Therapeutic Effects of Lavender Oil on Streptozotocin-Induced Diabetes Mellitus and Experimental Thrombosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements
2.2.1. Oxidative Stress and Antioxidant Activity
2.2.2. Inflammatory and Pancreatic Biomarkers
2.2.3. Coagulation Parameters
2.2.4. Renal and Hepatic Function Tests
2.2.5. Pancreatic Metabolic Function and Glycemia
2.2.6. Histological Assessment
2.3. Statistical Methods
3. Results
3.1. Oxidative Stress Parameters
3.2. Inflammatory Cytokines
3.3. Glycemia and C-Peptide Levels
3.4. Metalloproteinases 2 and 9
3.5. Bleeding and Clotting Time
3.6. Renal and Liver Functions
3.7. Histological Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, J.; He, P.; Yao, H.; Xue, Y.; Sun, W.; Lu, P.; Qi, X.; Zhang, Z.; Jing, R.; Cui, B.; et al. Developing a prediction model for all-cause mortality risk among patients with type 2 diabetes mellitus in Shanghai, China. J. Diabetes 2023, 15, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Gregory, G.; Robinson, T.; Linklater, S.; Wang, F.; Colagiuri, S.; Beaufort, C.; Donaghue, K.; Magliano, D.; Maniam, J.; Orchard, T.; et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study. Lancet Diabetes Endocrinol. 2022, 10, 741–760. [Google Scholar] [CrossRef] [PubMed]
- Snell-Bergeon, J.K.; Maahs, D.M. Diabetes: Elevated risk of mortality in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2015, 11, 136–138. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of Care in Diabetes—2023 Abridged for Primary Care Providers. Clin. Diabetes 2023, 41, 4–31. [Google Scholar] [CrossRef]
- DiMeglio, L.A.; Evans-Molina, C.; Oram, R.A. Type 1 diabetes. Lancet 2018, 391, 2449–2462. [Google Scholar] [CrossRef]
- Vaidya, A.R.; Wolska, N.; Vara, D.; Mailer, R.K.; Schröder, K.; Pula, G. Diabetes and Thrombosis: A Central Role for Vascular Oxidative Stress. Antioxidants 2021, 10, 706. [Google Scholar] [CrossRef]
- Papachristoforou, E.; Lambadiari, V.; Maratou, E.; Makrilakis, K. Association of Glycemic Indices (Hyperglycemia, Glucose Variability, and Hypoglycemia) with Oxidative Stress and Diabetic Complications. J. Diabetes Res. 2020, 2020, 7489795. [Google Scholar] [CrossRef]
- Batten, L.; Sathyapalan, T.; Palmer, T.M. Molecular Mechanisms Linking Diabetes with Increased Risk of Thrombosis. Int. J. Mol. Sci. 2023, 24, 17465. [Google Scholar] [CrossRef]
- Wautier, J.L.; Wautier, M.P. Endothelial Cell Participation in Inflammatory Reaction. Int. J. Mol. Sci. 2021, 22, 6341. [Google Scholar] [CrossRef]
- Pan, X.; Kaminga, A.C.; Kinra, S.; Wen, S.W.; Liu, H.; Tan, X.; Liu, A. Chemokines in Type 1 Diabetes Mellitus. Front. Immunol. 2022, 12, 690082. [Google Scholar] [CrossRef]
- Gleissner, C.A.; Von Hundelshausen, P.; Ley, K. Platelet Chemokines in Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1920–1927. [Google Scholar] [CrossRef] [PubMed]
- Bulboaca, A.E.; Boarescu, P.-M.; Porfire, A.S.; Dogaru, G.; Barbalata, C.; Valeanu, M.; Munteanu, C.; Râjnoveanu, R.M.; Nicula, C.A.; Stanescu, I.C. The Effect of Nano-Epigallocatechin-Gallate on Oxidative Stress and Matrix Metalloproteinases in Experimental Diabetes Mellitus. Antioxidants 2020, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wang, X.; Fan, M.; Zhao, J.; Lin, L.; Liu, J. Plasma levels of von Willebrand factor in type 2 diabetes patients with and without cardiovascular diseases: A meta-analysis. Diabetes Metab. Res. Rev. 2020, 36, e3193. [Google Scholar] [CrossRef]
- Urano, T.; Castellino, F.J.; Suzuki, Y. Regulation of plasminogen activation on cell surfaces and fibrin. J. Thromb. Haemost. 2018, 16, 1487–1497. [Google Scholar] [CrossRef]
- Guthrie, R.A.; Guthrie, D.W. Pathophysiology of Diabetes Mellitus. Crit. Care Nurs. Q. 2004, 27, 113–125. [Google Scholar] [CrossRef]
- Pechlivani, N.; Ajjan, R.A. Thrombosis and Vascular Inflammation in Diabetes: Mechanisms and Potential Therapeutic Targets. Front. Cardiovasc. Med. 2018, 5, 1. [Google Scholar] [CrossRef]
- Santilli, F.; Simeone, P.; Liani, R. Inflammation, platelets and diabetes. Bleed Thromb. Vasc. Biol. 2023, 2, 77. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, J.E.; Park, S.H.; Kim, Y.I.; Nam-Goong, I.S.; Kim, E.S. High coagulation factor levels and low protein C levels contribute to enhanced thrombin generation in patients with diabetes who do not have macrovascular complications. J. Diabetes Complicat. 2014, 28, 365–369. [Google Scholar] [CrossRef]
- DeClue, C.; Gonzalez, M.; Bradley, A.B.; Carranza-Leon, B.G.; Srivastava, G. The Latest Trends in the Management of Type 1 and Type 2 Diabetes Mellitus. Endocrines 2024, 5, 566–584. [Google Scholar] [CrossRef]
- Ansari, P.; Samia, J.F.; Khan, J.T.; Rafi, M.R.; Rahman, M.S.; Rahman, A.B.; Abdel-Wahab, Y.H.A.; Seidel, V. Protective Effects of Medicinal Plant-Based Foods against Diabetes: A Review on Pharmacology, Phytochemistry, and Molecular Mechanisms. Nutrients 2023, 15, 3266. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.C.D.M.A.; Dos Santos, K.V.G.; Dos Santos, J.J.D.S.; Camara, R.P.D.P.O.A.; Bezerra E Silva, S.Y.; Silva, H.M.M.D.; Ribeiro, K.R.B.; Dantas, D.V.; Dantas, R.A.N. Efficacy of aromatherapy with Lavandula angustifolia oil on postoperative pain after cardiac surgery: A randomized clinical trial. EXPLORE 2024, 20, 103034. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-G.; Kim, S.-M.; Min, J.-H.; Kwon, O.-K.; Park, M.-H.; Park, J.-W.; Ahn, H.I.; Hwang, J.-Y.; Oh, S.-R.; Lee, J.-W.; et al. Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation. Int. Immunopharmacol. 2019, 74, 105706. [Google Scholar] [CrossRef] [PubMed]
- But, V.M.; Bulboacă, A.E.; Rus, V.; Ilyés, T.; Gherman, M.L.; Bolboacă, S.D. Anti-inflammatory and antioxidant efficacy of lavender oil in experimentally induced thrombosis. Thromb. J. 2023, 21, 85. [Google Scholar] [CrossRef]
- Hagimori, M.; Kamiya, S.; Yamaguchi, Y.; Arakawa, M. Improving frequency of thrombosis by altering blood flow in the carrageenan-induced rat tail thrombosis model. Pharmacol. Res. 2009, 60, 320–323. [Google Scholar] [CrossRef]
- Boarescu, P.-M.; Boarescu, I.; Bulboacă, A.E.; Bocșan, I.C.; Pop, R.M.; Gheban, D.; Râjnoveanu, R.-M.; Râjnoveanu, A.; Roşian, Ş.H.; Buzoianu, A.D.; et al. Multi-Organ Protective Effects of Curcumin Nanoparticles on Drug-Induced Acute Myocardial Infarction in Rats with Type 1 Diabetes Mellitus. Appl. Sci. 2021, 11, 5497. [Google Scholar] [CrossRef]
- Kodousek, R.; Jezdínský, J.; Krajčí, D. Histological and ultrastructural changes of cardiomyocytes in experimental rats with tail thrombosis following Subplantar Application of Carrageenin. Med. Princ. Pract. 2007, 16, 360–366. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Villa RE, Azimonti G; Villa, R.E.; Azimonti, G.; Bonos, E.; Christensen, H.; Durjava, M.; Dusemund, B.; Gehring, R.; Glandorf, B.; Kouba, M.; et al. Safety and efficacy of a feed additive consisting of an essential oil derived from the flowering tops of Lavandula angustifolia Mill. (lavender oil) for use in all animal species (FEFANA asbl). EFS2 2024, 22, e9017. [Google Scholar] [CrossRef]
- Mitev, D.; Gradeva, H.; Stoyanova, Z.; Petrova, N.; Karova, N.; Dimov, D.; Iliev, V.; Koychev, A.; Prakova, G.; Vlaykova, T. Evaluation of thiol compounds and lipid peroxidative products in plasma of patients with COPD. TJS 2010, 8, 306–314. [Google Scholar]
- Miranda, K.M.; Espey, M.G.; Winkm, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994, 233, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 2004, 37, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Weber, N.C.; Cohn, D.M.; Hollmann, M.W.; DeVries, J.H.; Hermanides, J.; Preckel, B. Effects of Hyperglycemia and Diabetes Mellitus on Coagulation and Hemostasis. J. Clin. Med. 2021, 10, 2419. [Google Scholar] [CrossRef]
- Han, J.; Vlieg, A.v.H.; de Mutsert, R.; Rosendaal, F.R.; van der Velde, J.H.; Boone, S.C.; Winters-van Eekelen, E.; le Cessie, S.; Li-Gao, R. Associations of coagulation parameters and thrombin generation potential with the incidence of type 2 diabetes: Mediating role of glycoprotein acetylation. Eur. J. Epidemiol. 2024, 39, 1171–1181. [Google Scholar] [CrossRef]
- Drews, G.; Krippeit-Drews, P.; Düfer, M. Oxidative stress and beta-cell dysfunction. Pflug. Arch. - Eur. J. Physiol. 2010, 460, 703–718. [Google Scholar] [CrossRef]
- Qneibi, M.; Bdir, S.; Maayeh, C.; Bdair, M.; Sandouka, D.; Basit, D.; Hallak, M. A Comprehensive Review of Essential Oils and Their Pharmacological Activities in Neurological Disorders: Exploring Neuroprotective Potential. Neurochem. Res. 2024, 49, 258–289. [Google Scholar] [CrossRef]
- De Cássia Da Silveira E Sá, R.; Andrade, L.; De Sousa, D. A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules 2013, 18, 1227–1254. [Google Scholar] [CrossRef]
- Dobros, N.; Zawada, K.D.; Paradowska, K. Phytochemical Profiling, Antioxidant and Anti-Inflammatory Activity of Plants Belonging to the Lavandula Genus. Molecules 2022, 28, 256. [Google Scholar] [CrossRef]
- Jongwachirachai, P.; Ruankham, W.; Apiraksattayakul, S.; Intharakham, S.; Suwanjang, W.; Prachayasittikul, V.; Prachayasittikul, S.; Phopin, K. Neuroprotective Properties of Coriander-Derived Compounds on Neuronal Cell Damage under Oxidative Stress-Induced SH-SY5Y Neuroblastoma and in Silico ADMET Analysis. Neurochem. Res. 2024, 49, 3308–3325. [Google Scholar] [CrossRef]
- Ćurko-Cofek, B.; Jenko, M.; Stupica, G.T.; Batičić, L.; Krsek, A.; Batinac, T.; Ljubačev, A.; Zdravković, M.; Knežević, D.; Šoštarič, M.; et al. The Crucial Triad: Endothelial Glycocalyx, Oxidative Stress, and Inflammation in Cardiac Surgery—Exploring the Molecular Connections. Int. J. Mol. Sci. 2024, 25, 10891. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y. Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease. Antioxidants 2022, 11, 1958. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.K.; Seol, G.H. Effects of linalyl acetate on oxidative stress, inflammation and endothelial dysfunction: Can linalyl acetate prevent mild cognitive impairment? Front. Pharmacol. 2023, 14, 1233977. [Google Scholar] [CrossRef] [PubMed]
- Endemann, D.H.; Schiffrin, E.L. Nitric oxide, oxidative excess, and vascular complications of diabetes mellitus. Curr. Hypertens Rep. 2004, 6, 85–89. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Mikallou, M.; Petropoulos, S.; Tzortzakis, N. Profiling of Essential Oils Components and Polyphenols for Their Antioxidant Activity of Medicinal and Aromatic Plants Grown in Different Environmental Conditions. Agronomy 2020, 10, 727. [Google Scholar] [CrossRef]
- Ayachi Amar, F.Z.; Goudjil, M.B.; Mahcene, Z.; Ayachi Amor, A. Antioxidant potential and chemical composition of essential oils from Mentha longifolia, Lavandula angustifolia, and Ocimum basilicum grown in the Oued Souf region, Algeria. Chem. Pap. 2024. [Google Scholar] [CrossRef]
- Martens, F.M.A.C.; Rabelink, T.J.; Op ’T Roodt, J.; De Koning, E.J.P.; Visseren, F.L.J. TNF-α induces endothelial dysfunction in diabetic adults, an effect reversible by the PPAR-γ agonist pioglitazone. Eur. Heart J. 2006, 27, 1605–1609. [Google Scholar] [CrossRef]
- Saadati, S.; de Courten, M.; Deceneux, C.; Plebanski, M.; Scott, D.; Mesinovic, J.; Jansons, P.; Aldini, G.; Cameron, J.; Feehan, J.; et al. Carnosine Supplementation Has No Effect on Inflammatory Markers in Adults with Prediabetes and Type 2 Diabetes: A Randomised Controlled Trial. Nutrients 2024, 16, 3900. [Google Scholar] [CrossRef]
- Li, Y.; Lv, O.; Zhou, F.; Li, Q.; Wu, Z.; Zheng, Y. Linalool inhibits LPS-induced inflammation in BV2 microglia cells by activating Nrf2. Neurochem. Res. 2015, 40, 1520–1525. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Wu, J.; Qu, C.; Sun, F.; Xu, S. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. Int. Immunopharmacol. 2015, 29, 708–713. [Google Scholar] [CrossRef]
- Soltani, E.; Farahpour, M.R.; Tabatabaei, Z.G. Lavender officinalis essential oil conjugated carboxymethyl cellulose: As boosters of antibacterial and bio enhancers to accelerate the repair of full-thickness infected wound. Polym. Bull. 2024, 81, 6091–6113. [Google Scholar] [CrossRef]
- Li, X.; Xiao, D.; Li, C.; Wu, T.; Li, L.; Li, T.; Pan, X.; Liu, Q.; Chi, M.; Li, R.; et al. Lavender essential oil alleviates depressive-like behavior in alcohol-withdrawn rats: Insights from gut metabolites and hippocampal transcriptome analysis. Biomed. Pharmacother. 2024, 176, 116835. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.-S.; Teibo, J.O.; Wasef, L.; Shaheen, H.M.; Akomolafe, A.P.; Teibo, T.K.A.; Al-Kuraishy, H.M.; Al-Garbeeb, A.I.; Alexiou, A.; Papadakis, M. A review of the bioactive components and pharmacological properties of Lavandula species. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 877–900. [Google Scholar] [CrossRef] [PubMed]
- Sebai, H.; Selmi, S.; Rtibi, K.; Souli, A.; Gharbi, N.; Sakly, M. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids Health Dis. 2013, 12, 189. [Google Scholar] [CrossRef]
- Bulboacă, A.E.; Boarescu, P.M.; Bolboacă, S.D.; Blidaru, M.; Feștilă, D.; Dogaru, G.; Nicula, C.A. Comparative effect of curcumin versus liposomal curcumin on systemic pro-inflammatory cytokines profile, MCP-1 and RANTES in experimental diabetes mellitus. Int. J. Nanomed. 2019, 14, 8961–8972. [Google Scholar] [CrossRef]
- Peeters, S.A.; Engelen, L.; Buijs, J.; Jorsal, A.; Parving, H.-H.; Tarnow, L.; Rossing, P.; Schalkwijk, C.G.; Stehouwer, C.D.A. Plasma matrix metalloproteinases are associated with incident cardiovascular disease and all-cause mortality in patients with type 1 diabetes: A 12-year follow-up study. Cardiovasc. Diabetol. 2017, 16, 55. [Google Scholar] [CrossRef]
- Dogaru, G.; Bulboaca, A.E.; Gheban, D.; Boarescu, P.M.; Rus, V.; Festila, D.; Sitar-Taut, A.-V.; Stanescu, I. Effect of Liposomal Curcumin on Acetaminophen Hepatotoxicity by Down-regulation of Oxidative Stress and Matrix Metalloproteinases. In Vivo 2020, 34, 569–582. [Google Scholar] [CrossRef]
- Andjelic, J.M.; Stojanovic, J.; Vuksanovic, M.; Jojic, B.; Petkovic, M.M.; Grujanac, A.C.; Zivkovic, T.B. Importance of MMP-2 and MMP-9 gene polymorphism in the development of microvascular complications in type 2 diabetes patients. Endocr. Abstr. 2023, 90, EP228. [Google Scholar] [CrossRef]
- But, V.M.; Rus, V.; Ilyés, T.; Gherman, M.L.; Stănescu, I.C.; Bolboacă, S.D.; Bulboacă, A.E. Adjuvant effects of Lavandula angustifolia oil in experimental carrageenan-induced thrombosis. Appl. Sci. 2024, 14, 1852. [Google Scholar] [CrossRef]
- An, Q.; Ren, J.-N.; Li, X.; Fan, G.; Qu, S.-S.; Song, Y.; Li, Y.; Pan, S.-Y. Recent updates on bioactive properties of linalool. Food Funct. 2021, 12, 10370–10389. [Google Scholar] [CrossRef]
- Tamilmani, P.; Uddandrao, V.V.S.; Chandrasekaran, P.; Saravanan, G.; Naidu, P.B.; Sengottuvelu, S.; Vadivukkarasi, S. Linalool attenuates lipid accumulation and oxidative stress in metabolic dysfunction-associated steatotic liver disease via Sirt1/Akt/PPRA-α/AMPK and Nrf-2/HO-1 signaling pathways. Clin. Res. Hepatol. Gastroenterol. 2023, 47, 102231. [Google Scholar] [CrossRef] [PubMed]
Group | MDA, nmol/L | NOx, μmol/L | TOS, μmol H2O2 equiv./L |
---|---|---|---|
C | 5.01 [4.84 to 5.12] {4.43 to 5.27} | 24.31 [21.45 to 27.27] {17.28 to 29.66} | 7.15 [6.49 to 7.66] {6.21 to 8.2} |
T | 6.26 [6.03 to 6.97] {5.79 to 8.26} | 39.8 [36.74 to 41.68] {32.4 to 57.8} | 21.85 [20.52 to 26.09] {19.88 to 26.97} |
D | 7.94 [7.59 to 8.43] {6.96 to 8.97} | 76.8 [74.51 to 81.11] {69.45 to 90.68} | 37.86 [35.36 to 39.35] {34.01 to 43.29} |
DT | 11.17 [10.32 to 11.8] {9.69 to 13.59} | 92.47 [88.73 to 96.16] {84.32 to 104.32} | 52.81 [49.01 to 55.01] {47.93 to 61.47} |
DTL1 | 7.8 [7.64 to 8.04] {7.22 to 8.87} | 47.11 [43.85 to 49.67] {40.67 to 54.69} | 36.91 [34.4 to 38.51] {31.81 to 46.27} |
DTL2 | 5.6 [5.43 to 5.94] {4.96 to 6.57} | 40.19 [37.8 to 45.1] {32.77 to 50.08} | 10.15 [9.18 to 11.72] {7.89 to 15.27} |
p-value | <0.0001 | <0.0001 | <0.0001 |
Group | TAC, mmol Trolox/L | THIOL, μmol/L |
---|---|---|
C | 1.09 [1.08 to 1.11] {1.06 to 1.14} | 418.5 [406.25 to 446.25] {395 to 479} |
D | 0.97 [0.95 to 0.99] {0.89 to 1.02} | 277 [260 to 292.5] {240 to 311} |
T | 0.75 [0.68 to 0.85] {0.57 to 0.89} | 236.5 [220.25 to 257.25] {207 to 309} |
DT | 0.64 [0.58 to 0.76] {0.52 to 0.86} | 217 [199.5 to 236] {176 to 279} |
DTL1 | 0.87 [0.82 to 0.87] {0.77 to 0.91} | 331 [315.5 to 340.5] {303 to 395} |
DTL2 | 1.07 [1.05 to 1.08] {1 to 1.09} | 437 [381 to 458.75] {339 to 489} |
p-value | <0.0001 | <0.0001 |
Group | TNF-α, pg/mL | RANTES, pg/mL | MCP-1, ng/mL |
---|---|---|---|
C | 38.07 [36.42 to 39.49] {28.87 to 42.59} | 637.3 [555.03 to 732.35] {518.3 to 890.5} | 1.15 [0.98 to 1.33] {0.85 to 1.95} |
T | 59.74 [54.15 to 69.36] {42.03 to 75.63} | 984.2 [854.85 to 1200.9] {821.9 to 1396.1} | 2.53 [2.24 to 2.63] {2.05 to 2.95} |
D | 73.11 [64.82 to 75.5] {52.24 to 79.33} | 989.1 [885.9 to 1087.58] {823.5 to 1228.7} | 2.33 [2.26 to 2.45] {1.95 to 2.85} |
DT | 80.17 [73.41 to 84.15] {69.95 to 93.94} | 1398 [1243.43 to 1550.43] {1110.1 to 1746.2} | 3.18 [2.8 to 3.38] {2.4 to 4.05} |
DTL1 | 50.72 [44.51 to 52.44] {39.57 to 61.05} | 1118.05 [907.95 to 1279.13] {834.4 to 1384.9} | 2 [1.85 to 2.55] {1.55 to 2.8} |
DTL2 | 39.28 [36.13 to 41.51] {29.86 to 44.29} | 511.1 [453.8 to 622.15] {119.3 to 873.1} | 1.88 [1.71 to 2.05] {1.35 to 2.2} |
p-value | <0.0001 | <0.0001 | <0.0001 |
Group | Glycemia, mg/dL | C-Peptide, pg/mL |
---|---|---|
C | 98.94 [95.5 to 103.68] {89.91 to 105.06} | 6574.85 [6285.15 to 6891.08] {6183.9 to 7484.7} |
T | 116.34 [108.58 to 122.49] {99.34 to 143.22} | 4700.05 [4357.2 to 5109.98] {4100.6 to 5724.5} |
D | 290.22 [286.71 to 295.24] {272.76 to 304} | 1637.35 [1249.05 to 1816.95] {874.2 to 2649.6} |
DT | 317.34 [308.71 to 326.16] {305.45 to 333.46} | 546.5 [427.95 to 639.9] {302.8 to 878.4} |
DTL1 | 264.67 [249.47 to 270.99] {237.4 to 276.8} | 4084.95 [3958.75 to 4431.5] {3792.7 to 4688.3} |
DTL2 | 219.81 [200.54 to 231.83] {190.99 to 258.61} | 4618.05 [4502.38 to 4812.18] {4277.4 to 5441.6} |
p-value | <0.0001 | <0.0001 |
Group | MMP-2, ng/mL | MMP-9, ng/mL |
---|---|---|
C | 85.25 [80.37 to 92.78] {64.6 to 99.65} | 21.23 [19.68 to 23.14] {17.9 to 26.6} |
T | 147.85 [134.57 to 168.92] {108.36 to 188.95} | 23.25 [20.75 to 24.58] {19.1 to 27.8} |
D | 189.02 [174.68 to 206.02] {119.2 to 241.68} | 43.3 [40.53 to 45.93] {39.2 to 48} |
DT | 264.17 [227.76 to 273.87] {204.17 to 343.87} | 43.65 [40.71 to 45.24] {36.9 to 48.6} |
DTL1 | 189.06 [147.73 to 211.06] {132.86 to 303.83} | 37.43 [35.38 to 38.69] {31.15 to 42.2} |
DTL2 | 158.13 [140.08 to 170.65] {115.81 to 193.06} | 26.8 [23.48 to 32.48] {22.05 to 39.45} |
p-value | <0.0001 | <0.0001 |
Group | Bleeding Time, s | Clotting Time, s |
---|---|---|
C | 170 [161.25 to 173.5] {153 to 180} | 137 [131.5 to 145.5] {128 to 150} |
T | 73 [66.5 to 78.25] {61 to 94} | 55 [48.75 to 57.5] {47 to 61} |
D | 144.5 [140.5 to 150] {137 to 159} | 124.5 [120 to 129] {117 to 133} |
DT | 61 [59 to 65.5] {54 to 71} | 45 [44 to 47.5] {41 to 53} |
DTL1 | 104 [98.75 to 106.5] {94 to 113} | 91.5 [88 to 95.5] {87 to 101} |
DTL2 | 120 [114.5 to 130] {109 to 146} | 106 [104.25 to 108.75] {99 to 115} |
Group | Creatinine, mg/dL | Urea, mg/dL | ALT, UI | AST, UI |
---|---|---|---|---|
C | 0.71 [0.67 to 0.73] {0.62 to 0.78} | 39.5 [38.25 to 42.25] {35 to 46} | 34.5 [32.25 to 38] {26 to 40} | 40.5 [39 to 43.75] {34 to 46} |
T | 0.96 [0.84 to 1.02] {0.74 to 1.36} | 53.5 [47.5 to 59.75] b1 {45 to 82} | 68.5 [58.5 to 73.25] {54 to 79} | 62.5 [57.75 to 67.25] {49 to 80} |
D | 1.31 [1.21 to 1.67] a1 {1.09 to 1.9} | 73 [59 to 76.75] b2 {53 to 82} | 152 [136.75 to 156.75] c1 {117 to 164} | 122.5 [118 to 126.75] d1,d2 {107 to 139} |
DT | 1.89 [1.86 to 2] a2,a3 {1.78 to 2.15} | 87 [84.25 to 89.75] b3,b4 {75 to 93} | 176.5 [167.25 to 185] c2,c3 {159 to 193} | 140.5 [135.25 to 148] d3,d4 {119 to 154} |
DTL1 | 1.03 [0.88 to 1.2] a4 {0.81 to 1.39} | 50.5 [48 to 59] b5 {46 to 64} | 135 [132.25 to 142.75] c4 {132 to 161} | 86 [84 to 98] d5 {80 to 116} |
DTL2 | 0.75 [0.71 to 0.84] a5,a6 {0.67 to 0.92} | 49 [46.5 to 50.75] b6 {43 to 58} | 64 [60.5 to 75.5] c5 {52 to 84} | 65 [59 to 69.75] d6,d7 {51 to 86} |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
But, V.M.; Rus, V.; Ilyés, T.; Gherman, M.L.; Stănescu, I.C.; Bolboacă, S.D.; Bulboacă, A.E. Therapeutic Effects of Lavender Oil on Streptozotocin-Induced Diabetes Mellitus and Experimental Thrombosis. Antioxidants 2025, 14, 166. https://doi.org/10.3390/antiox14020166
But VM, Rus V, Ilyés T, Gherman ML, Stănescu IC, Bolboacă SD, Bulboacă AE. Therapeutic Effects of Lavender Oil on Streptozotocin-Induced Diabetes Mellitus and Experimental Thrombosis. Antioxidants. 2025; 14(2):166. https://doi.org/10.3390/antiox14020166
Chicago/Turabian StyleBut, Valeriu Mihai, Vasile Rus, Tamás Ilyés, Mădălina Luciana Gherman, Ioana Cristina Stănescu, Sorana D. Bolboacă, and Adriana Elena Bulboacă. 2025. "Therapeutic Effects of Lavender Oil on Streptozotocin-Induced Diabetes Mellitus and Experimental Thrombosis" Antioxidants 14, no. 2: 166. https://doi.org/10.3390/antiox14020166
APA StyleBut, V. M., Rus, V., Ilyés, T., Gherman, M. L., Stănescu, I. C., Bolboacă, S. D., & Bulboacă, A. E. (2025). Therapeutic Effects of Lavender Oil on Streptozotocin-Induced Diabetes Mellitus and Experimental Thrombosis. Antioxidants, 14(2), 166. https://doi.org/10.3390/antiox14020166