioxidants 2020, 9, 750. [Google Scholar] [CrossRef] [PubMed]
- Tunc, O.; Bakos, H.W.; Tremellen, K. Impact of body mass index on seminal oxidative stress. Andrologia 2011, 43, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Paasch, U.; Grunewald, S.; Agarwal, A.; Glandera, H.-J. Activation pattern of caspases in human spermatozoa. Fertil. Steril. 2004, 81, 802–809. [Google Scholar] [CrossRef]
- Moazamian, R.; Polhemus, A.; Connaughton, H.; Fraser, B.; Whiting, S.; Gharagozloo, P.; Aitken, R.J. Oxidative stress and human spermatozoa: Diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. MHR Basic Sci. Reprod. Med. 2015, 21, 502–515. [Google Scholar] [CrossRef]
- Colagar, A.H.; Karimi, F.; Jorsaraei, S.G.A. Correlation of sperm parameters with semen lipid peroxidation and total antioxidants levels in astheno-and oligoasheno-teratospermic men. Iran. Red Crescent Med. J. 2013, 15, 780. [Google Scholar]
- Meng, J.; Greenlee, A.R.; Taub, C.J.; Braun, R.E. Sertoli cell-specific deletion of the androgen receptor compromises testicular immune privilege in mice. Biol. Reprod. 2011, 85, 254–260. [Google Scholar] [CrossRef]
- O’Donnell, L.; McLachlan, R.; Wreford, N.; Robertson, D. Testosterone promotes the conversion of round spermatids between stages VII and VIII of the rat spermatogenic cycle. Endocrinology 1994, 135, 2608–2614. [Google Scholar] [CrossRef]
- Walker, W.H. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis 2011, 1, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Rato, L.; Alves, M.G.; Duarte, A.I.; Santos, M.S.; Moreira, P.I.; Cavaco, J.E.; Oliveira, P.F. Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells. Int. J. Biochem. Cell Biol. 2015, 66, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.D.; Moreira, A.C.; Sá, R.; Monteiro, M.P.; Sousa, M.; Carvalho, R.A.; Silva, B.M.; Oliveira, P.F.; Alves, M.G. Leptin modulates human Sertoli cells acetate production and glycolytic profile: A novel mechanism of obesity-induced male infertility? Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2015, 1852, 1824–1832. [Google Scholar] [CrossRef]
- Hoffmann, A.; Manjowk, G.-M.; Wagner, I.V.; Klöting, N.; Ebert, T.; Jessnitzer, B.; Lössner, U.; Stukenborg, J.-B.; Blüher, M.; Stumvoll, M. Leptin within the subphysiological to physiological range dose dependently improves male reproductive function in an obesity mouse model. Endocrinology 2016, 157, 2461–2468. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, Y.; Huang, W.; Hu, W.; Gu, J.; Chen, C.; Zhou, J.; Peng, Y.; Gong, M.; Wang, Z. Sperm motility inversely correlates with seminal leptin levels in idiopathic asthenozoospermia. Int. J. Clin. Exp. Med. 2014, 7, 3550. [Google Scholar]
- Zhang, J.; Jin, P.P.; Gong, M.; Yi, Q.T.; Zhu, R.J. Role of leptin and the leptin receptor in the pathogenesis of varicocele-induced testicular dysfunction. Mol. Med. Rep. 2018, 17, 7065–7072. [Google Scholar] [CrossRef]
- Önel, T.; Ayla, S.; Keskin, İ.; Parlayan, C.; Yiğitbaşı, T.; Kolbaşı, B.; Yelke, T.V.; Ustabaş, T.Ş. Leptin in sperm analysis can be a new indicator. Acta Histochem. 2019, 121, 43–49. [Google Scholar] [CrossRef]
- Karna, K.K.; Soni, K.K.; You, J.H.; Choi, N.Y.; Kim, H.K.; Kim, C.Y.; Lee, S.W.; Shin, Y.S.; Park, J.K. MOTILIPERM ameliorates immobilization stress-induced testicular dysfunction via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway in SD rats. Int. J. Mol. Sci. 2020, 21, 4750. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Qin, Y.; Lv, B.; Tian, Z.; Zhang, B. Effects of moderate-intensity continuous training and high-intensity interval training on testicular oxidative stress, apoptosis and m6A Methylation in obese male mice. Antioxidants 2022, 11, 1874. [Google Scholar] [CrossRef]
- Osváth, P.; Szűcs, M.; Börzsei, D.; Szabó, R.; Lesi, Z.N.; Turcsán, Z.; Veszelka, M.; Sebestyén, J.; Juhász, B.; Priksz, D. Andrological aspects of exercise: Moderate swimming protects against isoproterenol induced testis and semen abnormalities in rats. Antioxidants 2022, 11, 436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Y.; LI, B.-W.; Liu, M.-M.; Shang, F.; Liu, S.-Y.; Sheng, Y.-M.; Li, H.-W.; Xiu, R.-J. High fat diet-induced elevation of blood glucose impairs the microvascular function of testis in mice. Basic Clin. Med. 2018, 38, 213. [Google Scholar]
- Yu, W.; Zheng, H.; Lin, W.; Tajima, A.; Zhang, Y.; Zhang, X.; Zhang, H.; Wu, J.; Han, D.; Rahman, N.A. Estrogen promotes Leydig cell engulfment by macrophages in male infertility. J. Clin. Investig. 2014, 124, 2709–2721. [Google Scholar] [CrossRef]
- Li, X.; Strauss, L.; Kaatrasalo, A.; Mayerhofer, A.; Huhtaniemi, I.; Santti, R.; Mäkelä, S.; Poutanen, M. Transgenic mice expressing p450 aromatase as a model for male infertility associated with chronic inflammation in the testis. Endocrinology 2006, 147, 1271–1277. [Google Scholar] [CrossRef]
- Grinspon, R.P.; Bergadá, I.; Rey, R.A. Male hypogonadism and disorders of sex development. Front. Endocrinol. 2020, 11, 211. [Google Scholar] [CrossRef]
- Hammond, G.L.; Hogeveen, K.N. Sex hormone-binding globulin (SHBG). In Encyclopedia of Hormones; Elsevier Science: Atlanta, GA, USA, 2003; pp. 340–344. [Google Scholar]
- Vihma, V.; Naukkarinen, J.; Turpeinen, U.; Hämäläinen, E.; Kaprio, J.; Rissanen, A.; Heinonen, S.; Hakkarainen, A.; Lundbom, J.; Lundbom, N. Metabolism of sex steroids is influenced by acquired adiposity—A study of young adult male monozygotic twin pairs. J. Steroid Biochem. Mol. Biol. 2017, 172, 98–105. [Google Scholar] [CrossRef]
- Crisóstomo, L.; Jarak, I.; Rato, L.P.; Raposo, J.F.; Batterham, R.L.; Oliveira, P.F.; Alves, M.G. Inheritable testicular metabolic memory of high-fat diet causes transgenerational sperm defects in mice. Sci. Rep. 2021, 11, 9444. [Google Scholar] [CrossRef]
- Crisóstomo, L.; Videira, R.A.; Jarak, I.; Starčević, K.; Mašek, T.; Rato, L.; Raposo, J.F.; Batterham, R.L.; Oliveira, P.F.; Alves, M.G. Inherited Metabolic Memory of High-Fat Diet Impairs Testicular Fatty Acid Content and Sperm Parameters. Mol. Nutr. Food Res. 2022, 66, e2100680. [Google Scholar] [CrossRef]
- Crisóstomo, L.; Bourgery, M.; Rato, L.; Raposo, J.F.; Batterham, R.L.; Kotaja, N.; Alves, M.G. Testicular “Inherited Metabolic Memory” of Ancestral High-Fat Diet Is Associated with Sperm sncRNA Content. Biomedicines 2022, 10, 909. [Google Scholar] [CrossRef]
- Wu, C.-H.; Lundy, L.E. Radioimmunoassay of plasma estrogens. Steroids 1971, 18, 91–111. [Google Scholar] [CrossRef]
- Fullston, T.; Palmer, N.; Owens, J.; Mitchell, M.; Bakos, H.; Lane, M. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 2012, 27, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, V.J.; Kopelman, P.G. Medical consequences of obesity. Clin. Dermatol. 2004, 22, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Dang, J.T.; Switzer, N.; Yu, J.; Tian, C.; Birch, D.W.; Karmali, S. Impact of bariatric surgery on male sex hormones and sperm quality: A systematic review and meta-analysis. Obes. Surg. 2019, 29, 334–346. [Google Scholar] [CrossRef]
- Reis, L.O.; Zani, E.L.; Saad, R.D.; Chaim, E.A.; de Oliveira, L.C.; Fregonesi, A. Bariatric surgery does not interfere with sperm quality—A preliminary long-term study. Reprod. Sci. 2012, 19, 1057–1062. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, Y.; Hao, Q.; Vandvik, P.O.; Guyatt, G.; Li, J.; Chen, Z.; Xu, S.; Shen, Y.; Ge, L. Pharmacotherapy for adults with overweight and obesity: A systematic review and network meta-analysis of randomised controlled trials. Lancet 2024, 403, e21–e31. [Google Scholar] [CrossRef]
- Yan, W.-J.; Mu, Y.; Yu, N.; Yi, T.-L.; Zhang, Y.; Pang, X.-L.; Cheng, D.; Yang, J. Protective effects of metformin on reproductive function in obese male rats induced by high-fat diet. J. Assist. Reprod. Genet. 2015, 32, 1097–1104. [Google Scholar] [CrossRef]
- Larsen, M.; Kozarek, R. Therapeutic endoscopy for the treatment of post-bariatric surgery complications. World J. Gastroenterol. 2022, 28, 199. [Google Scholar] [CrossRef]
- Wharton, S.; Davies, M.; Dicker, D.; Lingvay, I.; Mosenzon, O.; Rubino, D.M.; Pedersen, S.D. Managing the gastrointestinal side effects of GLP-1 receptor agonists in obesity: Recommendations for clinical practice. Postgrad. Med. 2022, 134, 14–19. [Google Scholar] [CrossRef]
- Oliveira, P.F.; Sousa, M.; Silva, B.M.; Monteiro, M.P.; Alves, M.G. Obesity, energy balance and spermatogenesis. Reproduction 2017, 153, R173–R185. [Google Scholar] [CrossRef]
- Schofield, S.; Parkinson, J.; Henley, A.; Sahuri-Arisoylu, M.; Sanchez-Canon, G.; Bell, J. Metabolic dysfunction following weight cycling in male mice. Int. J. Obes. 2017, 41, 402–411. [Google Scholar] [CrossRef]
- Strohacker, K.; Carpenter, K.C.; Mcfarlin, B.K. Consequences of weight cycling: An increase in disease risk? Int. J. Exerc. Sci. 2009, 2, 191. [Google Scholar] [CrossRef]
- Most, J.; Tosti, V.; Redman, L.M.; Fontana, L. Calorie restriction in humans: An update. Ageing Res. Rev. 2017, 39, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Sierra, N.; Grau-del Valle, C.; Hermenejildo, J.; Hermo-Argibay, A.; Salazar, J.D.; Garrido, M.; Navajas-Porras, B.; Sáez, G.; Morillas, C.; Bañuls, C. The impact of weight loss on inflammation, oxidative stress, and mitochondrial function in subjects with obesity. Antioxidants 2024, 13, 870. [Google Scholar] [CrossRef] [PubMed]
- Schulte, D.; Hahn, M.; Oberhäuser, F.; Malchau, G.; Schubert, M.; Heppner, C.; Müller, N.; Güdelhöfer, H.; Faust, M.; Krone, W. Caloric restriction increases serum testosterone concentrations in obese male subjects by two distinct mechanisms. Horm. Metab. Res. 2014, 46, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.D.; Jarak, I.; Morais, T.; Carvalho, R.A.; Oliveira, P.F.; Monteiro, M.P.; Alves, M.G. Caloric restriction alters the hormonal profile and testicular metabolome, resulting in alterations of sperm head morphology. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E33–E43. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, M.; Sun, S.; Wei, X.; Chen, Y.; Zhou, P.; Zheng, R.; Chen, G.; Liu, C. Moderate calorie restriction ameliorates reproduction via attenuating oxidative stress-induced apoptosis through SIRT1 signaling in obese mice. Ann. Transl. Med. 2021, 9, 933. [Google Scholar] [CrossRef]
- Correia, A.S.; Pereira, S.C.; Morais, T.; Martins, A.D.; Monteiro, M.P.; Alves, M.G.; Oliveira, P.F. Obesity-Related Genes Expression in Testes and Sperm Parameters Respond to GLP-1 and Caloric Restriction. Biomedicines 2022, 10, 2609. [Google Scholar] [CrossRef]
- Kanikowska, D.; Kanikowska, A.; Swora-Cwynar, E.; Grzymisławski, M.; Sato, M.; Bręborowicz, A.; Witowski, J.; Korybalska, K. Moderate caloric restriction partially improved oxidative stress markers in obese humans. Antioxidants 2021, 10, 1018. [Google Scholar] [CrossRef]
- Kratz, E.M.; Sołkiewicz, K.; Kubis-Kubiak, A.; Piwowar, A. Sirtuins as important factors in pathological states and the role of their molecular activity modulators. Int. J. Mol. Sci. 2021, 22, 630. [Google Scholar] [CrossRef]
- Wang, J.; Liao, B.; Wang, C.; Zhong, O.; Lei, X.; Yang, Y. Effects of Antioxidant Supplementation on Metabolic Disorders in Obese Patients from Randomized Clinical Controls: A Meta-Analysis and Systematic Review. Oxid. Med. Cell. Longev. 2022, 2022, 7255413. [Google Scholar] [CrossRef]
- Lv, Z.-M.; Ling, M.-Y.; Chen, C. Comparative proteomics reveals protective effect of resveratrol on a high-fat diet-induced damage to mice testis. Syst. Biol. Reprod. Med. 2020, 66, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Su, Y.; Xu, G.; Zhai, L.; Zhao, J. Sulforaphane protects the male reproductive system of mice from obesity-induced damage: Involvement of oxidative stress and autophagy. Int. J. Environ. Res. Public Health 2019, 16, 3759. [Google Scholar] [CrossRef] [PubMed]
- Al-Kushi, A.G.; El-Sawy, N.A.; Hijazi, M.; Header, E.A.; Hataba, A. Therapeutic effect of vitamin E on testicular tissue damage caused by obesity. J. Obes. Weight Loss Ther. 2016, 6, 5. [Google Scholar] [CrossRef]
- Khalil, S.S.; Aziz, J.A.; Ismail, K.A.; El-Malkey, N.F. Comparative protective effects of N-acetylcysteine and melatonin against obesity-induced testicular dysfunction in rats. Can. J. Physiol. Pharmacol. 2021, 99, 708–719. [Google Scholar] [CrossRef]
- Anuradha, R.; Srinivas, M.; Satyavani, M.; Suresh, K.; Muralidhar, M.; Rajender Rao, K. Preconceptional paternal caloric restriction of high-fat diet-induced obesity in Wistar rats dysregulates the metabolism of their offspring via AMPK/SIRT1 pathway. Lipids Health Dis. 2024, 23, 174. [Google Scholar] [CrossRef]
- Dasso, N.A. How is exercise different from physical activity? A concept analysis. Nurs. Forum 2019, 54, 45–52. [Google Scholar] [CrossRef]
- Penedo, F.J.; Dahn, J.R. Exercise and well-being: A review of mental and physical health benefits associated with physical activity. Curr. Opin. Psychiatry 2005, 18, 189–193. [Google Scholar] [CrossRef]
- Xu, C.; Jia, J.; Zhao, B.; Yuan, M.; Luo, N.; Zhang, F.; Wang, H. Objectively measured daily steps and health outcomes: An umbrella review of the systematic review and meta-analysis of observational studies. BMJ Open 2024, 14, e088524. [Google Scholar] [CrossRef]
- Franklin, B.A.; Eijsvogels, T.M.; Pandey, A.; Quindry, J.; Toth, P.P. Physical activity, cardiorespiratory fitness, and cardiovascular health: A clinical practice statement of the ASPC Part I: Bioenergetics, contemporary physical activity recommendations, benefits, risks, extreme exercise regimens, potential maladaptations. Am. J. Prev. Cardiol. 2022, 12, 100425. [Google Scholar] [CrossRef]
- Fabero-Garrido, R.; del Corral, T.; Plaza-Manzano, G.; Sanz-Ayan, P.; Izquierdo-García, J.; López-de-Uralde-Villanueva, I. Effects of Respiratory Muscle Training on Exercise Capacity, Quality of Life, and Respiratory and Pulmonary Function in People with Ischemic Heart Disease: Systematic Review and Meta-Analysis. Phys. Ther. 2024, 104, pzad164. [Google Scholar] [CrossRef]
- Figueira, A.C.C.; Cortinhas, A.; Soares, J.P.; Leitao, J.C.; Ferreira, R.P.; Duarte, J.A. Efficacy of exercise on breast cancer outcomes: A systematic review and meta-analysis of preclinical data. Int. J. Sports Med. 2018, 39, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Vaamonde, D.; Algar-Santacruz, C.; Abbasi, A.; García-Manso, J.M. Sperm DNA fragmentation as a result of ultra-endurance exercise training in male athletes. Andrologia 2018, 50, e12793. [Google Scholar] [CrossRef] [PubMed]
- Maleki, B.H.; Tartibian, B. Resistance exercise modulates male factor infertility through anti-inflammatory and antioxidative mechanisms in infertile men: A RCT. Life Sci. 2018, 203, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, B.; Morowvat, M.H.; Rahimi-Ghalati, N. Comparing the effectiveness of dietary vitamin C and exercise interventions on fertility parameters in normal obese men. Urol. J. 2016, 13, 2635–2639. [Google Scholar]
- Håkonsen, L.B.; Thulstrup, A.M.; Aggerholm, A.S.; Olsen, J.; Bonde, J.P.; Andersen, C.Y.; Bungum, M.; Ernst, E.H.; Hansen, M.L.; Ernst, E.H. Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men. Reprod. Health 2011, 8, 24. [Google Scholar] [CrossRef]
- Wise, L.A.; Cramer, D.W.; Hornstein, M.D.; Ashby, R.K.; Missmer, S.A. Physical activity and semen quality among men attending an infertility clinic. Fertil. Steril. 2011, 95, 1025–1030. [Google Scholar] [CrossRef]
- Vaamonde, D.; Da Silva-Grigoletto, M.E.; García-Manso, J.M.; Vaamonde-Lemos, R.; Swanson, R.J.; Oehninger, S.C. Response of semen parameters to three training modalities. Fertil. Steril. 2009, 92, 1941–1946. [Google Scholar] [CrossRef]
- Nazanin, M.; Razi, M.; Tolouei-Azar, J. Effect of running exercise training on inflammatory mediators and cytokines expression in testicular tissue; effect of exercise intensity. Life Sci. 2024, 339, 122397. [Google Scholar] [CrossRef]
- Nazanin, M.; Tolouei-Azar, J.; Razi, M. Running exercise training-induced impact on oxidative stress and mitochondria-related apoptosis in rat’s testicles. Andrologia 2022, 54, e14520. [Google Scholar] [CrossRef]
- Gharehbagh, S.A.; Azar, J.T.; Razi, M. ROS and metabolomics-mediated autophagy in rat’s testicular tissue alter after exercise training; Evidence for exercise intensity and outcomes. Life Sci. 2021, 277, 119585. [Google Scholar] [CrossRef]
- Bahadorani, M.; Tavalaee, M.; Abedpoor, N.; Ghaedi, K.; Nazem, M.N.; Nasr-Esfahani, M.H. Effects of branched-chain amino acid supplementation and/or aerobic exercise on mouse sperm quality and testosterone production. Andrologia 2019, 51, e13183. [Google Scholar] [CrossRef] [PubMed]
- Garekani, E.T.; Mohebbi, H.; Kraemer, R.R.; Fathi, R. Exercise training intensity/volume affects plasma and tissue adiponectin concentrations in the male rat. Peptides 2011, 32, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Samanta, P.K.; Manna, I.; Jana, K. Effect of L-ascorbic add supplementation on testicular oxidative stress and endocrine disorders in mature male rats exposed to intensive swimming exercise. Reprod. Med. Biol. 2006, 5, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Manna, I.; Jana, K.; Samanta, P. Effect of intensive exercise-induced testicular gametogenic and steroidogenic disorders in mature male Wistar strain rats: A correlative approach to oxidative stress. Acta Physiol. Scand. 2003, 178, 33–40. [Google Scholar] [CrossRef]
- Chigurupati, S.; Son, T.G.; Hyun, D.-H.; Lathia, J.D.; Mughal, M.R.; Savell, J.; Li, S.C.; Nagaraju, G.; Chan, S.L.; Arumugam, T.V. Lifelong running reduces oxidative stress and degenerative changes in the testes of mice. J. Endocrinol. 2008, 199, 333. [Google Scholar] [CrossRef]
- Leermakers, E.A.; Dunn, A.L.; Blair, S.N. Exercise management of obesity. Med. Clin. 2000, 84, 419–440. [Google Scholar] [CrossRef]
- Serfass, R.C.; Gerberich, S.G. Exercise for optimal health: Strategies and motivational considerations. Prev. Med. 1984, 13, 79–99. [Google Scholar] [CrossRef]
- Duan, Y.; Lu, G. A Randomized Controlled Trial to Determine the Impact of Resistance Training Versus Aerobic Training on the Management of FGF-21 and Related Physiological Variables in Obese Men with Type 2 Diabetes Mellitus. J. Sports Sci. Med. 2024, 23, 495–503. [Google Scholar] [CrossRef]
- Kumagai, H.; Yoshikawa, T.; Zempo-Miyaki, A.; Myoenzono, K.; Tsujimoto, T.; Tanaka, K.; Maeda, S. Vigorous physical activity is associated with regular aerobic exercise-induced increased serum testosterone levels in overweight/obese men. Horm. Metab. Res. 2018, 50, 73–79. [Google Scholar] [CrossRef]
- Rosety, I.; Rosety, M.Á.; Díaz, A.; Rosety, J.M.; Brenes-Martín, F.; Bernardi, M.; García, N.; Rosety-Rodríguez, M.; Ordoñez, F.J. Exercise improved semen quality and reproductive hormone levels in sedentary obese adults. Nutr. Hosp. 2017, 34, 608–612. [Google Scholar] [CrossRef]
- Maleki, A.H.; Azar, J.T.; Razi, M.; Tofighi, A. The Effect of Different Exercise Modalities on Sertoli-Germ Cells Metabolic Interactions in High-Fat Diet-Induced Obesity Rat Models: Implication on Glucose and Lactate Transport, Igf1, and Igf1R-Dependent Pathways. Reprod. Sci. 2024, 31, 2246–2260. [Google Scholar] [CrossRef] [PubMed]
- Karaman, M.E.; Tektemur, A. The therapeutic effects of distinct exercise types on metabolic syndrome-induced reproductive system impairment in male rats: Potential contribution of mitochondria-related genes. Andrologia 2022, 54, e14391. [Google Scholar] [CrossRef] [PubMed]
- Elmas, M.A.; Ozakpinar, O.B.; Kolgazi, M.; Sener, G.; Arbak, S.; Ercan, F. Exercise improves testicular morphology and oxidative stress parameters in rats with testicular damage induced by a high-fat diet. Andrologia 2022, 54, e14600. [Google Scholar] [CrossRef] [PubMed]
- Azar, J.T.; Maleki, A.H.; Moshari, S.; Razi, M. The effect of different types of exercise training on diet-induced obesity in rats, cross-talk between cell cycle proteins and apoptosis in testis. Gene 2020, 754, 144850. [Google Scholar] [CrossRef]
- Elmas, M.A.; Arbak, S.; Ercan, F. Ameliorating effects of exercise on disrupted epididymal sperm parameters in high fat diet-induced obese rats. Marmara Med. J. 2019, 32, 14–19. [Google Scholar] [CrossRef]
- Nematollahi, A.; Kazeminasab, F.; Tavalaee, M.; Marandi, S.M.; Ghaedi, K.; Nazem, M.N.; Nasr-Esfahani, M.H. Effect of aerobic exercise, low-fat and high-fat diet on the testis tissue and sperm parameters in obese and nonobese mice model. Andrologia 2019, 51, e13273. [Google Scholar] [CrossRef]
- Yi, X.; Gao, H.; Chen, D.; Tang, D.; Huang, W.; Li, T.; Ma, T.; Chang, B. Effects of obesity and exercise on testicular leptin signal transduction and testosterone biosynthesis in male mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R501–R510. [Google Scholar] [CrossRef]
- You, T.; Disanzo, B.L.; Arsenis, N.C. Aerobic exercise training attenuates obesity-related hypogonadism in male rats. Med. Sci. Sports Exerc. 2013, 45, 1244–1251. [Google Scholar] [CrossRef]
- Palmer, N.O.; Bakos, H.W.; Owens, J.A.; Setchell, B.P.; Lane, M. Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E768–E780. [Google Scholar] [CrossRef]
- Mohammad, H.N.-E.; Mohammad, S.; Shahnaz, R.; Maryam, A.; Shahla, R.; Fariba, M.; Mohammad, M. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod. Biomed. Online 2005, 11, 198–205. [Google Scholar] [CrossRef]
- Heydari, H.; Ghiasi, R.; Hamidian, G.; Ghaderpour, S.; Keyhanmanesh, R. Voluntary exercise improves sperm parameters in high fat diet receiving rats through alteration in testicular oxidative stress, mir-34a/SIRT1/p53 and apoptosis. Horm. Mol. Biol. Clin. Investig. 2021, 42, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Coussens, M.; Maresh, J.G.; Yanagimachi, R.; Maeda, G.; Allsopp, R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS ONE 2008, 3, e1571. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Ruan, Y.; Gao, X.; Sun, J. Systematic review and meta-analysis of randomized, controlled trials on the effect of exercise on serum leptin and adiponectin in overweight and obese individuals. Horm. Metab. Res. 2017, 49, 164–173. [Google Scholar] [CrossRef]
- Xie, Y.; Gu, Y.; Li, Z.; He, B.; Zhang, L. Effects of Different Exercises Combined with Different Dietary Interventions on Body Composition: A Systematic Review and Network Meta-Analysis. Nutrients 2024, 16, 3007. [Google Scholar] [CrossRef]
- Memelink, R.G.; Njemini, R.; de Bos Kuil, M.J.; Wopereis, S.; de Vogel-van den Bosch, J.; Schoufour, J.D.; Tieland, M.; Weijs, P.J.; Bautmans, I. The effect of a combined lifestyle intervention with and without protein drink on inflammation in older adults with obesity and type 2 diabetes. Exp. Gerontol. 2024, 190, 112410. [Google Scholar] [CrossRef]
- Muhlhausler, B.S. Fighting the intergenerational cycle of obesity with maternal exercise. J. Physiol. 2020, 598, 4147–4148. [Google Scholar] [CrossRef]
- Raipuria, M.; Bahari, H.; Morris, M.J. Effects of maternal diet and exercise during pregnancy on glucose metabolism in skeletal muscle and fat of weanling rats. PLoS ONE 2015, 10, e0120980. [Google Scholar] [CrossRef]
- Costa-Júnior, J.M.; Ferreira, S.M.; Kurauti, M.A.; Bernstein, D.L.; Ruano, E.G.; Kameswaran, V.; Schug, J.; Freitas-Dias, R.; Zoppi, C.C.; Boschero, A.C. Paternal exercise improves the metabolic health of offspring via epigenetic modulation of the germline. Int. J. Mol. Sci. 2021, 23, 1. [Google Scholar] [CrossRef]
- Murashov, A.K.; Pak, E.S.; Koury, M.; Ajmera, A.; Jeyakumar, M.; Parker, M.; Williams, O.; Ding, J.; Walters, D.; Neufer, P.D. Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J. 2016, 30, 775–784. [Google Scholar] [CrossRef]
- Freedman, D.S.; Khan, L.K.; Serdula, M.K.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. The relation of childhood BMI to adult adiposity: The Bogalusa Heart Study. Pediatrics 2005, 115, 22–27. [Google Scholar] [CrossRef]
- Vandewalle, S.; Taes, Y.; Fiers, T.; Van Helvoirt, M.; Debode, P.; Herregods, N.; Ernst, C.; Van Caenegem, E.; Roggen, I.; Verhelle, F. Sex steroids in relation to sexual and skeletal maturation in obese male adolescents. J. Clin. Endocrinol. Metab. 2014, 99, 2977–2985. [Google Scholar] [CrossRef] [PubMed]
- El-Wakkad, A.; Hassan, N.E.-M.; Sibaii, H.; El-Zayat, S.R. Proinflammatory, anti-inflammatory cytokines and adiponkines in students with central obesity. Cytokine 2013, 61, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Aygun, A.D.; Gungor, S.; Ustundag, B.; Gurgoze, M.K.; Sen, Y. Proinflammatory cytokines and leptin are increased in serum of prepubertal obese children. Mediat. Inflamm. 2005, 2005, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Wagner, I.; Klöting, N.; Atanassova, N.; Savchuk, I.; Spröte, C.; Kiess, W.; Söder, O.; Svechnikov, K. Prepubertal onset of obesity negatively impacts on testicular steroidogenesis in rats. Mol. Cell. Endocrinol. 2016, 437, 154–162. [Google Scholar] [CrossRef]
- Breslin, W.L.; Johnston, C.A.; Strohacker, K.; Carpenter, K.C.; Davidson, T.R.; Moreno, J.P.; Foreyt, J.P.; McFarlin, B.K. Obese Mexican American children have elevated MCP-1, TNF-α, monocyte concentration, and dyslipidemia. Pediatrics 2012, 129, e1180–e1186. [Google Scholar] [CrossRef]
- Khalafi, M.; Symonds, M.E.; Faramarzi, M.; Sharifmoradi, K.; Maleki, A.H.; Rosenkranz, S.K. The effects of exercise training on inflammatory markers in children and adolescents: A systematic review and meta-analysis. Physiol. Behav. 2024, 278, 114524. [Google Scholar] [CrossRef]
- Leite-Almeida, L.; Morato, M.; Cosme, D.; Afonso, J.; Areias, J.C.; Guerra, A.; Afonso, A.C.; Albino-Teixeira, A.; Sousa, T.; Correia-Costa, L. Impact of physical activity on redox status and nitric oxide bioavailability in nonoverweight and overweight/obese prepubertal children. Free. Radic. Biol. Med. 2021, 163, 116–124. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Lu, F.; Zhu, D. Effects of aerobic exercise combined with resistance training on body composition and metabolic health in children and adolescents with overweight or obesity: Systematic review and meta-analysis. Front. Public Health 2024, 12, 1409660. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Tzanninis, S.; Ntanasis-Stathopoulos, I.; Panotopoulos, G.; Kostopoulou, M.; Tzanninis, I.-G.; Tsagianni, A.; Sergentanis, T.N. Prevention and treatment of childhood and adolescent obesity: A systematic review of meta-analyses. World J. Pediatr. 2019, 15, 350–381. [Google Scholar] [CrossRef]
Experimental Groups | Population/Rodent Strain | Exercise | Reference | |
---|---|---|---|---|
Type | Effects (Compared to Ctrl) | |||
Human Studies | ||||
High-intensity/frequency exercise athletes (compared to reference values) (12 participants) | Professional athletes | Triathlon (high intensity) | ↓ Semen volume ↓ Sperm number ↓ Sperm progressive motility ↑ Sperm DNA fragmentation Presence of active macrophages | [185] |
Ctrl group: 24 wks sedentary (n = 208 participants) EP group: 24 wks MIEP (n = 199 participants) | Sedentary infertile at baseline | Weightlifting (major muscle groups) | ↓ seminal IL-1β, IL-6, IL-8 and TNF-α ↓ seminal ROS ↓ seminal lipid peroxidation ↑ SOD and CAT activity ↑ Sperm progressive motility ↑ Sperm normal morphology ↑ Sperm concentration ↓ Sperm DNA fragmentation | [186] |
Ctrl group: 6 months sedentary (50 participants) EP group: 6 months EP (n = 100 participants) | Sedentary men recurring to fertility clinic (some had normal spermogram (female causes)) at baseline | Intensive undisclosed exercise | ↑ Semen volume ↑ Sperm concentration ↑ Sperm motility | [187] |
Ctrl group: 14 wks no exercise (16 participants) EP group: 14 wks EP (+healthy diet) (27 participants) | Men with obesity | Undisclosed | ↑ Sperm count ↑ Semen volume ↑ Testosterone ↑ SHBG | [188] |
No regular exercise (975 participants) Regular exercise (1286 participants) | Male partner of couples undergoing infertility treatment | Running/jogging, bicycling, weightlifting | ↓ Sperm concentration (bicycling) ↓ Sperm motility (bicycling) | [189] |
Low exercise group: low physical activity (16 nonprofessional participants) High exercise group: high-intensity/frequency exercise (professional) (14 water polo players; 15 triathletes) | Men that either practice regular physical activity or professional physical exercise | Water Polo Triathlon | ↓ Sperm concentration (Triathlon > Water Polo) ↓ Sperm normal morphology (Triathlon > Water Polo) | [190] |
Rodent studies | ||||
Ctrl group: 9 wks sedentary (n = 6) EP group: 1 wk AP + 8 wks LIEP (n = 6), MIEP (n = 6) or HIEP (n = 6) | Wistar rats | Treadmill exercise (LIEP: 20–39% Smax, MIEP: 40–60% Smax, and HIEP: 61–84% Smax, 60 min/day, 5 days/wk, 8 wks) | ↑ TLR-4 expression in SC, LC and spermatogonia (MIEP and HIEP) ↑ NF-κB expression (MIEP and HIEP) ↑ TNF-α expression (MIEP and HIEP) ↑ IL-6 (MIEP and HIEP) ↑ IL-10 (MIEP only) ↑ iNOS and NO (MIEP and HIEP) ↑ COX-2 (MIEP and HIEP) ↓ Active LC/Total LC ratio (HIEP only) ↓ Serum testosterone (HIEP only) | [191] |
Ctrl group: 9 wks sedentary (n = 6) EP group: 1 wk AP + 8 wks LIEP (n = 6), MIEP (n = 6) or HIEP (n = 6) | Wistar rats | Treadmill exercise (LIEP: 20–39% Smax, MIEP: 40–60% Smax, and HIEP: 61–84% Smax, 60 min/day, 5 days/wk, 8 wks) | ↓ spermatogenesis (Johnsen’s score; only HIEP) ↓ ST epithelium height (only HIEP) ↓ Sperm count (only HIEP) ↑ TOS (only HIEP) ↑ Lipid peroxidation (only HIEP) ↓ SOD, CAT, and GPx (only HIEP) ↑ Bcl-2 expression (LIEP only) ↑ Bax and caspase 3 (HIEP only) ↑ Apoptotic cells (HIEP only) | [192] |
Ctrl group: 8 wks sedentary (n = 6) EP group: 8 wks LIEP (n = 6), MIEP (n = 6) or HIEP (n = 6) | Wistar rats | Treadmill exercise (LIEP: 20–39% Smax, MIEP: 40–60% Smax, and HIEP: 61–84% Smax, 60 min/day, 5 days/wk, 8wks) | Interstitial edema between ST (HIEP only) ↓ TDI and SPI (HIEP only) ↓ ST epithelium height (HIEP only) ↓ LDH activity (SC) and testicular lactate level (HIEP only) ↑ SC lipid droplets (HIEP only) ↓ testicular GSH level (HIEP only) ↑ NADP+/NADPH ratio (HIEP only) ↑ TOS and ↓ TAS (HIEP only) ↑ HIF-1α and TN-Fα (HIEP only) ↑ ROS (HIEP only) ↑ autophagy (HIEP only) | [193] |
Ctrl group: 8 wks sedentary (n = 12) EP group: 8 wks EP (n = 12) | C57BL/6 mice | Treadmill exercise (25 m/min, 45 min/day, 5 days/wk, 8 wks) | ↑ Sperm motility ↓ Sperm lipid peroxidation ↑ Serum testosterone | [194] |
Ctrl group: 12 wks sedentary (n = 8) EP group: 12 wks LIEP (n = 8), MIEP (n = 8) or HIEP (n = 8) | Wistar rats | Treadmill exercise (LIEP: 20 m/min, MIEP: 28 m/min, HIEP: 34 m/min, 60 min/day, 5 days/wk, 12 wks) | ↓ total testosterone (HIEP only) ↑ plasma and adipose adiponectin (MIEP and LIEP) | [195] |
Ctrl group: 6 wks sedentary (n = 6) EP group: 6 wks EP (n = 6) | Wistar rats | Intensive swimming (180 min/day, 5 days/wk, 4 wks) | ↓ Testosterone (↓ 3β-HSD and 17β-HSD) ↓ Serum LH and FSH ↓ Antioxidant activity (CAT, SOD, GPx, GST) | [196] |
Ctrl group: 4 wks sedentary (n = 6) EP group: 4 wks EP (n = 6) | Wistar rats | Intensive swimming (180 min/day, 5 days/wk, 4 wks) | ↓ Testosterone (↓ 3β-HSD and 17β-HSD) ↓ Antioxidant activity (SOD, CAT, GST and peroxidase) ↑ Lipid peroxidation | [197] |
Experimental Groups | Population/Rodent Strain | HFD/Obesity Effects | Exercise | Reference | |
---|---|---|---|---|---|
Type | Effects | ||||
Human Studies | |||||
Ctrl group: 13 wks sedentary (10 participants) EP group: 1 wk AP + 12 wks EP (10 participants) | Men with obesity and diabetes; 40 to 45 years old | (no results—the study compares the effect of Eps with sedentarism in men with obesity—Ctrl group is obese) | REP or AEP | ↓ fasting glycemia (REP > AEP) ↓ glycated hemoglobin ↓ insulin ↓ insulin resistance (REP > AEP) ↑ testosterone (REP > AEP) ↑ FGF-21 (REP > AEP) | [201] |
Ctrl: before 12 wks EP EP: after 12 wks EP (28 participants) | Men with obesity or overweight; 50.0 ± 1.2 years | Before exercise protocol (study compared the outcomes before and after a 12-wk exercise regimen):
| Walks and/or light jogging | ↓ insulin (<than before EP) ↑ serum testosterone (>than before EP) ↑ sperm concentration (>than before EP) ↑ sperm progressive motility (>than before EP) ↑ sperm normal morphology (>than before EP) | [202] |
Ctrl group: 16 wks sedentary (45 participants) EP group: 16 wks EP (45 participants) | Men with obesity; 25 to 40 years old) | (no results—the study compares the effect of the EPs with sedentarism in men with obesity—Ctrl group is obese) | Treadmill exercise | ↑ sperm concentration (>Ctrl) ↑ progressive motility (>Ctrl) ↑ sperm with normal morphology (>Ctrl) ↑ serum testosterone (>Ctrl) | [203] |
Rodent studies | |||||
Ctrl group: 12 wks SD & sedentary (n = 6) EP group: 12 wk SD & MIEP (n = 6) or HIEP (n = 6; continuous or interval HIEP) HFD group: 12 wks HFD & sedentary (n = 6) HFD+EP groups: 12 wks HFD & MIEP (n = 6) or HIEP (n = 6; continuous or interval HIEP) | Wistar rats | ↓ GLUT-1 expression in SC ↓ GLUT-3 expression in SC ↓ MCT-4 expression in SC ↓ Igf1 expression in SC ↓ lactate and LDH levels in SC | Treadmill exercise (MIEP: 50–60% of Smax, HIEP: 70−75% of Smax, 60 min/day, 5 days/wk, 8 wks) | ↑ GLUT-1 expression in SC (<Ctrl; MIEP only) (=Ctrl HIEP) ↑ GLUT-3 expression in SC (=Ctrl) ↑ MCT-4 expression in SC (<Ctrl) ↑ Igf1 expression in SC (<Ctrl) ↑ lactate and LDH levels in SC (<Ctrl; MIEP only) (=Ctrl HIEP) | [204] |
Ctrl group: 21 wks SD (n = 15) HFD group: 21 wks HFD (n = 15) HFD-EP groups: 12 wks HFD + 1 wk AP + 8 wks MIEP (n = 15) or HIEP (n = 15) | C57BL/6 mice | ↓ ST diameter, lumen diameter, epithelium height ↓ testis/body weight ratio ↓ sperm count ↓ sperm motility ↓ serum FSH ↓ serum testosterone ↓ serum LH ↑ serum estradiol ↓ SF-1, StAR, CYP11A1 and CYP17A1 ↑ lipid peroxidation ↑ antioxidant enzymes activity (SOD, CAT, GSH and GSH-Px) ↓ Nrf2, HO-1 and NQO expression ↑ testicular apoptosis ↑ m6A methylation | Treadmill exercise (MIEP: 50–60% of Smax, HIEP: 70−75% of Smax, 45 min/day, 5 days/wk, 8 wks) | ↑ ST diameter, lumen diameter, epithelium height ↑ testis/body weight ratio (=Ctrl) ↑ sperm count (=Ctrl) ↑ sperm motility (=Ctrl) ↑ serum FSH (HIEP only) (=Ctrl) ↑ serum testosterone (HIEP only) (=Ctrl) No effect on LH or estradiol ↑ SF-1, StAR, CYP11A1 and CYP17A1 (=Ctrl) ↓ lipid peroxidation (HIEP> MIEP) (=Ctrl) ↑ Nrf2, HO-1 and NQO expression (HIEP>MIEP) (=Ctrl) ↓ testicular apoptosis ↓ m6A methylation | [142] |
Ctrl group: 14 wks SD (n = 6) HFD group: 8 wks HFD (n = 6) HFD-EP groups: 8 wks HFD + 1 wk AP + 6 wks AEP (n = 6) or ANEP (n = 6) | Wistar rats | ↓ serum FSH ↓ serum LH ↑ total oxidative status ↑ mitochondria-related genes (MFN2, PPARG, PGC1α, TXNL4B and PARP2) | Treadmill exercise (AP: 50–60% Smax, AEP: 50–90% Smax, 20 min/day,3 days/wk, 6 wks) | ↑ serum FSH (=Ctrl) ↑ serum LH (=Ctrl) ↑ TAS (>Ctrl; AEP only) ↓ TOS (=Ctrl; AEP only) ↑ TOS (=HFD; ANEP only) ↓ mitochondria-related genes (MFN2, PPARG, PGC1α, TXNL4B and PARP2) (=Ctrl) | [205] |
Ctrl group: 12 wk SD + 6 wks SD & sedentary (n = 7) EP group: 12 wk SD + 6 wks SD & EP (n = 7) HFD group: 12 wk HFD + 6 wks HFD & sedentary (n = 7) HFD+EP group: 12 wk HFD + 6 wks HFD & EP (n = 7) | Sprague Dawley rats | ↓ serum LH ↓ serum FSH ↓ serum testosterone ↑ serum leptin (hyperleptinemia) ↑ testicular lipid peroxidation ↑ testicular DNA damage ↑ TNF-α and IL-6 levels ↑ myeloperoxidase activity ↑ atrophy of ST ↓ spermatogenesis (Johnsen’s score ↑ seminiferous tubules apoptosis | Swimming exercise (60 min/day, 5 days/wk, 6 wks) | ↑ serum LH (=Ctrl) ↑ serum FSH (=Ctrl) ↑ serum testosterone (>Ctrl) ↓ serum leptin (=Ctrl) ↓ testicular lipid peroxidation (=Ctrl) ↓ testicular DNA damage (=Ctrl) ↓ TNF-α (>Ctrl) and IL-6 (<Ctrl) levels ↓ myeloperoxidase activity (>Ctrl) ↓ atrophy of ST ↑ spermatogenesis (Johnsen’s score) ↓ ST apoptosis | [206] |
Ctrl group: 10 wks SD + 8 wks sedentary (n = 10) HFD group: 10 wks HFD + 8 wks sedentary (n = 10) HFD+EP group: 10 wks HFD + 8 wks MIEP (n = 12) or HIEP (n = 12) | C57BL/6L mice | ↓ serum testosterone ↓ sperm count ↓ sperm motility ↑ sperm apoptosis ↓ TAS ↓ CAT, GSH-Px, GSH ↑ lipid peroxidation ↑ NO ↑ NF-κB, TNF-α, IL-1β, and IL-10 expression ↓ StAR, CYP11A1, SF-1 expression | Swimming exercise (MIEP: 20 min/day, once a day, HIEP: 20 min/day, twice a day, 5 days/wk, 8 wks) | ↑ serum testosterone (=Ctrl; MIEP only) ↓ serum testosterone (=HFD; HIEP only) ↑ sperm count (=Ctrl; MIEP only) ↓ sperm count (=HFD; HIEP only) ↑ sperm motility (=Ctrl; MIEP only) ↓ sperm motility (=HFD; HIEP only) ↓ sperm apoptosis (=Ctrl; MIEP only) ↑ sperm apoptosis (=HFD; HIEP only) ↑ TAS (=Ctrl; MIEP only) ↓ TAS (=HFD; HIEP only) ↑ SOD (MIEP only) ↑ CAT, GSH-Px, GSH expression (=Ctrl; MIEP only) ↓ CAT, GSH-Px, GSH expression (=HFD; HIEP only) ↓ lipid peroxidation (=Ctrl; MIEP only) ↑ lipid peroxidation (=HFD; HIEP only) ↓ NO (=Ctrl; MIEP only) ↑ NO (=HFD; HIEP only) ↓ NF-κB, TNF-α, IL-1β, and IL-10 expression (=Ctrl; MIEP only) ↑ NF-κB, TNF-α, IL-1β, and IL-10 expression (=HFD; HIEP only) ↑ StAR, CYP11A1, SF-1 expression (=Ctrl; MIEP only) ↓ StAR, CYP11A1, SF-1 expression (=HFD; HIEP only) | [28] |
Ctrl group: 12 wks SD & sedentary (n = 6) EP group: 12 wk SD & MIEP (n = 6) or HIEP (n = 6; continuous or interval HIEP) HFD group: 12 wks HFD & sedentary (n = 6) HFD+EP groups: 12 wks HFD & MIEP (n = 6) or HIEP (n = 6; continuous or interval HIEP) | Wistar rats | ↓ SC number ↓ LC number ↑ Germ cells dissociation ↓ Spermatogenesis and spermiogenesis ↓ serum testosterone ↑ apoptosis in germ cells ↑ DNA fragmentation in germ cells | Treadmill exercise (MIEP: 50–60% Smax (0° incline), HIEP: 40–75% Smax with 20° incline, 80 min/day, 5 days/wk, 12 wks) | ↑ SC number (<Ctrl) ↑ LC number (<Ctrl) ↓ Germ cells dissociation ↑ Spermatogenesis and spermiogenesis ↑ serum testosterone (<Ctrl) ↓ apoptosis in germ cells (>Ctrl; MIEP > HIEP) ↓ DNA fragmentation in germ cells (<Ctrl; MIEP > HIEP) | [207] |
Ctrl group: 12 wk SD + 6 wks SD & sedentary (n = 8) EP group: 12 wk SD + 6 wks SD & MIEP (n = 8) HFD group: 12 wk HFD + 6 wks HFD & sedentary (n = 8) HFD+EP group: 12 wk HFD + 6 wks HFD & MIEP (n = 8) | Sprague Dawley rats | ↓ total sperm count ↓ sperm progressive motility ↓ sperm with normal morphology ↑ sperm with midpiece defects ↑ sperm with tail defects ↑ epididymal epithelium degeneration * ↓ epididymal sperm accumulation | Swimming exercise (60 min/day, 5 days/wk, 6 wks) | ↑ total sperm count (<Ctrl) ↑ sperm progressive motility (=Ctrl) ↑ sperm with normal morphology (=Ctrl) ↓ sperm with midpiece defects (=Ctrl) ↑ sperm with tail defects (=Ctrl) ↓ epididymal epithelium degeneration ↑ epididymal sperm accumulation | [208] |
Ctrl (SD+sedentary): 12 wks LFD + 9 wks sedentary SD+EP: 12 wks LFD + 1 wk AP + 8 wks EP HFD+sedentary: 12 wks HFD + 9 wks sedentary HFD+EP: 12 wks HFD + 1 wk AP + 8 wks EP | C57BL/6 mice | ↓ sperm concentration ↓ sperm motility ↑ sperm protamine deficiency | Treadmill exercise (23 m/min, 45 min/day, 5 days/wk, 9 wks) | ↑ sperm concentration (>Ctrl) ↑ sperm motility (>Ctrl) ↑ sperm lipid peroxidation (>Ctrl) ↓ sperm protamine deficiency (>Ctrl) | [209] |
Ctrl group: 10 wks SD + 6 wks sedentary (n = 6) HFD group: 10 wks HFD + 6 wks sedentary (n = 6) HFD+EP group: 10 wks HFD + 6 wks MIEP (n = 6) or HIEP (n = 6) | C57BL/6J mice | ↑ leptin (serum and testis) ↑ mRNA leptin ↓ leptin receptor signaling (↓ mRNA leptin receptor, JAK, STAT) ↑ serum estradiol ↓ serum testosterone ↓ testis/body mass ratio ↓ sperm count ↓ sperm motility ↓ SF1 ↓ steroidogenic enzymes (StAR, CYP11A1) | Swimming exercise (MIEP: 120 min/day, once a day, HIEP: 120 min/day, twice a day, 6 days/wk, 6 wks) | ↓ leptin (serum and testis) (=Ctrl; HIEP > MIEP) ↓ mRNA leptin (=Ctrl) ↑ leptin receptor signaling (↓ mRNA leptin receptor, JAK, STAT) (=Ctrl) ↓ serum estradiol (=Ctrl) ↑ serum testosterone (MIEP only) ↑ testis/body mass ratio (=Ctrl) ↑ sperm count (MIEP only) ↑ sperm motility (MIEP only) ↑ SF1 (MIEP only) ↑ steroidogenic enzymes (StAR, CYP11A1) (MIEP only) | [210] |
Fa/Fa group: 10 wks sedentary (n = 7) Fa/Fa + EP group: 2 wks AP + 8 wks EP (n = 8) fa/fa group: 10 wks sedentary (n = 7) fa/fa + EP group: 2 wks AP +8 wks EP (n = 7) | Zucker rats | ↑ insulin resistance ↓ serum total, serum-free and testicular testosterone ↑ serum and epidydimal adipose MCP-1 | Treadmill exercise (20m/min, 60 min/day, 5 days/wk, 7 wks) | ↓ insulin resistance compared to fa/fa (>Ctrl) ↑ serum total, serum-free and testicular testosterone (=Ctrl) ↓ serum and adipose MCP-1 (=Ctrl) | [211] |
Ctrl group: 18 wks SD & sedentary (n = 8) HFD group: 18 wks HFD & sedentary (n = 8) HFD+EP group: 10 wks HFD + 8 wks EP (n = 8) DC group: 10 wks HFD + 8 wks SD & sedentary (n = 8) DC+EP group: 10 wks HFD + 8 wks SD % EP (n = 8) | C57BL6 mice | ↓ sperm motility ↑ sperm with abnormal morphology (tail) ↑ sperm mitochondrial membrane potential | Swimming (60 min/day, 5 days/wk, 18 wks) | ↑ sperm motility (=Ctrl) ↑ sperm abnormal tail morphology (=Ctrl) ↓ sperm mitochondrial membrane potential (>Ctrl) | [212] |
Molecular Mechanism | Signaling Molecules (Up/Down) | References |
---|---|---|
Antioxidant response via Keap1-Nrf2-ARE and the Nrf2-SIRT1 axis | Nrf2 (↓ obesity), SIRT1 (↓ obesity), HO-1, NQO, CAT, SOD, GPx (↓ obesity; ↑ caloric restriction and physical exercise) progressive | [28,83,109,119,121,122,123,124,142,214,215] |
Adipokine Imbalance: | Leptin (↑ obesity), Adiponectin (↓ obesity) | [46,47,49] |
|
| [50,51,53,56] |
|
| [53,57,169] |
|
| [58,211] |
|
| [72,73,122] |
|
| [66,74,75,171,206] |
Inflammatory cytokines and systemic inflammation | TNF-α, IL-6, IL-1β (↑ obesity, ↓ physical exercise), IL-10 (↓ obesity, ↑ physical exercise) | [28,32,83,186,191,193] |
Steroidogenesis disruption | ||
|
| [104,105,108] |
|
| [[85,86,87,88] |
|
| [104,105,106,107,108,142,210] |
Transgenerational Effects | Altered metabolic, lipidic, and sncRNA testicular fingerprint | [150,151,152,153,154,178,221,222] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, R.J.; Oliveira, P.F.; Spadella, M.A.; Ferreira, R.; Alves, M.G. Do Lifestyle Interventions Mitigate the Oxidative Damage and Inflammation Induced by Obesity in the Testis? Antioxidants 2025, 14, 150. https://doi.org/10.3390/antiox14020150
Moreira RJ, Oliveira PF, Spadella MA, Ferreira R, Alves MG. Do Lifestyle Interventions Mitigate the Oxidative Damage and Inflammation Induced by Obesity in the Testis? Antioxidants. 2025; 14(2):150. https://doi.org/10.3390/antiox14020150
Chicago/Turabian StyleMoreira, Ruben J., Pedro F. Oliveira, Maria Angélica Spadella, Rita Ferreira, and Marco G. Alves. 2025. "Do Lifestyle Interventions Mitigate the Oxidative Damage and Inflammation Induced by Obesity in the Testis?" Antioxidants 14, no. 2: 150. https://doi.org/10.3390/antiox14020150
APA StyleMoreira, R. J., Oliveira, P. F., Spadella, M. A., Ferreira, R., & Alves, M. G. (2025). Do Lifestyle Interventions Mitigate the Oxidative Damage and Inflammation Induced by Obesity in the Testis? Antioxidants, 14(2), 150. https://doi.org/10.3390/antiox14020150